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Abstract. This study focuses on a sequence of approximate minimizers for the
functional

J(u) =
∫

Ω

N∑

i=1

1
pi(x)

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)

dx− µ

∫

Ω

N∑

i=1

1
qi(x)

∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)

dx−
∫

Ω

F (u(x))dx,

where Ω ⊂ RN (N ≥ 3) is a bounded domain, and pi, qi ∈ C(Ω) with 1 < pi, qi < +∞
for all i ∈ {1, . . . , N}. We establish the convergence result to the infimum of J(u)
when F : R → R is a locally Lipschitz function of controlled growth, following the
Galerkin method. As an application, we establish the existence of solutions to a class
of Dirichlet inclusions associated to the functional.
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1. MAIN THEOREM AND ENVIRONMENT

Let Ω ⊂ RN (N ≥ 3) be a bounded domain with a smooth boundary ∂Ω. In this paper
we consider the following functional

J(u) =
∫

Ω

N∑

i=1

1
pi(x)

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)

dx− µ

∫

Ω

N∑

i=1

1
qi(x)

∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)

dx−
∫

Ω

F (u(x))dx (1.1)

for all u ∈ W
1,−→p (x)
0 (Ω), where W 1,−→p (x)

0 (Ω) is the anisotropic Sobolev space deter-
mined by the variable exponent −→p (x) = (p1(x), p2(x), . . . , pN (x)), pi, qi ∈ C(Ω) and
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1 < pi(x), qi(x) < +∞ for all x ∈ Ω and all i ∈ I := {1, . . . , N}, also µ ∈ R is a real
parameter, and F : R → R is a locally Lipschitz function of the following growth:

(G) there are a function α ∈ C(Ω) with 1 < α+ < P−
− and constants c, ĉ > 0 satisfying

|z| ≤ c+ ĉ |t|α(x)−1 for all t ∈ R , x ∈ Ω and z ∈ ∂F (t),

where ∂F (t) denotes the Clarke subdifferential of F (t), α+ = maxx∈Ω α(x), P−
− =

mini∈I p
−
i and p−

i = minx∈Ω pi(x), i ∈ I.
Condition (G) is essential to control the third term (reaction) in (1.1), leading to

well-posedness and providing a priori estimates (hence, boundedness) for the functional.
A relevant feature of our functional is the presence of a parameter µ ∈ R that acts as
switching coefficient between the case of an elliptic functional (0 ≥ µ) and the case
of a non-elliptic functional (0 < µ). As for the elliptic case, the analysis of the
functional (1.1) may benefit of suitable monotonicity arguments which also have a key
role in the proof of existence results to various classes of differential equations and
inclusions, see the books by Motreanu et al. [18], and by Rădulescu and Repovš [20] for
more background. Differently, the non-elliptic case inhibits the usage of monotonicity
arguments, hence leading to some technical difficulties. However, we can overcome
such problems by the use of a discretized Galerkin approach together with certain
convergence arguments. In the framework of separable Banach spaces, we denote
by {Xn}n∈N a Galerkin basis of W 1,−→p (x)

0 (Ω), that is a sequence of vector spaces
such that

dim (Xn) < +∞ for all n ∈ N (finite dimension), (1.2)
Xn ⊆ Xn+1 for all n ∈ N (nesting property), (1.3)
∞⋃

n=1
Xn = W

1,−→p (x)
0 (Ω) (covering property). (1.4)

Our primary goal is to establish a convergence result to the infimum of functional
(1.1) overW 1,−→p (x)

0 (Ω), by construction of a suitable sequence of approximate minimizers
for (1.1) over Xn (for all n ∈ N). So, we first give the notion of approximate minimizer in
the finite-dimensional vector space Xn.

Definition 1.1. We say that un ∈ Xn, n ∈ N, is an approximate minimizer of the
functional (1.1) if J(un) = inf{J(v) : v ∈ Xn}.

Remark 1.2. If un ∈ Xn is an approximate minimizer for (1.1), as a consequence
we get that for some zn ∈ ∂F (un) a.e. on Ω one has

∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−2

∂un

∂xi

∂h

∂xi
dx− µ

∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
qi(x)−2

∂un

∂xi

∂h

∂xi
dx−

∫

Ω

znhdx = 0

(1.5)
for all h ∈ Xn, n ∈ N.
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Now, let (W 1,−→p (x)
0 (Ω))∗ denote the topological dual space of W 1,−→p (x)

0 (Ω), then
the concept of Galerkin-type minimizer is given as follows, hence it is understood as the
generated sequence of approximate minimizers over the Galerkin basis of W 1,−→p (x)

0 (Ω).

Definition 1.3. Let {un}n∈N ⊂ W
1,−→p (x)
0 (Ω) be a sequence of approximate minimizers

of the functional (1.1) and assume that equation (1.5) holds for zn ∈ (W 1,−→p (x)
0 (Ω))∗,

n ∈ N. We say that {un}n∈N is a Galerkin-type minimizer of the functional (1.1) if

lim
n→+∞

J(un) = inf{J(v) : v ∈ W
1,−→p (x)
0 (Ω)}.

In Definition 1.3, we precisely mean that for each n ∈ N, equation (1.5) holds for
some zn ∈ (W 1,−→p (x)

0 (Ω))∗ and zn ∈ ∂F (un) a.e. on Ω. Hence, we state our main result.

Theorem 1.4. Let pi, qi ∈ C(Ω) for all i ∈ I such that 1 < Q−
− ≤ Q+

+ < P−
− < N .

If (G) is satisfied and un ∈ Xn ⊂ W
1,−→p (x)
0 (Ω) fulfills equation (1.5), then the functional

(1.1) has a Galerkin-type minimizer over W 1,−→p (x)
0 (Ω).

We note that Theorem 1.4 gives the relation between the variable exponents for
the (−→p ,−→q )-Laplacian defined by

−∆−→p (x)u+ µ∆−→q (x)u = −
N∑

i=1

∂

∂xi

(∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)−2

∂u

∂xi
− µ

∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)−2

∂u

∂xi

)

for all u ∈ W
1,−→p (x)
0 (Ω).

However, as far as we know, such operator has not been systematically evaluated.
Our analysis here fills-in this gap of the literature, by involving a precise extension
of the main arguments for [14, 17] to the anisotropic setting. In detail, we observe that
the following functionals can be deduced as particular cases of (1.1):

– If the functional (1.1) involves the (p, q)-Laplacian with variable exponents, hence
it reduces to the functional

J(u) =
∫

Ω

1
p(x) |∇u|p(x)dx− µ

∫

Ω

1
q(x) |∇u|q(x)dx−

∫

Ω

F (u(x))dx (1.6)

for all u ∈ W
1,p(x)
0 (Ω), also assuming the standard conditions on the variable

exponents p, q ∈ C(Ω):

1 < q− = min
x∈Ω

q(x) ≤ q(x) ≤ q+ = max
x∈Ω

q(x)

< p− = min
x∈Ω

p(x) ≤ p(x) ≤ p+ = max
x∈Ω

p(x) < +∞.

Such model is considered by Ghasemi et al. [14], who involve embedding results
and useful estimates to show first that (1.6) is locally Lipschitz and coercive (see
[14, Proposition 4]), then they use the Galerkin approach to show existence and
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boundedness of local minimizers to (1.6) in [14, Propositions 5 and 6], finally the result
corresponding to our Theorem 1.4 can be deduced by [14, Proposition 8], where in the
proof the authors argue by contradiction.

– If the functional (1.1) involves the (p, q)-Laplacian with constant exponents, hence
it reduces to the functional

J(u) = 1
p

∫

Ω

|∇u|pdx− µ

q

∫

Ω

|∇u|qdx−
∫

Ω

F (u(x))dx (1.7)

for all u ∈ W 1,p
0 (Ω), 1 < q < p < +∞.

Such model is considered by Motreanu [17], who uses embedding results and
Hölder inequality to establish first that (1.7) is locally Lipschitz and coercive ([17,
Proposition 1]) then, involving the Galerkin basis of W 1,p

0 (Ω), proves existence and
boundedness of local minimizers to (1.7) in [17, Corollary 2 and Proposition 3].
Reasoning by contradiction, the author concludes the existence of a sequence of
minimizers in [17, Corollary 5].

Clearly the analysis of functionals (1.1), (1.6) and (1.7) cannot leave aside imposing
an appropriate growth condition on the locally Lipschitz function F (for more details,
compare the growth (G) above with the corresponding conditions Hf and (H) in [14]
and [17], respectively).

Anisotropic functionals with µ = 0 were investigated by Bonanno et al. [1] (constant
exponent), Chems Eddine et al. [4], Fan [9] and Tavares [25] (variable exponent),
further anisotropic functionals with µ = −1 were studied by Tavares [25], Razani and
colleagues [23, 24] (constant exponents). These works provide the readers with a solid
understanding of topological and variational methods used to evaluate the effects
of reaction terms on the structure of functionals. For more results on non-elliptic
functionals, we mention the works by Diblík et al. [6], Galewski and Motreanu [12],
Liu et al. [15], Vetro and Efendiev [26], and for elliptic functionals we refer to the
recent investigations by El Yazidi et al. [8], Papageorgiou et al. [19], Zeng et al. [27],
and the references cited therein. We finally mention the very recent monograph by
Galewski and Motreanu [13] devoted to the study of boundary value problems driven
by principal operators which lack monotonicity.

The organization of the manuscript is as follows. In Section 2 we briefly review the
variable anisotropic Sobolev spaces. In Section 3 we provide the detailed analysis of
functional (1.1). In Section 4 we apply Theorem 1.4 to solve the existence problem for
a class of differential inclusions with Dirichlet boundary condition.

2. SPACE W
1,−→p (x)
0 (Ω) and embedding in Ls(x)(Ω)

The analysis of functional (1.1) is carried out in the variable anisotropic Sobolev space
W

1,−→p (x)
0 (Ω), but it also requires the variable Lebesgue space Ls(x)(Ω), for suitable

exponent s ∈ C(Ω) as will be precised later on. In this section, we mainly follow
the works by Mihăilescu et al. [16] and Fan [9], but for a comprehensive covering of
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variable Lebesgue and Sobolev spaces, and their involvement in the study of PDEs,
we suggest the books by Diening et al. [7] and Rădulescu and Repovš [20].

The variable Lebesgue space denoted by Lri(x)(Ω) is defined as

Lri(x)(Ω) =



u ∈ M(Ω) :

∫

Ω

|u(x)|ri(x)dx < +∞



 ,

where M(Ω) is the space of measurable functions u : Ω → R, and ri ∈ C(Ω) with
1 < r−

i := min{ri(x) : x ∈ Ω}, i ∈ I. So, introducing the so-called modular function
ρri(x) : M(Ω) → [0,+∞] defined by

ρri(x)(u) :=
∫

Ω

|u(x)|ri(x)dx for all u ∈ M(Ω), i ∈ I, (2.1)

and referring to the Luxemburg norm given by

∥u∥ri(x) := inf
{
λ > 0 : ρri(x)

(u
λ

)
≤ 1
}
,

we know that the space (Lri(x)(Ω), ∥ · ∥ri(x)) is a separable and reflexive Banach space.
Letting r′

i ∈ C(Ω) the Hölder conjugate exponent to ri, that is r′
i(x) = ri(x)/(ri(x)−1),

for any x ∈ Ω, i ∈ I, it leads to the following Hölder inequality
∫

Ω

|uh|dx ≤
(

1
r−

i

+ 1
(r′

i)−

)
∥u∥ri(x)∥h∥r′

i
(x) ≤ 2∥u∥ri(x)∥h∥r′

i
(x) (2.2)

for u ∈ Lri(x)(Ω) and h ∈ Lr′
i(x)(Ω).

If ri, s ∈ C(Ω) with ri(x) ≥ s(x) for all x ∈ Ω, then Lri(x)(Ω) ↪→ Ls(x)(Ω) is a con-
tinuous embedding. Involving Lri(x)(Ω), we can introduce the variable Sobolev space

W 1,ri(x)(Ω) := {u ∈ Lri(x)(Ω) : |∇u| ∈ Lri(x)(Ω)}.

We endow this space with the norm

∥u∥1,ri(x) = ∥u∥ri(x) + ∥∇u∥ri(x),

where as usual we set ∥∇u∥ri(x) := ∥|∇u|∥ri(x), and ∇u is the weak gradient of u. It is
on this basis that we can consider the Sobolev space W 1,ri(x)

0 (Ω) = C∞
0 (Ω)∥·∥1,ri(x) .

We know that both the spaces W 1,ri(x)(Ω) and W 1,ri(x)
0 (Ω) are separable and uniformly

convex (hence, reflexive) Banach spaces. Also, for some constant c1 > 0, we have
the following version of Poincaré inequality:

∥u∥ri(x) ≤ c1∥∇u∥ri(x) for all u ∈ W
1,ri(x)
0 (Ω). (2.3)

Consequently, on W
1,ri(x)
0 (Ω), we can use the norm

∥u∥1,ri(x) := ∥∇u∥ri(x) for all u ∈ W
1,ri(x)
0 (Ω).
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The norm ∥ · ∥ri(x) and the modular function ρri(x) (see (2.1)) are closely related by
the following proposition.

Proposition 2.1 ([10, Theorem 1.3]). If ri ∈ C(Ω) with 1 < r−
i , i ∈ I, and

u ∈ Lri(x)(Ω), then the following hold:

(i) ∥u∥ri(x) < 1 (resp. = 1, > 1) ⇔ ρri(x)(u) < 1 (resp. = 1, > 1),
(ii) if ∥u∥ri(x) > 1, then ∥u∥r−

i

ri(x) ≤ ρri(x)(u) ≤ ∥u∥r+
i

ri(x),

(iii) if ∥u∥ri(x) < 1, then ∥u∥r+
i

ri(x) ≤ ρri(x)(u) ≤ ∥u∥r−
i

ri(x).

According to Proposition 2.1, we deduce that

∥u∥r+
i

ri(x) + 1 ≥ ρri(x)(u) ≥ ∥u∥r−
i

ri(x) − 1 for all u ∈ Lri(x)(Ω). (2.4)

We introduce the critical Sobolev exponent r∗
i corresponding to ri ∈ C(Ω) with

1 < r−
i , i ∈ I, as follows:

r∗
i (x) =

{
Nri(x)

N−ri(x) if ri(x) < N,

+∞ if N ≤ ri(x),
for all x ∈ Ω. (2.5)

The following embedding result holds true.

Proposition 2.2. Let i ∈ I. If ri, s ∈ C(Ω) with 1 < r−
i , s

− and r∗
i (x) > s(x) for all

x ∈ Ω, then the embedding W 1,ri(x)
0 (Ω) ↪→ Ls(x)(Ω) is compact.

According to Proposition 2.2, we can find a constant c2 > 0 (depending on s ∈ C(Ω))
satisfying the inequality

∥u∥s(x) ≤ c2∥∇u∥ri(x) for all u ∈ W
1,ri(x)
0 (Ω). (2.6)

We can now extend the above theory to anisotropic Sobolev spaces, considering the
vectorial function −→r : Ω → RN given as −→r (x) = (r1(x), r2(x), . . . , rN (x)), see [9, 16].
We first complete the notions and notation partially introduced in Section 1, but for
readers’ convenience we also repeat some of the already given ones. For ri,∈ C(Ω)
with 1 < r−

i , i ∈ I, referring to [9, 16] and in view of the definition of critical Sobolev
exponent in (2.5), we introduce the following notation

R+
+ = max{r+

1 , . . . , r
+
N }, R+

− = max{r−
1 , . . . , r

−
N },

R−
− = min{r−

1 , . . . , r
−
N },

R∗
− = N

(
∑N

i=1 1/r−
i ) − 1

, R−,∞ = max{R+
−, R

∗
−}.
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Remark 2.3. The quantity R∗
− is properly defined provided that we assume

the condition

1 <
N∑

i=1

1
r−

i

,

see also Fragalà et al. [11, Sec. 2.1]. So, it is crucial to establish the embedding result
in Proposition 2.4 below. Furthermore, suppose

ri(x) =
{
p(x) if i ∈ I \ {N},
2p(x) if i = N ,

for all x ∈ Ω, some p ∈ C(Ω) such that N > 3 and N − 1 > 2p− > 2, so that

R∗
− = N

(
∑N

i=1 1/r−
i ) − 1

= N

(2N − 1)/2p− − 1

= 2Np−

2N − 1 − 2p− < 2p− = max
i∈I

r−
i = R+

−.

Differently, for every i ∈ I assume

ri(x) = p(x) for all x ∈ Ω, some p ∈ C(Ω) : N > p− > 1.

Hence, we have

R∗
− = N

(
∑N

i=1 1/r−
i ) − 1

= N

N/p− − 1 = Np−

N − p− > p− = max
i∈I

r−
i = R+

−.

This motivates introduction of the quantity R−,∞ = max{R+
−, R

∗
−}.

We also denote
rM (x) = max{r1(x), . . . , rN (x)}.

The variable exponent anisotropic Sobolev space W 1,−→r (x)(Ω) is defined by

W 1,−→r (x)(Ω) :=
{
u ∈ LrM (x)(Ω) : ∂u

∂xi
∈ Lri(x)(Ω), i ∈ I

}
,

equipped with the norm

∥u∥1,−→r = ∥u∥rM
+

N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
ri(x)

. (2.7)

Similar to the previous setting, we can introduce the space

W
1,−→r (x)
0 (Ω) = C∞

0 (Ω)∥·∥1,−→r
.
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So W 1,r⃗(x)
0 (Ω) endowed with the following norm

∥u∥r⃗,0 =
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
ri(x)

is a separable, reflexive and uniformly convex Banach space for ri,∈ C(Ω) with 1 < r−
i ,

i ∈ I, see Rákosník [21, 22]. We recall the following key embedding result from
the literature, it can be seen in the work by Mihăilescu et al. [16, Theorem 1].
Proposition 2.4. Let Ω ⊂ RN with N ≥ 3 be a bounded domain with smooth
boundary ∂Ω. Then, for s, ri ∈ C(Ω) verifying

1 < s(x) < R−,∞, for all x ∈ Ω, and 1 <
N∑

i=1

1
r−

i

,

we have
W

1,−→r (x)
0 (Ω) ↪→ Ls(x)(Ω) compactly.

The proof of Proposition 2.4 substantially observes that for every i ∈ I, one can
find a constant Ci > 0 satisfying the inequality

∥∥∥∥
∂u

∂xi

∥∥∥∥
r−

i

≤ Ci

∥∥∥∥
∂u

∂xi

∥∥∥∥
ri(x)

for all u ∈ W
1,−→r (x)
0 (Ω).

Summing from 1 to N both the sides of this inequality and denoting −→
R− =

{r−
1 , . . . , r

−
N }, and C := maxi∈I Ci, one easily has

∥u∥−→
R −

≤ C∥u∥−→r ,

which establishes the continuous embedding W 1,−→r (x)
0 (Ω) ↪→ W

1,
−→
R −

0 (Ω). Assumption
1 < s(x) < R−,∞, for all x ∈ Ω̄, together with several manipulations of the exponents
(see also [11]), leads to

W
1,−→r (x)
0 (Ω) ↪→ W

1,
−→
R −

0 (Ω) ↪→↪→ Ls+
(Ω) ↪→ Ls(x)(Ω).

3. ANALYSIS OF FUNCTIONAL J

According to the spaces and results introduced in Section 2, we start our detailed
analysis of functional J : W 1,−→p (x)

0 (Ω) → R given by

J(u) = J−→p (u) − µJ−→q (u) − JF (u)

=
∫

Ω

N∑

i=1

1
pi(x)

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)

dx− µ

∫

Ω

N∑

i=1

1
qi(x)

∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)

dx−
∫

Ω

F (u(x))dx

for all u ∈ W
1,−→p (x)
0 (Ω).
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Since in Theorem 1.4 we look for Galerkin-type minimizers, then we have to
provide a proper notion of derivative to deal with. So, if we denote by ⟨·, ·⟩ the du-
ality brackets for the pair ((W 1,−→r (x)

0 (Ω))∗,W 1,−→r (x)
0 (Ω)), r ∈ {p, q}, we know that

J−→r : W 1,−→r (x)
0 (Ω) → (W 1,−→r (x)

0 (Ω))∗ is a C1-functional, and we have

⟨J ′−→r (u), h⟩ =
N∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
ri(x)−2

∂u

∂xi

∂h

∂xi
dx

for all u, h ∈ W
1,−→r (x)
0 (Ω). Furthermore, it is bounded, continuous, strictly monotone

and if un
w−→ u in W

1,−→r (x)
0 (Ω) and lim supn→+∞⟨J ′−→r (un), un − u⟩ ≤ 0, then un → u

in W
1,−→r (x)
0 (Ω) (that is, it satisfies the (S)+ property)), see Boureanu [2, Lemma 2].

Next, we know that JF : W 1,−→p (x)
0 (Ω) → R defined by

JF (u) =
∫

Ω

F (u(x))dx for all u ∈ W
1,−→p (x)
0 (Ω) (3.1)

is Lipschitz on the bounded subsets of W 1,−→p (x)
0 (Ω) because of the function F : R → R is

locally Lipschitz (by hypothesis) and its growth is controlled by assumption (G).
According to the Clarke subdifferential theory (see Clarke [5] and Chang [3]), we recall
that a real-valued function ϕ, defined on a Banach space X, is locally Lipschitz if
for every u ∈ X, there is open neighborhood Y of u and constant k > 0 (depending
on Y ) with

|ϕ(z1) − ϕ(z2)| ≤ k∥z1 − z2∥ for all z1, z2 ∈ Y .

If ϕ : X → R is continuous and convex, then it is locally Lipschitz. The generalized
directional derivative of ϕ at u ∈ X in the direction v ∈ X is defined as

ϕ◦(u; v) = lim sup
z→u,t↓0

ϕ(z + tv) − ϕ(z)
t

.

This is a convex function with respect to its second variable, and so one can appeal
to Hahn–Banach theorem to write

∂ϕ(u) = {u∗ ∈ X∗ |ϕ◦(u; v) ≥ ⟨u∗, v⟩ for all v ∈ X},

being ⟨·, ·⟩ the duality brackets for (X∗, X). Now, by u → ∂ϕ(u) we denote the
subdifferential of ϕ(·) in Clarke’s sense. Furthermore, we recall that v → ϕ◦(u; v)
is finite, positively homogeneous, subadditive and |ϕ◦(u; v)| ≤ k∥v∥ for all v ∈
X. Following this theory, we can properly consider the Clarke subdifferential
of JF : W 1,−→p (x)

0 (Ω) → R denoted by ∂JF : W 1,−→p (x)
0 (Ω) → 2(W

1,−→p (x)
0 (Ω))∗ that is

a nonempty, convex, weak∗-compact subset of (W 1,−→p (x)
0 (Ω))∗ (see [3]). Furthermore,

J−→p , J−→q ∈ C1(W 1,−→p (x)
0 (Ω)) and so

∂J−→r (u) = {J ′−→r (u)} for all u ∈ W
1,−→r (x)
0 (Ω), r ∈ {p, q}.
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Since every C1-functional is locally Lipschitz, clearly J : W 1,−→p (x)
0 (Ω) → R is locally

Lipschitz too, and we have

∂J(u) =
∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)−2

∂u

∂xi
dx− µ

∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)−2

∂u

∂xi
dx− ∂JF (u) (3.2)

for all u ∈ W
1,−→p (x)
0 (Ω).

It follows that w ∈ W
1,−→p (x)
0 (Ω) is a critical point (local minimum or local maximum)

of J provided that 0 ∈ ∂J(w). Such necessary condition is essential in establishing our
proof (recall Definitions 1.1 and 1.3), and we will use it involving the precise equation
∫

Ω

N∑

i=1

∣∣∣∣
∂w

∂xi

∣∣∣∣
pi(x)−2

∂w

∂xi

∂h

∂xi
dx− µ

∫

Ω

N∑

i=1

∣∣∣∣
∂w

∂xi

∣∣∣∣
qi(x)−2

∂w

∂xi

∂h

∂xi
dx−

∫

Ω

z∗hdx = 0 (3.3)

for some z∗ ∈ (W 1,−→p (x)
0 (Ω))∗ with z∗ ∈ ∂F (w) a.e. on Ω, all h ∈ W

1,−→p (x)
0 (Ω).

The following results (see again [3, 5]) are also needed in the proof.
Lemma 3.1 (Mean-value theorem). If ϕ : X → R is locally Lipschitz on an open
neighborhood containing the segment [a, b], then there are c ∈ (a, b) and ζ ∈ ∂ϕ(c) such
that ϕ(b) − ϕ(a) = ⟨ζ, b− a⟩.
Lemma 3.2. If {un}n∈N and {ζn}n∈N are two sequences in X and X∗, respectively,
such that ζn ∈ ∂ψ(un) and un → u in X and ζn

w∗
−−→ ζ, then we have ζ ∈ ∂ψ(u).

We are ready to prove our main result.

Proof of Theorem 1.4. We divide the proof in some steps, for the sake of clarity.
Claim 1. J : W 1,−→p (x)

0 (Ω) → R is coercive.
We recall that coercivity means

J(u) → +∞ as
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pi(x)

→ +∞.

Now, from the inequalities in (2.4), we easily deduce that
∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)

dx ≤
∥∥∥∥
∂u

∂xi

∥∥∥∥
q+

i

qi(x)
+ 1

≤ Ki

∥∥∥∥
∂u

∂xi

∥∥∥∥
q+

i

pi(x)
+ 1 (for some Ki > 0), (3.4)

where Ki > 0 is a suitable constant linked to the embedding of Lpi(x)(Ω) into Lqi(x)(Ω).
Appealing to Lemma 3.1 and involving condition (G), we get

|F (t)| ≤ |F (0)| + c|t| + ĉ|t|α(x) for all t ∈ R, all x ∈ Ω. (3.5)
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Using (1.1) and combining the following inequality
∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)

dx ≥
∥∥∥∥
∂u

∂xi

∥∥∥∥
p−

i

pi(x)
− 1,

with (3.4) and (3.5), in view of Propositions 2.2 and 2.4 we get the following achievement

J(u) ≥ 1
P+

+

∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi(x)

dx− |µ|
Q−

−

∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)

dx

−
∫

Ω

(c |u| + ĉ|u|α(x))dx− |F (0)||Ω|

≥ 1
P+

+

N∑

i=1

(∥∥∥∥
∂u

∂xi

∥∥∥∥
p−

i

pi(x)
− 1
)

− |µ|
Q−

−

N∑

i=1

(
Ki

∥∥∥∥
∂u

∂xi

∥∥∥∥
q+

i

pi(x)
+ 1
)

− c3

N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pi(x)

− ĉ(∥u∥α+

α(x) + 1) − |F (0)||Ω|

≥ 1
P+

+N
P −

− −1

(
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pi(x)

)P −
−

− |µ|
Q−

−
c4N

(
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pi(x)

)Q+
+

− c3

N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pi(x)

− c5

(
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pi(x)

)α+

− c6

for suitable constants c3, c4, c5, c6 > 0, where as usual |Ω| stays for the Lebesgue
measure of Ω.

Since P−
− > Q+

+ and P−
− > α+, we deduce that (1.1) is a coercive functional.

Claim 2. The functional J admits an approximate minimizer un over Xn.
Referring to the notion of Galerkin basis for W

1,−→p (x)
0 (Ω) (recall conditions

(1.2)-(1.4)), we know that dim (Xn) < +∞ for all n ∈ N. Furthermore, the locally
Lipschitzianity and coercivity of J imply there is un ∈ Xn such that

J(un) = inf{J(v) : v ∈ Xn}. (3.6)

So, the local minimum condition for un ∈ Xn is shown by

0 ∈ ∂(J |Xn)(un). (3.7)

In the framework of Banach spaces, involving (3.7) one can find z′
n ∈ ∂JF (un)

fulfilling the equation

⟨J ′
p(un) − µJ ′

q(un) − z′
n, h⟩ = 0 for all h ∈ Xn. (3.8)

Appealing to [5, Theorem 2.7.5, Remark 2.7.6], we get

∂JF (un) ⊂
∫

Ω

∂F (un)dx,
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which says us that for each z′
n ∈ ∂JF (un), there is zn ∈ ∂F (un) a.e. on Ω such that

⟨z′
n, h⟩ =

∫

Ω

znhdx. (3.9)

Combining (3.8) and (3.9) we establish the validity of equation (1.5), hence in view
of Definition 1.1 the claim is proved.
Claim 3. The sequence {un}n∈N is bounded on W

1,−→p (x)
0 (Ω), that is

N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

≤ L for some L > 0, all n ∈ N. (3.10)

From equation (1.5) with h = un ∈ Xn, using the inequalities in (3.4) and
condition (G), we have

∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)

dx = µ

∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
qi(x)

dx+
∫

Ω

zn undx

≤ c7

(
N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

)Q+
+

+ c8

N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

+ c9

(
N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

)α+

+ c10

for some c7, c8, c9, c10 > 0.
So, we have

(
N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

)P −
−

≤ c11

(
N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

)Q+
+

+ c12

N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

+ c13

(
N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
pi(x)

)α+

+ c14

for all n ∈ N and for some c11, c12, c13, c14 > 0.
Since P−

− > Q+
+ and P−

− > α+, we deduce that the sequence of approximate
minimizers {un}n∈N is bounded on W

1,−→p (x)
0 (Ω), indeed (3.10) holds.

Claim 4. The sequence {un}n∈N fulfills the following condition

lim
n→+∞

J(un) = inf{J(v) : v ∈ W
1,−→p (x)
0 (Ω)}. (3.11)

By Claim 2 we know that un ∈ Xn is an approximate minimizer for the functional J .
This means that

J(un) = inf{J(v) : v ∈ Xn}.
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Using the nesting property (1.3) of {Xn}n∈N, we conclude that the sequence
{J(un)}n∈N is nonincreasing and bounded (recall Claim 3). Hence, there is ℓ ∈ R
such that

lim
n→+∞

J(un) = ℓ.

Arguing by contradiction with (3.11), we suppose ℓ > inf{J(v) : v ∈ W
1,−→p (x)
0 (Ω)},

so that we can find v0 ∈ W
1,−→p (x)
0 (Ω) with ℓ > J(v0). But J ∈ C(W 1,−→p (x)

0 (Ω)) and
hence there is an open neighborhood of v0, say Y ⊂ W

1,−→p (x)
0 (Ω), such that we get

J(v) < ℓ for all v ∈ Y ⊂ W
1,−→p (x)
0 (Ω). (3.12)

Now, using the covering property (1.4) of {Xn}n∈N, we easily deduce that
(+∞⋃

n=1
Xn

)
∩ Y ̸= ∅.

It follows that we can find v ∈ Y ∩Xn for some n ∈ N, fulfilling condition (3.12).
Finally, combining (3.6) and (3.12), it leads to

inf{J(v) : v ∈ Xn} ≤ J(v) < ℓ ≤ inf{J(v) : v ∈ Xn}.
This is absurd, hence it permits us to conclude that (3.11) holds true. In view of
Definition 1.3, this means that the functional (1.1) has a Galerkin-type minimizer
{un}n∈N ⊂ W

1,−→p (x)
0 (Ω).

4. APPLICATION TO DIRICHLET PROBLEM

In this section, we consider (1.1) like as the energy functional associated to the following
Dirichlet problem for the (−→p ,−→q )-Laplacian

−∆−→p (x)u(x) + µ∆−→q (x)u(x) ∈ ∂F (u) in Ω, u
∣∣
∂Ω = 0. (4.1)

Our goal here is to establish the existence of a suitable solution to problem (4.1),
hence we introduce the following notion.

Definition 4.1. A function u ∈ W
1,−→p (x)
0 (Ω) is a generalized solution to problem (4.1)

if we can find a sequence {un}n∈N ⊂ W
1,−→p (x)
0 (Ω) fulfilling the conditions:

(i) un
w−→ u in W

1,−→p (x)
0 (Ω), as n → +∞;

(ii) −∆−→p (x)un + µ∆−→q (x)un − zn
w−→ 0 in (W 1,−→p (x)

0 (Ω))∗, as n → +∞, with
zn ∈ (W 1,−→p (x)

0 (Ω))∗ and zn ∈ ∂F (un) a.e. in Ω;
(iii) ⟨−∆−→p (x)un + µ∆−→q (x)un, un − u⟩ → 0, as n → +∞.

This definition extends the corresponding notions given for instance in [14, 17]
to the anisotropic setting, and is motivated by the lack of monotonicity for the
non-elliptic functional (i.e., 0 < µ) discussed in Section 1. We now state and prove
the existence result.
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Theorem 4.2. If (G) is satisfied, then for all µ ∈ R, problem (4.1) has a generalized
solution u ∈ W

1,p(x)
0 (Ω).

Proof. Following Claims 2 and 3 in the proof of Theorem 1.4, we construct a bounded
sequence of approximate minimizers to (1.1), namely {un}n∈N ⊂ W

1,−→p (x)
0 (Ω). It admits

a subsequence, still denoted by {un}n∈N, converging weakly to some u ∈ W
1,−→p (x)
0 (Ω),

and hence the first requirement in Definition 4.1 holds true.
Next, for each h ∈ W

1,−→p (x)
0 (Ω), we observe that

|⟨−∆−→p (x)un + µ∆−→q (x)un − zn, h⟩|

=

∣∣∣∣∣∣

∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−2

∂un

∂xi

∂h

∂xi
dx− µ

∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
qi(x)−2

∂un

∂xi

∂h

∂xi
dx−

∫

Ω

znhdx

∣∣∣∣∣∣

≤
∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−1 ∣∣∣∣

∂h

∂xi

∣∣∣∣ dx+ |µ|
∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
qi(x)−1 ∣∣∣∣

∂h

∂xi

∣∣∣∣ dx+
∫

Ω

|zn| |h|dx.

(4.2)

Using (2.1), we know that

ρp′
i
(x)

(∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−1

)
= ρpi(x)

(∣∣∣∣
∂un

∂xi

∣∣∣∣
)
,

and so there is βi,n ∈ [P−
− , P

+
+ ] satisfying the inequality

∥∥∥∥
∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−1∥∥∥∥

p′
i
(x)

≤
∥∥∥∥
∂un

∂xi

∥∥∥∥
βi,n

pi(x)
for all n ∈ N.

Based on it, we can obtain useful estimates for the inequality (4.2). Precisely,
we first have

∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−1 ∣∣∣∣

∂h

∂xi

∣∣∣∣ dx ≤ 2
N∑

i=1

∥∥∥∥
∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−1∥∥∥∥

p′(x)

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

≤ 2
N∑

i=1

∥∥∥∥
∂un

∂xi

∥∥∥∥
βi,n

pi(x)

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

≤ Ĉ

N∑

i=1

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

(4.3)
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for some Ĉ > 0 (recall that {un}n∈N ⊂ W
1,−→p (x)
0 (Ω) is bounded, see (3.10)). Then,

we also get
∫

Ω

N∑

i=1

∣∣∣∣
∂un

∂xi

∣∣∣∣
qi(x)−1∣∣∣∣

∂h

∂xi

∣∣∣∣dx ≤
∫

Ω

N∑

i=1

[(
1 +

∣∣∣∣
∂un

∂xi

∣∣∣∣
pi(x)−1)∣∣∣∣

∂h

∂xi

∣∣∣∣

]
dx

≤ c15

N∑

i=1

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

+ 2
N∑

i=1

(∥∥∥∥
∂un

∂xi

∥∥∥∥
βi,n

pi(x)

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

)

≤ C̃

N∑

i=1

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

(4.4)

for some c15, C̃ > 0, see again the estimate (3.10).
On the other hand, the Hölder inequality (2.2) leads to the following achievement

∫

Ω

|zn||h|dx ≤
∫

Ω

(c+ ĉ|un|α(x)−1)|h|dx

≤ c∥h∥1 + 2ĉ∥un∥γn

α(x)∥h∥α(x) (for some 1 < γn < P−
− )

≤ C

N∑

i=1

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

(4.5)

for some C > 0.
Using (4.3)–(4.5) in (4.2), we can easily deduce that its left-hand side is bounded

in W
1,−→p (x)
0 (Ω), namely

|⟨−∆−→p (x)un + µ∆−→q (x)un − zn, h⟩| ≤ C∗
N∑

i=1

∥∥∥∥
∂h

∂xi

∥∥∥∥
pi(x)

(4.6)

with C∗ := Ĉ + C̃ + C > 0. So, up to a subsequence if necessary, we may assume that

−∆−→p (x)un + µ∆−→q (x)un − zn
w−→ y in (W 1,−→p (x)

0 (Ω))∗ as n → +∞ (4.7)

for some y ∈ (W 1,−→p (x)
0 (Ω))∗.

If we set h ∈ ⋃+∞
n=1 Xn in (1.5) (recall also that h ∈ Xn for n > n for some n ∈ N,

for the nesting property), pass to the limit as n → +∞ and use the above weak
convergence, then we get

⟨−∆−→p (x)un, h⟩ + ⟨µ∆−→q (x)un, h⟩ −
∫

Ω

znhdx = 0,

⇒ lim
n→+∞

⟨−∆−→p (x)un + µ∆−→q (x)un − zn, h⟩ = 0,

⇒ ⟨y, h⟩ = 0,
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and so, by the covering property of {Xn}n∈N, we conclude y = 0. We directly
deduce that

−∆−→p (x)un + µ∆−→q (x)un − zn
w−→ 0 in (W 1,−→p (x)

0 (Ω))∗ as n → +∞, (4.8)

which is the second requirement of Definition 4.1.
We now set h = un − u ∈ W

1,−→p (x)
0 (Ω) in (1.5). Since the Hölder inequality gives us

lim
n→+∞

∫

Ω

zn(un − u)dx = 0,

then we can pass to the limit as n → +∞ to deduce that

lim
n→+∞


⟨−∆−→p (x)un, un − u⟩ + µ⟨∆−→q (x)un, un − u⟩ −

∫

Ω

zn(un − u)dx


 = 0,

implies
lim

n→+∞

[
⟨−∆−→p (x)un, un − u⟩ + µ⟨∆−→q (x)un, un − u⟩

]
= 0,

which permits us to conclude the validity of the third requirement of Definition 4.1.
The existence of a generalized solution u ∈ W

1,−→p (x)
0 (Ω) to problem (4.1) for all µ ∈ R

is proved.

In the case µ ≤ 0, we can also establish the existence of weak solutions.

Definition 4.3. We say that a function u ∈ W
1,p(x)
0 (Ω) is a weak solution to prob-

lem (4.1) if there exists z ∈ ∂F (u) ⊂ (W 1,−→p (x)
0 (Ω))∗ a.e. on Ω such that

−∆−→p (x)u+ µ∆−→q (x)u− z = 0 in (W 1,−→p (x)
0 (Ω))∗.

Consequently, we can state and prove the following result, where we will use the
monotonicity arguments.
Theorem 4.4. If (G) is satisfied, then for all µ ≤ 0, problem (4.1) has a weak solution
u ∈ W

1,p(x)
0 (Ω).

Proof. By Theorem 4.2 we already know that problem (4.1) admits a generalized
solution, say u ∈ W

1,p(x)
0 (Ω). It remains to show that using the monotonicity of the

involved operators we can now pass from the weak convergence stated in Definition 4.1
to the strong convergence in W

1,−→p (x)
0 (Ω).

We first know that the negative −→q -Laplacian defined by

−∆−→q (x)u = −
N∑

i=1

∂

∂xi

(∣∣∣∣
∂u

∂xi

∣∣∣∣
qi(x)−2

∂u

∂xi

)
for all u ∈ W

1,−→q (x)
0 (Ω),

is a monotone operator. Hence, we have

⟨−∆−→q (x)u+ ∆−→q (x)v, u− v⟩ ≥ 0 for all u, v ∈ W
1,−→q (x)
0 (Ω).
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By Definition 4.1(i), (iii) for µ ≤ 0, we deduce that

lim sup
n→+∞

⟨−∆−→p (x)un, un − u⟩

= lim sup
n→+∞

[
⟨−∆−→p (x)un + µ∆−→q (x)un, un − u⟩ + µ⟨−∆−→q (x)un + ∆−→q (x)u, un − u⟩

+ µ⟨−∆−→q (x)u, un − u⟩
]

≤ lim sup
n→+∞

⟨−∆−→p (x)un + µ∆−→q (x)un, un − u⟩ + µ lim
n→+∞

⟨−∆−→q (x)u, un − u⟩ = 0.

Since the negative −→r (x)-Laplacian is continuous and fulfills the (S)+-property,
then we know that un converging to u (as n → +∞) in W

1,−→r (x)
0 (Ω) leads to

lim
n→+∞

−∆−→r (x)un = −∆−→r (x)u in (W 1,r(x)
0 (Ω))∗, r ∈ {p, q}.

By Claim 3 of Theorem 1.4 and estimate (4.6), we retrieve the boundedness of the
sequence {zn}n∈N in Definition 4.1(ii), in W

1,−→p (x)
0 (Ω))∗. Without loss of generality,

we may assume that

zn
w−→ z in (W 1,−→p (x)

0 (Ω))∗ as n → +∞.

Referring to Lemma 3.2, we know that z ∈ ∂F (u) a.e. on Ω. Hence, using (4.8),
un → u in W

1,−→p (x)
0 (Ω) and zn ∈ ∂F (un) ⊂ (W 1,−→p (x)

0 (Ω))∗, it leads to

−∆−→p (x)u+ µ∆−→q (x)u− z = 0 in (W 1,−→p (x)
0 (Ω))∗,

where z ∈ ∂F (u) ⊂ (W 1,−→p (x)
0 (Ω))∗ a.e. on Ω. We conclude that the requirement in

Definition 4.3 is fulfilled, namely problem (4.1) admits a weak solution u ∈ W
1,−→p (x)
0 (Ω).
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