Opuscula Math. 46, no. 1 (2026), 101-119
https://doi.org/10.7494/OpMath.202511231

 
Opuscula Mathematica

Galerkin-type minimizers to a competing problem for \((\vec{p},\vec{q})\)-Laplacian with variable exponents

Zhenfeng Zhang
Mina Ghasemi
Calogero Vetro

Abstract. This study focuses on a sequence of approximate minimizers for the functional \[J(u)=\int\limits_{\Omega}\sum\limits_{i=1}^{N}\frac{1}{p_{i}(x)}\bigg|\frac{\partial u}{\partial x_{i}}\bigg|^{p_{i}(x)}dx-\mu\int\limits_{\Omega}\sum\limits_{i=1}^{N}\frac{1}{q_{i}(x)}\bigg|\frac{\partial u}{\partial x_{i}}\bigg|^{q_{i}(x)}dx-\int\limits_{\Omega} F(u(x))dx,\] where \(\Omega\subset\mathbb{R}^N\) (\(N\geq 3\)) is a bounded domain, and \(p_i,q_i\in C(\overline{\Omega})\) with \(1\lt p_i,q_i\lt +\infty\) for all \(i \in \{1,\ldots,N\}\). We establish the convergence result to the infimum of \(J(u)\) when \(F:\mathbb{R}\to\mathbb{R}\) is a locally Lipschitz function of controlled growth, following the Galerkin method. As an application, we establish the existence of solutions to a class of Dirichlet inclusions associated to the functional.

Keywords: anisotropic Sobolev space, Clarke generalized gradient, Dirichlet problem, Galerkin basis, \((\vec{p},\vec{q})\)-Laplacian with variable exponents.

Mathematics Subject Classification: 46E30, 47J22.

Full text (pdf)

  1. G. Bonanno, G. D'Aguí, A. Sciammetta, Multiple solutions for a class of anisotropic \(\overrightarrow{p}\)-Laplacian problems, Bound. Value Probl. 2023 (2023), 89. https://doi.org/10.1186/s13661-023-01774-7
  2. M.-M. Boureanu, Infinitely many solutions for a class of degenerate anisotropic elliptic problems with variable exponent, Taiwanese J. Math. 15 (2011), 2291-2310. https://doi.org/10.11650/twjm/1500406435
  3. K.C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. https://doi.org/10.1016/0022-247x(81)90095-0
  4. N. Chems Eddine, M.A. Ragusa, D.D. Repovš, On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications, Fract. Calc. Appl. Anal. 27 (2024), 725-756. https://doi.org/10.1007/s13540-024-00246-8
  5. F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons Inc., New York, NY, USA, 1983. https://doi.org/10.1137/1.9781611971309
  6. J. Diblík, M. Galewski, I. Kossowski, D. Motreanu, On competing \((p,q)\)-Laplacian Dirichlet problem with unbounded weight, Differ. lntegral Equ. 38 (2025), 23-42. https://doi.org/10.57262/die038-0102-23
  7. L. Diening, P. Harjulehto, P. Hästö, M. Rŭzĭcka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics. Springer, Berlin/Heidelberg, Germany, 2011. https://doi.org/10.1007/978-3-642-18363-8
  8. Y. El Yazidi, A. Charkaoui, S. Zeng, Finite element solutions for variable exponents double phase problems, Numer. Algor. (2025). https://doi.org/10.1007/s11075-025-02194-7
  9. X. Fan, Anisotropic variable exponent Sobolev spaces and \(\overrightarrow{p}(x)\)-Laplacian equations, Complex Var. Elliptic Equ. 56 (2011), 623-642. https://doi.org/10.1080/17476931003728412
  10. X. Fan, D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  11. I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. I. H. Poincaré 21 (2004), 715-734. https://doi.org/10.1016/j.anihpc.2003.12.001
  12. M. Galewski, D. Motreanu, On variational competing \((p, q)\)-Laplacian Dirichlet problem with gradient depending weight, Appl. Math. Lett. 148, (2024), 108881. https://doi.org/10.1016/j.aml.2023.108881
  13. M. Galewski, D. Motreanu, Competing Operators and their Applications to Boundary Value Problems, SpringerBriefs in Mathematics. Springer Cham, Switzerland, 2026.
  14. M. Ghasemi, C. Vetro, Z. Zhang, Dirichlet \(\mu\)-parametric differential problem with multivalued reaction term, Mathematics 13 (2025), 1295. https://doi.org/10.3390/math13081295
  15. Z. Liu, R. Livrea, D. Motreanu, S. Zeng, Variational differential inclusions without ellipticity condition, Electron. J. Qual. Theory Differ. Equ. 2020 (2020), 43. https://doi.org/10.14232/ejqtde.2020.1.43
  16. M. Mihăilescu, P. Pucci, V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698. https://doi.org/10.1016/j.jmaa.2007.09.015
  17. D. Motreanu, Hemivariational inequalities with competing operators, Commun. Nonlinear Sci. Numer. Simul. 130 (2024), 107741. https://doi.org/10.1016/j.cnsns.2023.107741
  18. D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. https://doi.org/10.1007/978-1-4614-9323-5
  19. N.S. Papageorgiou, F. Vetro, P. Winkert, Sequences of nodal solutions for critical double phase problems with variable exponents, Z. Angew. Math. Phys. 75 (2024), 95. https://doi.org/10.1007/s00033-024-02226-7
  20. V.D. Rădulescu, D.D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, USA, 2015. https://doi.org/10.1201/b18601
  21. J. Rákosník, Some remarks to anisotropic Sobolev spaces I, Beiträge Anal. 13 (1979), 55-68.
  22. J. Rákosník, Some remarks to anisotropic Sobolev spaces II, Beiträge Anal. 15 (1981), 127-140.
  23. A. Razani, G.M. Figueiredo, A positive solution for an anisotropic \((p,q)\)-Laplacian, Discrete Contin. Dyn. Syst. Ser. S. 16 (2023), 1629-1643. https://doi.org/10.3934/dcdss.2022147
  24. A. Razani, L. Tavares, J. Vanterler da C. Sousa, Existence and multiplicity results for a system involving an anisotropic \((\overrightarrow{p},\overrightarrow{q})\)-Laplacian type operator, J. Fixed Point Theory Appl. 27 (2025), 66. https://doi.org/10.1007/s11784-025-01218-y
  25. L. Tavares, Multiplicity of solutions for an anisotropic variable exponent problem, Bound. Value Probl. 2022 (2022), 10. https://doi.org/10.1186/s13661-022-01591-4
  26. F. Vetro, R. Efendiev, Systems of differential inclusions with competing operators and variable exponents, Opuscula Math. 45 (2025), 665-684. https://doi.org/10.7494/opmath.2025.45.5.665
  27. S. Zeng, Y. Lu, V.D. Rădulescu, Anisotropic double phase elliptic inclusion systems with logarithmic perturbation and multivalued convections, Appl. Math. Optim. 92 (2025), 6. https://doi.org/10.1007/s00245-025-10278-y
  • Mina Ghasemi
  • ORCID iD https://orcid.org/0000-0001-8526-4176
  • Universities of Messina, Catania and Palermo, Doctoral School on Mathematics and Computational Sciences, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
  • Calogero Vetro (corresponding author)
  • ORCID iD https://orcid.org/0000-0001-5836-6847
  • University of Palermo, Department of Mathematics and Computer Science, Via Archirafi 34, 90123, Palermo, Italy
  • Communicated by Marek Galewski.
  • Received: 2025-09-23.
  • Revised: 2025-11-06.
  • Accepted: 2025-11-23.
  • Published online: 2026-01-27.
Opuscula Mathematica - cover

Cite this article as:
Zhenfeng Zhang, Mina Ghasemi, Calogero Vetro, Galerkin-type minimizers to a competing problem for \((\vec{p},\vec{q})\)-Laplacian with variable exponents, Opuscula Math. 46, no. 1 (2026), 101-119, https://doi.org/10.7494/OpMath.202511231

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.