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Abstract. This study focuses on a sequence of approximate minimizers for the
functional
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where @ C RN (N > 3) is a bounded domain, and p;, ¢; € C(R2) with 1 < p;, ¢ < +00
for all i € {1,..., N}. We establish the convergence result to the infimum of J(u)
when F' : R — R is a locally Lipschitz function of controlled growth, following the
Galerkin method. As an application, we establish the existence of solutions to a class
of Dirichlet inclusions associated to the functional.
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1. MAIN THEOREM AND ENVIRONMENT

Let © C RY (N > 3) be a bounded domain with a smooth boundary 952. In this paper
we consider the following functional

Ny ) Ny
J(U)Q/;pz(ﬂﬁ) dx,uQ/;qi(m)

for all u € Wol’?(m) (Q), where Wol’?(z)(Q) is the anisotropic Sobolev space deter-
mined by the variable exponent ?(x) = (p1(x),p2(x),...,pN(x)), Pi,q: € C(R2) and
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1 < pi(x),qi(r) < +oo forallz € Qand alli € I :={1,...,N}, also 1 € R is a real
parameter, and F': R — R is a locally Lipschitz function of the following growth:

(G) there are a function a € C(Q2) with 1 < a* < P~ and constants ¢, ¢ > 0 satisfying
|z S c+Et]*@1 forallt e R,z € Qand z € IF(t),

where OF(t) denotes the Clarke subdifferential of F(t), o™ = max _ga(z), P~ =
minger p; and p; = min, g pi(z), i € I.

Condition (G) is essential to control the third term (reaction) in (1.1), leading to
well-posedness and providing a priori estimates (hence, boundedness) for the functional.
A relevant feature of our functional is the presence of a parameter p € R that acts as
switching coefficient between the case of an elliptic functional (0 > p) and the case
of a non-elliptic functional (0 < u). As for the elliptic case, the analysis of the
functional (1.1) may benefit of suitable monotonicity arguments which also have a key
role in the proof of existence results to various classes of differential equations and
inclusions, see the books by Motreanu et al. [18], and by Radulescu and Repovs [20] for
more background. Differently, the non-elliptic case inhibits the usage of monotonicity
arguments, hence leading to some technical difficulties. However, we can overcome
such problems by the use of a discretized Galerkin approach together with certain
convergence arguments. In the framework of separable Banach spaces, we denote

by {X,}nen a Galerkin basis of Wol’?(z)(Q), that is a sequence of vector spaces
such that

dim (X,) < 400 for all n € N (finite dimension), (1.2)
X, € Xp41 for all n € N (nesting property), (1.3)
- _ L7 () .

U X, =W, () (covering property). (1.4)
n=1

Our primary goal is to establish a convergence result to the infimum of functional

(1.1) over VVO1 7 (@) (Q), by construction of a suitable sequence of approximate minimizers
for (1.1) over X,, (for all n € N). So, we first give the notion of approximate minimizer in
the finite-dimensional vector space X,,.

Definition 1.1. We say that u,, € X,;, n € N, is an approximate minimizer of the
functional (1.1) if J(u,) = inf{J(v) : v € X, }.

Remark 1.2. If u,, € X,, is an approximate minimizer for (1.1), as a consequence
we get that for some z, € 9F (u,) a.e. on  one has

N pi(x)—2 N

/> o gt [ 3
i=1 Ox; Oz; i=1

Q Q

forall h € X,,,n €N,
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Now, let (Wol’?(w)(Q))* denote the topological dual space of W(}j(aj)(Q), then
the concept of Galerkin-type minimizer is given as follows, hence it is understood as the

generated sequence of approximate minimizers over the Galerkin basis of VVO1 ’?(1)(9).

Definition 1.3. Let {uy, }nen C W&’?(I)(Q) be a sequence of approximate minimizers

of the functional (1.1) and assume that equation (1.5) holds for z, € (Wol’?(x)(Q))*,
n € N. We say that {u,}nen is a Galerkin-type minimizer of the functional (1.1) if

lim J(u,)=inf{J(v):v € Wol’?(x)(ﬂ)}.

n—-+oo

In Definition 1.3, we precisely mean that for each n € N, equation (1.5) holds for
some z, € (W&’?(I)(Q))* and z,, € OF (u,) a.e. on . Hence, we state our main result.
Theorem 1.4. Let p;,q; € C(Q) for all i € I such that 1 < Q~ < Qi < P~ < N.
If (G) is satisfied and u,, € X,, C Wol’?(x) (Q) fulfills equation (1.5), then the functional
(1.1) has a Galerkin-type minimizer over Wg’7($)(9).

We note that Theorem 1.4 gives the relation between the variable exponents for
the (?, ?)—Laplacian defined by
qi(2)—2 ou
8$Z‘
for all u € Wol’?(m)(ﬁ).

However, as far as we know, such operator has not been systematically evaluated.
Our analysis here fills-in this gap of the literature, by involving a precise extension
of the main arguments for [14, 17] to the anisotropic setting. In detail, we observe that
the following functionals can be deduced as particular cases of (1.1):

Ih(f)—Q% u
o0x; H ox;

Y0 (| ou
—Agayut pAG U ==Y o (‘ o
i=1 " ¢

— If the functional (1.1) involves the (p, ¢)-Laplacian with variable exponents, hence
it reduces to the functional

W= [ wur@de — p [ v @de — [ FPlue))ds
Iw) Q/p(x)v d u!q<x)lvl d !F(())d (16)

for all u € VVO1 p() 2), also assuming the standard conditions on the variable

(
exponents p,q € C(Q):

1< ¢ =ming(z) < q(z) < ¢" = maxq(z)
e z€Q

<p~ =minp(z) < p(z) < p" = maxp(r) < +oo.
zeQ e
Such model is considered by Ghasemi et al. [14], who involve embedding results

and useful estimates to show first that (1.6) is locally Lipschitz and coercive (see
[14, Proposition 4]), then they use the Galerkin approach to show existence and
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boundedness of local minimizers to (1.6) in [14, Propositions 5 and 6], finally the result
corresponding to our Theorem 1.4 can be deduced by [14, Proposition 8], where in the
proof the authors argue by contradiction.

— If the functional (1.1) involves the (p, ¢)-Laplacian with constant exponents, hence
it reduces to the functional

J(u) = %/|Vu|pdx— g/|Vu|qd;v—/F(u(m))d:v (1.7)
Q Q

Q

for all u € Wy (), 1< ¢ <p < +oo.

Such model is considered by Motreanu [17], who uses embedding results and
Holder inequality to establish first that (1.7) is locally Lipschitz and coercive ([17,
Proposition 1]) then, involving the Galerkin basis of W, (£2), proves existence and
boundedness of local minimizers to (1.7) in [17, Corollary 2 and Proposition 3].
Reasoning by contradiction, the author concludes the existence of a sequence of
minimizers in [17, Corollary 5].

Clearly the analysis of functionals (1.1), (1.6) and (1.7) cannot leave aside imposing
an appropriate growth condition on the locally Lipschitz function F (for more details,
compare the growth (G) above with the corresponding conditions Hy and (H) in [14]
and [17], respectively).

Anisotropic functionals with ;1 = 0 were investigated by Bonanno et al. [1] (constant
exponent), Chems Eddine et al. [4], Fan [9] and Tavares [25] (variable exponent),
further anisotropic functionals with ;1 = —1 were studied by Tavares [25], Razani and
colleagues [23, 24] (constant exponents). These works provide the readers with a solid
understanding of topological and variational methods used to evaluate the effects
of reaction terms on the structure of functionals. For more results on non-elliptic
functionals, we mention the works by Diblik et al. [6], Galewski and Motreanu [12],
Liu et al. [15], Vetro and Efendiev [26], and for elliptic functionals we refer to the
recent investigations by El Yazidi et al. [8], Papageorgiou et al. [19], Zeng et al. [27],
and the references cited therein. We finally mention the very recent monograph by
Galewski and Motreanu [13] devoted to the study of boundary value problems driven
by principal operators which lack monotonicity.

The organization of the manuscript is as follows. In Section 2 we briefly review the
variable anisotropic Sobolev spaces. In Section 3 we provide the detailed analysis of
functional (1.1). In Section 4 we apply Theorem 1.4 to solve the existence problem for
a class of differential inclusions with Dirichlet boundary condition.

2. SPACE Wol’?(z)(Q) and embedding in L*®)(Q)

The analysis of functional (1.1) is carried out in the variable anisotropic Sobolev space
Wol’?(m)(Q), but it also requires the variable Lebesgue space L*(*)(Q), for suitable

exponent s € C(2) as will be precised later on. In this section, we mainly follow
the works by Mihéilescu et al. [16] and Fan [9], but for a comprehensive covering of
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variable Lebesgue and Sobolev spaces, and their involvement in the study of PDEs,
we suggest the books by Diening et al. [7] and Radulescu and Repovs [20].
The variable Lebesgue space denoted by L”(””)(Q) is defined as

"i®)dy < 400y,

L@ Q)= ue MQ): /|u(x)
Q

where M (Q) is the space of measurable functions u : @ — R, and r; € C(Q) with
1 <r; :=min{r;(z) : x € Q}, i € I. So, introducing the so-called modular function
Pry(z) : M(Q2) = [0, 400] defined by

Pri(a) (1) := / lu(z)|"@dz  for allue M(Q), i €1, (2.1)
Q

and referring to the Luxemburg norm given by

lullr, () := inf {)\ >0 ppy(a) (z) < 1} ,

we know that the space (L™ (Q), | || (x)) is a separable and reflexive Banach space.
Letting r; € C(Q) the Holder conjugate exponent to r;, that is r}(x) = r;(x)/(ri(x)—1),
for any = € ), i € I, it leads to the following Holder inequality

1 1
Jhunlde < (2 + ) Walolltle < 2l bl @22
Q

7 7

for uw € L"(®)(Q) and h € L7i@)(Q). -
If r;, s € O(Q) with r;(z) > s(z) for all x € Q, then L"®)(Q) — L*@)(Q) is a con-
tinuous embedding. Involving L"(*)(Q), we can introduce the variable Sobolev space

Whrie)(Q) == {u € L"®(Q) : |Vu| € L"(Q)}.
We endow this space with the norm
lull1,ri (@) = Nl @) + VUl @),

where as usual we set ||Vu

ri(z) *T |||Vu|
on this basis that we can consider the Sobolev space Wol’”(z)(Q) = Cg"(Q)”"ll”(z).

We know that both the spaces W17(®)(Q) and W™ *)(Q) are separable and uniformly
convex (hence, reflexive) Banach spaces. Also, for some constant ¢; > 0, we have
the following version of Poincaré inequality:

ri(z), and Vu is the weak gradient of u. It is

[l @) < €1l Vel oy for all w e Wy ™ (). (2.3)
Consequently, on W, ") (), we can use the norm

1,ri(z
[l 1y (a) = [ Vully (o) for all uw e Wy (@).
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The norm || - ||, () and the modular function p,,(,) (see (2.1)) are closely related by
the following proposition.

Proposition 2.1 ([10, Theorem 1.3]). If r; € C(Q) with 1 < r;, i € I, and
u € L™(®)(Q), then the following hold:
() Nl < 1 (resp. =1, > 1) & ppgey(w) < 1 (resp. =1, > 1),
T ri
(i) if Nl > 1, then Jull ) < pruger (@) < Jull ),
rt T
(i) of [[ullr, @) <1, then [lull,l () < pry@)(w) < llull,! -
According to Proposition 2.1, we deduce that
rt ro
ull,! ) + 1= pri@y (W) > lull,l,y —1 forallue L@ (Q). (2.4)

We introduce the critical Sobolev exponent r; corresponding to r; € C(Q) with
1<r;,i€l, as follows:

Nr;(x) if <N o

@) = A N I <N e (2.5)
+00 it N <r;i(x),

The following embedding result holds true.

Proposition 2.2. Leti € I. Ifr;,s € C(Q) with 1 <r;,s~ and v} (x) > s(x) for all

7 7

x € Q, then the embedding W()l’ri($)(f2) — L*®)(Q) is compact.

According to Proposition 2.2, we can find a constant ¢, > 0 (depending on s € C(Q))
satisfying the inequality

ri(a) for all w e Wy (@), (2.6)

[ulls@) < c2llVu

We can now extend the above theory to anisotropic Sobolev spaces, considering the
vectorial function 7 : Q@ — RY given as 7 () = (ri(x),r2(x), ... ,rn(z)), see [9, 16].
We first complete the notions and notation partially introduced in Section 1, but for
readers’ convenience we also repeat some of the already given ones. For r;, € C(Q)
with 1 < r;, i € I, referring to [9, 16] and in view of the definition of critical Sobolev
exponent in (2.5), we introduce the following notation

Ri =max{r{,...,r}, BRI =max{r,...,ry},
RZ =min{r,...,ry},

N
R* = , R_ . =max{R R*}.

(Cii /) -1
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Remark 2.3. The quantity R* is properly defined provided that we assume

the condition
N
1< —,
Z .
=1 7

see also Fragala et al. [11, Sec. 2.1]. So, it is crucial to establish the embedding result
in Proposition 2.4 below. Furthermore, suppose

(@) = {p(m) if i € 1\ {N},
’ 2p(z) ifi=N,

for all z € Q, some p € C(Q) such that N >3 and N —1 > 2p~ > 2, so that

o N B N
oSNy -1 @N=1)/2p7 -1
2Np~ +

e Y - — Rt
IN —1—2p P TR T h-

Differently, for every ¢ € I assume
ri(x) =p(x) forallz € Q,somepec C(Q): N >p~ > 1.

Hence, we have

N N Np~
P >p  =maxr; =RT.

RF = = =
(Zg\;l/’f)_l N/p~—=1 N-—p- iel

This motivates introduction of the quantity R_ ., = max{R", R* }.

We also denote
ryv(z) = max{ri(z),...,rn(z)}.

The variable exponent anisotropic Sobolev space le(””)(Q) is defined by

ou

L

WhT@(Q) = {u € L™EN(Q): — e L™™(Q), iel }

equipped with the norm

(2.7)

N
lully 7 = lullra +
i=1

ou
i l:(a)
Similar to the previous setting, we can introduce the space

H'Hl,?’

7 (x Vol Yte)}
Wy " P(Q) = TR ()
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So Wy (Q) endowed with the following norm

N

lullio =

i=1

ou
al‘i

ri(z)

is a separable, reflexive and uniformly convex Banach space for r;, € C(Q) with 1 < r;,

i € I, see Rdkosnik [21, 22]. We recall the following key embedding result from
the literature, it can be seen in the work by Mih&ilescu et al. [16, Theorem 1].

Proposition 2.4. Let Q C ]RNiwz'th N > 3 be a bounded domain with smooth
boundary Q. Then, for s,r; € C(Q) verifying

N
— 1
1<s(x) < Ro o, forallz e, and1 < E —,
T

i=1 1

we have =
WOL (f)(Q) — L*@)(Q) compactly.

The proof of Proposition 2.4 substantially observes that for every i € I, one can
find a constant C; > 0 satisfying the inequality

’ ou ou

Summing from 1 to N both the sides of this inequality and denoting ﬁ_ =
{r1,...,ry}, and C := max;c; C;, one easily has

< for all u € Wh 7 @ (q).

T,
i

ri(z)

lullg < Cllullw,

which establishes the continuous embedding W, ’?(I)(Q) =Wy - (Q). Assumption
1 < s(z) < R_ o, for all z € , together with several manipulations of the exponents
(see also [11]), leads to

R

WhTE(Q) o W (Q) e LT (Q) < L5@(Q).

3. ANALYSIS OF FUNCTIONAL J

According to the spaces and results introduced in Section 2, we start our detailed
analysis of functional J : Wol’?(x)(Q) — R given by

J(u) = T (w) — T (w) — T (u)
o1 | ou | S|
Q/;m(x) dx“ﬂ/%xw)

for all u € Wol’?(m)(ﬂ).

qi(z)

ou
Xy

0

é%si

dz — /F(u(x))dm
Q
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Since in Theorem 1.4 we look for Galerkin-type minimizers, then we have to
provide a proper notion of derivative to deal with. So, if we denote by (-,-) the du-
ality brackets for the pair ((Wolj(r) ()%, W()l’7(m)(ﬂ)), r € {p,q}, we know that
Jo Wol’?(w)(Q) — (Wolj(w)(Q))* is a C''-functional, and we have

N ri(x)—2
ou Oou Oh
J! h)y = —
< 7(U)7 > 2/‘8:}61 85(17; 8:51
K ?)

dzx

for all u,h € VVO1 ’?(w)(Q). Furthermore, it is bounded, continuous, strictly monotone

and if u,, — u in Wol’?(m)(Q) and limsup,, , , o (J% (un), un —u) <0, then u, — u

in Wol’?(w)(Q) (that is, it satisfies the (S)4 property)), see Boureanu [2, Lemma 2].

Next, we know that Jp : WP ") (Q) — R defined by

Ti(u) = / Flu(z))dz for all u € W@ () (3.1)

is Lipschitz on the bounded subsets of VVO1 P @) (Q) because of the function F': R — R is

locally Lipschitz (by hypothesis) and its growth is controlled by assumption (G).
According to the Clarke subdifferential theory (see Clarke [5] and Chang [3]), we recall
that a real-valued function ¢, defined on a Banach space X, is locally Lipschitz if
for every u € X, there is open neighborhood Y of w and constant k£ > 0 (depending
on Y) with

|p(z1) — P(22)| < E||z1 — 22| forall z1,20 €Y.

If ¢ : X — R is continuous and convex, then it is locally Lipschitz. The generalized
directional derivative of ¢ at uw € X in the direction v € X is defined as

¢°(u;v) = limsup w

z—u,tl0 t

This is a convex function with respect to its second variable, and so one can appeal
to Hahn—Banach theorem to write

0d(u) = {u" € X*|¢°(u;v) > (u*,v) forallve X},

being (-,-) the duality brackets for (X*, X). Now, by v — 0¢(u) we denote the
subdifferential of ¢(-) in Clarke’s sense. Furthermore, we recall that v — ¢°(u;v)
is finite, positively homogeneous, subadditive and |¢°(u;v)| < k|jv| for all v €
X. Following this theory, we can properly consider the Clarke subdifferential

of Jp : Wol’?(m)(ﬂ) — R denoted by 0JF : W&’?(I)(Q) S 2o T that s
a nonempty, convex, weak*-compact subset of (VVO1 ’?(m)(Q))* (see [3]). Furthermore,
Jg,Jg € Cl(Wol’?(m)(Q)) and so

0J7 (u) = {J%(u)} forallu e VVOL?(I)(Q)7 r e {p,q}.
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Since every C'-functional is locally Lipschitz, clearly J : WO1 7 @) (Q) — Ris locally
Lipschitz too, and we have

pi(z)—

qi(z)— 26u
ox;

ou

—d
81‘1 v

e —0Tpw)  (3.2)

81‘,

for all u € Wol’?(m)(ﬂ).

It follows that w € VVO1 P @) (€) is a critical point (local minimum or local maximum)
of J provided that 0 € 9J(w). Such necessary condition is essential in establishing our
proof (recall Definitions 1.1 and 1.3), and we will use it involving the precise equation

4@)=2 50 9k

O 0w oh
oz, 3% /Z 8—%6%@90 - /z hdz =0 (3.3)
Q

for some z* € (Wol’?(m) (Q))* with z* € OF (w) a.e. on Q, all h € Wol’?(m)(ﬂ).
The following results (see again [3, 5]) are also needed in the proof.

(9177 61'7

Lemma 3.1 (Mean-value theorem). If ¢ : X — R is locally Lipschitz on an open
neighborhood containing the segment [a,b], then there are ¢ € (a,b) and ¢ € O¢(c) such

that $(b) — ¢(a) = (¢, b — a).
Lemma 3.2. If {un}nen and {(}nen are two sequences in X and X*, respectively,
such that ¢, € OY(uy,) and uy, — u in X and ¢, — ¢, then we have ¢ € O(u).

We are ready to prove our main result.

Proof of Theorem 1.4. We divide the proof in some steps, for the sake of clarity.

Claim 1. J : Wol’?(m)(ﬂ) — R is coercive.
We recall that coercivity means

J(u) = 400 — +00.

(’hz

pi(x)

Now, from the inequalities in (2.4), we easily deduce that

qi(z)
/ gu dr < H gu +1
5 10T Tillgi(a)
Bu ||
<K; +1 (for some K; > 0), (3.4)
Oillp, )

where K; > 0 is a suitable constant linked to the embedding of LP+(*)(Q) into L% () (Q).
Appealing to Lemma 3.1 and involving condition (G), we get

|F(t)| < |[F(0)| + c|t| + @t|*™®  forall t € R, all z € Q. (3.5)
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Using (1.1) and combining the following inequality

Q
with (3.4) and (3.5), in view of Propositions 2.2 and 2.4 we get the following achievement
N ()
! el
Wz g [3 P >
5 =1

dx
- / (clul + 2ul*@)dz — |F(O)19)

Q
B B L N .+
_P+Z<‘ pi(a) 1) Q- ;< pi(a) )
- C(||U||a(z) +1) = [F(0)]]€]

+ =1
L T o
— (> —calN
( m(z)) Q- (i_l m(z))

- P+NP_ -1 i=1
N at
o < > o
pi(x) i=1 pi(x)

for suitable constants cs,c4,c5,c6 > 0, where as usual || stays for the Lebesgue
measure of €.
Since P~ > QT and P~ > o™, we deduce that (1.1) is a coercive functional.

pi(z)

ou ||?
8331'

ou
8:@

—1,
pi(z)

-

pi(l’)

ou
Ox i

8301

ox; al’z axl

pi(x)

ou
833,‘

ou
al‘i

ou
6%‘,’

Zq

Claim 2. The functional J admits an approximate minimizer u,, over X,,.

Referring to the notion of Galerkin basis for WO1 ’?(z)(Q) (recall conditions
(1.2)-(1.4)), we know that dim (X,,) < 400 for all n € N. Furthermore, the locally
Lipschitzianity and coercivity of J imply there is u,, € X, such that

J(uy) =inf{J(v) :v e X,}. (3.6)
So, the local minimum condition for u, € X, is shown by
0€0(J|x,)(un). (3.7)

In the framework of Banach spaces, involving (3.7) one can find z], € 8Jp(uy)
fulfilling the equation

(Jp(un) = pdo(un) — 25, h) =0 forall h € X,,. (3.8)
Appealing to [5, Theorem 2.7.5, Remark 2.7.6], we get

OJp(uy) C /8F(un)dx



112 Zhenfeng Zhang, Mina Ghasemi, and Calogero Vetro

which says us that for each z], € 0JFp(uy), there is z, € IF (u,) a.e. on  such that

(21, h) = /znhdz. (3.9)

Q

Combining (3.8) and (3.9) we establish the validity of equation (1.5), hence in view
of Definition 1.1 the claim is proved.

Claim 3. The sequence {u, }nen is bounded on W’ P @) (Q), that is

N

< L for some L >0, all n € N. (3.10)

From equation (1.5) with h = w, € X,, using the inequalities in (3.4) and
condition (G), we have

N i(@) qi(x)
ou,, |* ou,,
Ry dr = M/Zl oz, dx + /zn Undx
Q = Q
N QY
du, > ou,
<oy ey
(i_l 0% |, (a) el | R [ YOS
+
N «
ouy,
+ c9 <Z 9z, || ) + c1o
1=1 pi(x)
for some c7, cg, cg, c19 > 0.
So, we have
P Qt
( N Oun, ) . ( N ou, ) oun,
<cnn
i=1 0zi ||, () i=1 9z ||, (z) = 11023 [l ()

+

(03
) + c14
pi(x)
for all n € N and for some ¢11, ¢12, ¢13, c14 > 0.
Since P~ > Qi and P~ > aT, we deduce that the sequence of approximate

minimizers {u, }ney is bounded on W’ ?(I)( ), indeed (3.10) holds.
Claim 4. The sequence {uy, }nen fulfills the following condition

ouy,
8$i

+erg (f;

i=1

limJ(u,) = inf{J(v) v € WwhTE (). (3.11)
By Claim 2 we know that u,, € X,, is an approximate minimizer for the functional J.
This means that

J(up) =inf{J(v) : v € X, }.
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Using the nesting property (1.3) of {X, }nen, we conclude that the sequence
{J(un)}nen is nonincreasing and bounded (recall Claim 3). Hence, there is £ € R
such that

lim J(u,)="¢.

n—-+oo
Arguing by contradiction with (3.11), we suppose £ > inf{J(v) : v € Wol’?(x)(Q)},
so that we can find vy € WP @(Q) with £ > J(vp). But J € C(W7 ®(Q)) and
hence there is an open neighborhood of vy, say Y C W(}’?(I)(Q), such that we get

J() <€ forallv ey ¢ WhP@(q). (3.12)

Now, using the covering property (1.4) of {X,, }nen, we easily deduce that

+oo
(U Xn> nY # 0.
n=1

It follows that we can find v € Y N Xy for some 7 € N, fulfilling condition (3.12).
Finally, combining (3.6) and (3.12), it leads to

inf{J(v):v e Xz} < J@) <l <inf{J(v):v e Xz}

This is absurd, hence it permits us to conclude that (3.11) holds true. In view of
Definition 1.3, this means that the functional (1.1) has a Galerkin-type minimizer

{tn tnen € WEP@ (). O

4. APPLICATION TO DIRICHLET PROBLEM

In this section, we consider (1.1) like as the energy functional associated to the following
Dirichlet problem for the (?, 7)—Laplacian

—Ag (@) u(@) + pAg myu(e) € OF (u) in Q, 0. (4.1)

Ulpq =
Our goal here is to establish the existence of a suitable solution to problem (4.1),

hence we introduce the following notion.

Definition 4.1. A function u € Wol’?(x)(ﬂ) is a generalized solution to problem (4.1)

if we can find a sequence {up fnen C WO1 ’?(z)(Q) fulfilling the conditions:

(i) up — uin W/()l’?(x)(ﬁ), as n — +00;
(i) —Ap(@)un + pAG (@)U — 2n 2 0 in (VVol’ﬁ(I)(Q))*7 as n — oo, with
Zn € (Wol’?(m)(ﬂ))* and z, € OF(u,) a.e. in €;
(iil) (—Ap(@)un + BAG (2)Un, Un — u) — 0, as n — +00.
This definition extends the corresponding notions given for instance in [14, 17]
to the anisotropic setting, and is motivated by the lack of monotonicity for the

non-elliptic functional (i.e., 0 < p) discussed in Section 1. We now state and prove
the existence result.
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Theorem 4.2. If (G) is satisfied, then for all u € R, problem (4.1) has a generalized
solution u € Wol’p(w)(Q).

Proof. Following Claims 2 and 3 in the proof of Theorem 1.4, we construct a bounded
sequence of approximate minimizers to (1.1), namely {u, }nen C lem( Q). It admits

(D)

a subsequence, still denoted by {u, }nen, converging weakly to some u € W,
and hence the first requirement in Definition 4.1 holds true.

Next, for each h € VVOL?(QE)(Q)7 we observe that

b

(= A3 (2)un + HAG () Un — 2Zn, h)|

N i(2)—2 N qi(z)—
Ou, |P ou,, Oh 8u 3un oh
Q 1=1 Q =1 Q
N pi(z)—1 N q;i(w)—
8un ouy, oh
<
_/2 . e i da:+/|zn\|h|dx
Q =

(4.2)

Using (2.1), we know that

pi(z)—1
P} (z) = Ppi(z) <

and so there is §; , € [PZ, Pj_'] satisfying the inequality

ouy,
69@

ouy,
ox;

)

pi(z)— Bi,n

ouy,

oz, for all n € N.

H‘ Ox; pi(z) ’

pi(x)

Based on it, we can obtain useful estimates for the inequality (4.2). Precisely,
we first have
N

pi(z)—1 pi(z)—1

N\ ou, on Oy, oh
2|3 oz =22 || B
o i=1 Li Li i=1 Li P (@)1 9% llp; (a)
N Bin
<o) | T ] 7 | 20 (4.3)
im1 1| 9% llpi(a) 1 9l p (x)
N
. oh
<Cy.
i=1 dz; pi(x)
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for some C > 0 (recall that {u,}nen C I/V1 ?(w)( Q) is bounded, see (3.10)). Then,

we also get
ou,, pi(z)—1
(o)t

N
Q =1

qi(z)—1

oh
5:@

Oouy,
axi

Oh
z;

N
a_dxg/Z;
Q =

N\l an N o, [P
= P +2> {3 a
iz 19T llp;(2) i—1 Lillp; () 1 9% llp; ()
N
_é oh
i=1 Iz pi(z)

(4.4)

for some cy5,C > 0, see again the estimate (3.10).
On the other hand, the Holder inequality (2.2) leads to the following achievement

/ llhlde < [ (e lun | hjde
Q
< cHh||1 + 2A]|un||a(x)||h||a(m) (for some 1 < 7, < P7) (4.5)

5331

= pl(m)

for some C > 0.
Using (4.3)—(4.5) in (4.2), we can easily deduce that its left-hand side is bounded

in Wol’?(x) (Q), namely

N
(=D @ytn + HAG(@ytn = 20, B)| S C )

i=1

oh

6xi

(4.6)
pi(x)

with C* :=C +C+C > 0. So, up to a subsequence if necessary, we may assume that
— AP (2)Un + AG () Un — Zn Ly in (Wol’?(m)(ﬂ))* as n — +0o (4.7)

for some y € (W, 1?z( ).

If we set h € |J, 2] X, in (1.5) (recall also that h € X,, for n > 7 for some 7 € N,
for the nesting property), pass to the limit as n — 400 and use the above weak
convergence, then we get

(=A% (@)Un, 1) + (WAG (2)Un, h) — /znhdx =0,
Q
= lim (—Apg)tn + ppAg () Un — 2n, h) =0,

n—+oo

= (y,h) =0,
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and so, by the covering property of {X,}.en, we conclude y = 0. We directly
deduce that

—Ap () Un + BAG () Un — Zn 0 in (Wol’?(m)(Q))* as n — +o00, (4.8)
which is the second requirement of Definition 4.1.
We now set h = u, —u € Wol’?(r) () in (1.5). Since the Holder inequality gives us

lim /zn(un —u)dz =0,

n—-+oo
Q

then we can pass to the limit as n — 400 to deduce that

ngr-&r-loo (=AF (@) Un, Un — u) + (A () Un, Un — u) — /zn(un —u)dz| =0,
Q
implies
Jm (=A% tn, tn = u) + (A7 () tn, tn = u)] =0,
which permits us to conclude the validity of the third requirement of Definition 4.1.
The existence of a generalized solution u € W(Jl’?(m) () to problem (4.1) for all 4 € R
is proved. O
In the case ;o < 0, we can also establish the existence of weak solutions.

Definition 4.3. We say that a function u € Wol’p(m)(Q) is a weak solution to prob-
lem (4.1) if there exists z € OF (u) C (W()17?($)(Q))* a.e. on 2 such that

—Agu+ pAgpu—2=0 in (Wol’?(l)(Q))*.
Consequently, we can state and prove the following result, where we will use the
monotonicity arguments.
Theorem 4.4. If (G) is satisfied, then for all u < 0, problem (4.1) has a weak solution
we WP (Q).

Proof. By Theorem 4.2 we already know that problem (4.1) admits a generalized

solution, say u € Wol’p(r)(Q). It remains to show that using the monotonicity of the
involved operators we can now pass from the weak convergence stated in Definition 4.1

to the strong convergence in Wolj(w)(Q).
We first know that the negative ¢-Laplacian defined by

N

0 ou

—Ag@u=— Z o, (‘ oz,
i=1

is a monotone operator. Hence, we have

qi(z)—2 u

al’i

) for all u e W 7@ (q),

(—Ag@u+Agv,u—v) >0 foralluve W01’7(I)(Q).
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By Definition 4.1(i), (iii) for g < 0, we deduce that
lim sup(—A () Un, Un — u)
n—-+oo

= limsup [(—Ap ) tn + LAG () Un, Un — ) + (=D () Un + A (1)U Un — 1)

n——+o00
+ 1(=Ag @ tn = w)]
<l —-A n A ny Up — li —A— U, Uy —u) = 0.
< Hm SUp(—=Ag (o) tn + PG (@) ttny Un = 1)+ T (=A@t un = u) =0
Since the negative ?(x)—Laplacian is continuous and fulfills the (S)-property,
then we know that u,, converging to u (as n — +00) in Wol’?(z)(Q) leads to

lim —Aggyun = ~Apgu i (W ™(Q)%, r € {p.q}.

n—-+o0o

By Claim 3 of Theorem 1.4 and estimate (4.6), we retrieve the boundedness of the

sequence {zy }nen in Definition 4.1(ii), in Wol’?(w) (©))*. Without loss of generality,
we may assume that

2, 5 2 in (Wol’?(x)(ﬂ))* as n — +00.

Referring to Lemma 3.2, we know that z € 0F(u) a.e. on €. Hence, using (4.8),
tn — win WP Q) and 2, € OF(u,) € (W& P @(Q))*, it leads to

—Af U+ pAgu—2=0 in (Wol’?(m) (Q)*,

where z € OF (u) C (Wol’?(w) (Q))* a.e. on Q. We conclude that the requirement in
Definition 4.3 is fulfilled, namely problem (4.1) admits a weak solution u € Wol’?(z) Q).
O
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