Opuscula Math. 46, no. 1 (2026), 73-99
https://doi.org/10.7494/OpMath.202512221

 
Opuscula Mathematica

Calderón-Hardy type spaces and the Heisenberg sub-Laplacian

Pablo Rocha

Abstract. For \(0 \lt p \leq 1 \lt q \lt \infty\) and \(\gamma \gt 0\), we introduce the Calderón-Hardy spaces \(\mathcal{H}^{p}_{q,\gamma}(\mathbb{H}^{n})\) on the Heisenberg group \(\mathbb{H}^{n}\), and show for every \(f \in H^{p}(\mathbb{H}^{n})\) that the equation \[\mathcal{L}F=f\] has a unique solution \(F\) in \(\mathcal{H}^{p}_{q,2}(\mathbb{H}^{n})\), where \(\mathcal{L}\) is the sub-Laplacian on \(\mathbb{H}^{n}\), \[1 \lt q \lt \frac{n+1}{n} \quad \text{and} \quad (2n+2)\left(2+\frac{2n+2}{q}\right)^{-1} \lt p \leq 1.\]

Keywords: Calderón-Hardy type spaces, Hardy type spaces, atomic decomposition, Heisenberg group, sub-Laplacian.

Mathematics Subject Classification: 42B25, 42B30, 42B35, 43A80.

Full text (pdf)

  1. C. Benson, A.H. Dooley, G. Ratcliff, Fundamental solutions for the powers of the Heisenberg sub-Laplacian, Ill. J. Math. 37 (1993), 455-476. https://doi.org/10.1215/ijm/1255987061
  2. A. Bonfiglioli, Taylor formula for homogenous groups and applications, Math. Z. 262 (2009), 255-279. https://doi.org/10.1007/s00209-008-0372-z
  3. A.P. Calderón, Estimates for singular integral operators in terms of maximal functions, Studia Math. 44 (1972), 563-582. https://doi.org/10.4064/sm-44-6-563-582
  4. R. Durán, Parabolic maximal functions and potentials of distributions in \(H^{p}\), J. Math. Anal. Appl. 100 (1984), 130-154. https://doi.org/10.1016/0022-247x(84)90073-8
  5. C. Fefferman, E.M. Stein, \(H^{p}\) spaces of several variables, Acta Math. 129 (1972), 137-193. https://doi.org/10.1007/bf02392215
  6. V. Fischer, M. Ruzhansky, Quantization on Nilpotent Lie groups, Progress in Mathematics, vol. 314, Birkhäuser-Springer, 2016. https://doi.org/10.1007/978-3-319-29558-9_5
  7. G. Folland, A fundamental solution for a subelliptic operator, Bull. Am. Math. Soc. 79 (1973), 373-376. https://doi.org/10.1090/s0002-9904-1973-13171-4
  8. G. Folland, Introduction to Partial Differential Equations, 2nd edition, Princeton, NJ: Princeton University Press, 1995.
  9. G. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28, Princeton Univ. Press, 1982. https://doi.org/10.1515/9780691222455
  10. A.B. Gatto, J.G. Jiménez, C. Segovia, On the solution of the equation \(\Delta^{m}F = f\) for \(f \in H^{p}\), Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. II, Wadsworth International Mathematics Series, 1983.
  11. I.M. Gel'fand, G.E. Shilov, Generalized Functions: Properties and Operations, Vol. 1, Academic Press, 1964
  12. D. Geller, Liouville's theorem for homogeneous groups, Commun. Partial Differ. Equations 8 (1983), 1665-1677.
  13. L. Grafakos, L. Liu, D. Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), 296-310. https://doi.org/10.7146/math.scand.a-15099
  14. R. Latter, A characterization of \(H^{p}(\mathbb{R}^{n})\) in terms of atoms, Studia Math. 62 (1978), 93-101. https://doi.org/10.4064/sm-62-1-93-101
  15. Z. Liu, Z. He, H. Mo, Orlicz Calderón-Hardy spaces, Front. Math (2025). https://doi.org/10.1007/s11464-024-0149-7
  16. E. Nakai, Y. Sawano, Orlicz-Hardy spaces and their duals, Sci. China Math. 57 (2014), 903-962. https://doi.org/10.1007/s11425-014-4798-y
  17. P. Rocha, Calderón-Hardy spaces with variable exponents and the solution of the equation \(\Delta^{m}F=f\) for \(f \in H^{p(\cdot)}(\mathbb{R}^{n})\), Math. Inequal. Appl. 19 (2016), 1013-1030. https://doi.org/10.7153/mia-19-75
  18. P. Rocha, Weighted Calderón-Hardy spaces, Math. Bohem. 150 (2025), 187-205. https://doi.org/10.21136/mb.2024.0090-23
  19. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.
  20. S. Thangavelu, Harmonic Analysis on the Heisenberg group, Birkhäuser, 1998.
  • Pablo Rocha
  • Universidad Nacional del Sur, Departamento de Matemática, Avenida Alem 1253. 2do Piso, 8000 Bahía Blanca, Argentina
  • Communicated by Palle E.T. Jorgensen.
  • Received: 2025-05-12.
  • Revised: 2025-12-22.
  • Accepted: 2025-12-22.
  • Published online: 2026-01-27.
Opuscula Mathematica - cover

Cite this article as:
Pablo Rocha, Calderón-Hardy type spaces and the Heisenberg sub-Laplacian, Opuscula Math. 46, no. 1 (2026), 73-99, https://doi.org/10.7494/OpMath.202512221

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.