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Abstract. For 0 < p ≤ 1 < q < ∞ and γ > 0, we introduce the Calderón–
–Hardy spaces Hp

q,γ(Hn) on the Heisenberg group Hn, and show for every
f ∈ Hp(Hn) that the equation

LF = f

has a unique solution F in Hp
q,2(Hn), where L is the sub-Laplacian on Hn,

1 < q <
n + 1

n
and (2n + 2)

(
2 + 2n + 2

q

)−1
< p ≤ 1.
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1. INTRODUCTION

The Laplace operator or Laplacian ∆ on Rn is defined by

∆ =
n∑

j=1

∂2

∂x2
j

.

The ubiquity and the importance of this operator in physics and mathematics is well
known. Needless to say that the study of problems involving the Laplacian are of
interest either because of their applications or in their own right.

Given m ∈ N, consider the inhomogeneous equation

∆mF = f, (1.1)

where ∆m is the iterated Laplacian, f is a given data function and F is
an unknown function. Then, the problem consists in finding a function F that solves
(1.1) in some sense. It is common to address this problem by means of the fundamental
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solution of the operator ∆m. A fundamental solution for ∆m is a distribution K on Rn

such that ∆mK = δ in the distributional sense, where δ is Dirac’s delta at the origin.
In this case, for every m ∈ N fixed, we have that

Φm(x) =





C1 |x|2m−n log |x|, if n is even and 2m − n ≥ 0,

C2 |x|2m−n, otherwise

is a fundamental solution for ∆m on Rn (see [11, 201–202]). That fundamental solution
is not uniquely determined. Indeed, Φm + u with ∆mu = 0, it is other fundamental
solution for ∆m. These fundamental solutions are useful for producing solutions of
the equation (1.1). For instance, if m ≥ 1 and f is a C∞-function with compact
support, then F = Φm ∗ f solves (1.1) in the classical sense. This formula also works
for m = 1 when one assumes f ∈ L1(Rn), and that

∫
|f(x)| log(|x|)dx < ∞ in the

case n = 2, (see [8, Theorem 2.21]). For m ≥ 1 and f ∈ Lp(Rn) with 1 < p < ∞,
A.P. Calderón proved that there exists a locally integrable function F what solves
(1.1) in the distributional sense and ∥∂αF∥p ≤ C∥f∥p for all multi-index α such that
|α| = 2m, with C independent of f (see [3, Lemma 8]).

It is known that the Hardy spaces Hp(Rn) are good substitutes for Lebesgue spaces
Lp(Rn) when 0 < p ≤ 1 (see [5, 19]). In this direction, A. Gatto, J. Jiménez and C.
Segovia in [10], posed the problem (1.1) for m ≥ 1 and f ∈ Hp(Rn), 0 < p ≤ 1. To
solve it they introduce the Calderón–Hardy spaces Hp

q,γ(Rn), 0 < p ≤ 1 < q < ∞ and
γ > 0, and proved for n(2m + n/q)−1 < p ≤ 1 that given f ∈ Hp(Rn) there exists
a unique F ∈ Hp

q,2m(Rn) that solves (1.1).
The underlying idea in [10] to address this problem is the following: given

f ∈ Hp(Rn), there exists an atomic decomposition f =
∑

kjaj , such that
∥f∥p

Hp(Rn) ∼ ∑
kp

j (see [14]), then once defined the space Hp
q,2m(Rn) (which is

defined as a quotient space) together with its “norm” ∥ · ∥Hp
q,2m(Rn), they define

bj = (aj ∗ Φm) and consider the class Bj ∈ Hp
q,2m(Rn) such that bj ∈ Bj . Finally, for

n(2m+n/q)−1 < p ≤ 1, they prove that the series
∑

kjBj converges to F in Hp
q,2m(Rn)

and ∆mF = f . Moreover, ∆m is a bijective mapping from Hp
q,2m(Rn) onto Hp(Rn),

with ∥F∥Hp
q,2m(Rn) ∼ ∥∆mF∥Hp(Rn).

In [4], R. Durán extended the definition and atomic decomposition of Hp
q,2m to the

case of non-isotropic dilations on Rn, solving an analogue problem to (1.1) for more
general elliptic operators with symbols of the form ξ2k1

1 +. . .+ξ2kn
n , with k1, . . . , kn ∈ N.

The equation (1.1), for f ∈ Hp(·)(Rn) and f ∈ Hp(Rn, w), was studied by the
present author in [17] and [18] respectively, obtaining analogous results to those of
Gatto, Jiménez and Segovia.

Recently, Z. Liu, Z. He and H. Mo in [15] extended the definition of Calderón–Hardy
spaces to Orlicz setting. These new Orlicz Calderón–Hardy spaces can cover classical
Calderón–Hardy spaces in [10]. As an application, they solved the equation (1.1) when
f ∈ HΦ(Rn), where HΦ(Rn) are the Orlicz-Hardy spaces defined in [16].
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On the other hand, it is well known that the Lie group “most commutative”
among the non-commutative is the Heisenberg group, it plays an important role
in several branches of mathematics (see [20]). So, one has the opportunity to ask
whether certain standard results of Euclidean harmonic analysis can be adapted to the
non-commutative setting of the Heisenberg group. Following this line, the purpose of
this work is to pose and solve an analogous problem to (1.1) on the Heisenberg group
with m = 1. More precisely, for f ∈ Hp(Hn), 0 < p ≤ 1, we consider the equation

LF = f, (1.2)

where L is the sub-Laplacian on Hn. The solution obtained in [10], for the Euclidean
case, suggests us that once defined the space Hp

q,2(Hn) a representative for the solution
F ∈ Hp

q,2(Hn) of (1.2) should be
∑

kj(aj ∗Hn Φ), where
∑

kjaj is an atomic decom-
position for f ∈ Hp(Hn) (see [9]), and Φ is the fundamental solution of L obtained by
G. Folland in [7]. We shall see that this argument works as well on Hn, but taking
into account certain non-trivial aspects inherent to the Heisenberg group.

Our main results are contained in Theorems 5.1 and 5.2 (see Section 5 below).
The first of them states that if Q = 2n + 2, 1 < q < n+1

n and Q(2 + Q
q )−1 < p ≤ 1,

then the sub-Laplacian L on Hn is a bijective mapping from Hp
q,2(Hn) onto Hp(Hn).

Moreover, for every G ∈ Hp
q,2(Hn), the quantities ∥LG∥Hp(Hn) and ∥G∥Hp

q,2(Hn) are
comparable with implicit constants independent of G. In other words, for Q(2+ Q

q )−1 <

p ≤ 1 and f ∈ Hp(Hn), the equation (1.2) has a unique solution in Hp
q,2(Hn).

A key technical result needed to get Theorem 5.1 is Proposition 4.12 below. This
establishes a pointwise inequality in Hn which can be inferred from Gatto, Jiménez
and Segovia’s approach, however its analogous in Rn is not explicitly stated in [10].

Although the fundamental solutions for the powers of the sub-Laplacian Lm are
known for every integer m ≥ 2 (see [1]), the problem in this case is much more
complicated. For this reason we focus solely on the case m = 1.

Finally, our second result says that the case 0 < p ≤ Q(2 + Q
q )−1 is trivial. Indeed,

we have that if 1 < q < n+1
n and 0 < p ≤ Q(2 + Q

q )−1, then Hp
q,2(Hn) = {0}.

This paper is organized as follows. In Section 2 we state the basics of the Heisen-
berg group. The definition and atomic decomposition of Hardy spaces on the Heisenberg
group are presented in Section 3. We introduce the Calderón–Hardy spaces on the
Heisenberg group and investigate their properties in Section 4. The key technical
result mentioned above is also stated in Section 4. Finally, our main results are
proved in Section 5.

We will use the following notation. The symbol A ≲ B stands for the inequality
A ≤ cB for some constant c. We denote by B(z0, δ) the ρ-ball centered at z0 ∈ Hn

with radius δ. Given β > 0 and a ρ-ball B = B(z0, δ), we set βB = B(z0, βδ). For
a measurable subset E ⊆ Hn we denote by |E| and χE the Haar measure of E and
the characteristic function of E respectively. Given a real number s ≥ 0, we write ⌊s⌋
for the integer part of s.

Throughout this paper, C will denote a positive constant, not necessarily the same
at each occurrence.
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2. PRELIMINARIES

The Heisenberg group Hn can be identified with R2n × R whose group law (noncom-
mutative) is given by

(x, t) · (y, s) = (x + y, t + s + xtJy),

where J is the 2n × 2n skew-symmetric matrix given by

J = 2
(

0 −In

In 0

)

being In the n × n identity matrix.
The dilation group on Hn is defined by

r · (x, t) = (rx, r2t), r > 0.

With this structure we have that e = (0, 0) is the neutral element,

(x, t)−1 = (−x, −t)

is the inverse of (x, t), and

r · ((x, t) · (y, s)) = (r · (x, y)) · (r · (y, s)).

The Koranyi norm on Hn is the function ρ : Hn → [0, ∞) defined by

ρ(x, t) =
(
|x|4 + t2)1/4

, (x, t) ∈ Hn, (2.1)

where | · | is the usual Euclidean norm on R2n. It is easy to check that |x| ≤ ρ(x, t)
and |t| ≤ ρ(x, t)2.

Let z = (x, t) and w = (y, s) ∈ Hn, the Koranyi norm satisfies the following
properties:

ρ(z) = 0 if and only if z = e,

ρ(z−1) = ρ(z) for all z ∈ Hn,

ρ(r · z) = r ρ(z) for all z ∈ Hn and all r > 0,

ρ(z · w) ≤ ρ(z) + ρ(w) for all z, w ∈ Hn,

|ρ(z) − ρ(w)| ≤ ρ(z · w) for all z, w ∈ Hn.

Moreover, ρ is continuous on Hn and is smooth on Hn \ {e}. The ρ-ball centered at
z0 ∈ Hn with radius δ > 0 is defined by

B(z0, δ) := {w ∈ Hn : ρ(z−1
0 · w) < δ}.

The topology in Hn induced by the ρ-balls coincides with the Euclidean topology of
R2n ×R ≡ R2n+1 (see [6, Proposition 3.1.37]). So, the borelian sets of Hn are identified
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with those of R2n+1. The Haar measure in Hn is the Lebesgue measure of R2n+1, thus
Lp(Hn) ≡ Lp(R2n+1), for every 0 < p ≤ ∞. Moreover, for f ∈ L1(Hn) and for r > 0
fixed, we have ∫

Hn

f(r · z) dz = r−Q

∫

Hn

f(z) dz, (2.2)

where Q = 2n + 2. The number 2n + 2 is known as the homogeneous dimension of Hn

(we observe that the topological dimension of Hn is 2n + 1).
Let |B(z0, δ)| be the Haar measure of the ρ-ball B(z0, δ) ⊂ Hn. Then,

|B(z0, δ)| = cδQ,

where c = |B(e, 1)| and Q = 2n + 2. Given λ > 0, we put

λB = λB(z0, δ) = B(z0, λδ).

So |λB| = λQ|B|.
Remark 2.1. For any z, z0 ∈ Hn and δ > 0, we have

z0 · B(z, δ) = B(z0 · z, δ).

In particular, B(z, δ) = z · B(e, δ). It is also easy to check that B(e, δ) = δ · B(e, 1)
for any δ > 0.
Remark 2.2. If f ∈ L1(Hn), then for every ρ-ball B and every z0 ∈ Hn, we have

∫

B

f(w) dw =
∫

z−1
0 ·B

f(z0 · u) du.

The Hardy–Littlewood maximal operator M is defined by

Mf(z) = sup
B∋z

|B|−1
∫

B

|f(w)| dw,

where f is a locally integrable function on Hn and the supremum is taken over all the
ρ-balls B containing z.

If f and g are measurable functions on Hn, their convolution f ∗ g is defined by

(f ∗ g)(z) :=
∫

Hn

f(w)g(w−1 · z) dw,

when the integral is finite.
For every i = 1, 2, . . . , 2n + 1, Xi denotes the left invariant vector field given by

Xi = ∂

∂xi
+ 2xi+n

∂

∂t
, i = 1, 2, . . . , n,

Xi+n = ∂

∂xi+n
− 2xi

∂

∂t
, i = 1, 2, . . . , n,
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and
X2n+1 = ∂

∂t
.

Similarly, we define the right invariant vector fields {X̃i}2n+1
i=1 by

X̃i = ∂

∂xi
− 2xi+n

∂

∂t
, i = 1, 2, . . . , n,

X̃i+n = ∂

∂xi+n
+ 2xi

∂

∂t
, i = 1, 2, . . . , n,

and
X̃2n+1 = ∂

∂t
.

The sub-Laplacian on Hn, denoted by L, is the counterpart of the Laplacain ∆
on Rn. The sub-Laplacian L is defined by

L = −
2n∑

i=1
X2

i ,

where Xi, i = 1, . . . , 2n, are the left invariant vector fields defined above.
Given a multi-index I = (i1, i2, . . . , i2n, i2n+1) ∈ (N ∪ {0})2n+1, we set

|I| = i1 + i2 + . . . + i2n + i2n+1, d(I) = i1 + i2 + . . . + i2n + 2 i2n+1.

The amount |I| is called the length of I and d(I) the homogeneous degree of I. We adopt
the following multi-index notation for higher order derivatives and for monomials on
Hn. If I = (i1, i2, . . . , i2n+1) is a multi-index, X = {Xi}2n+1

i=1 , X̃ = {X̃i}2n+1
i=1 , and

z = (x, t) = (x1, . . . , x2n, t) ∈ Hn, we put

XI := Xi1
1 Xi2

2 · · · X
i2n+1
2n+1 , X̃I := X̃i1

1 X̃i2
2 · · · X̃

i2n+1
2n+1 ,

and
zI := xi1

1 · · · xi2n
2n · ti2n+1 .

A computation gives

XI(f(r · z)) = rd(I)(XIf)(r · z), X̃I(f(r · z)) = rd(I)(X̃If)(r · z)

and
(r · z)I = rd(I)zI .

So, the operators XI and X̃I and the monomials zI are homogeneous of
degree d(I). In particular, the sub-Laplacian L is an operator homogeneous of degree 2.
The operators XI , X̃I , and L interact with the convolutions in the following way:

XI(f ∗ g) = f ∗ (XIg), X̃I(f ∗ g) = (X̃If) ∗ g, (XIf) ∗ g = f ∗ (X̃Ig),
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and
L(f ∗ g) = f ∗ Lg.

Every polynomial p on Hn can be written as a unique finite linear combination of
the monomials zI , that is

p(z) =
∑

I∈Nn
0

cIzI , (2.3)

where all but finitely many of the coefficients cI ∈ C vanish. The homogeneous
degree of a polynomial p written as (2.3) is max{d(I) : I ∈ Nn

0 with cI ̸= 0}.
Let k ∈ N ∪ {0}, with Pk we denote the subspace formed by all the polyno-
mials of homogeneous degree at most k. So, every p ∈ Pk can be written as
p(z) =

∑
d(I)≤k cI zI , with cI ∈ C.

The Schwartz space S(Hn) is defined as the collection of all ϕ ∈ C∞(Hn) such that

sup
z∈Hn

(1 + ρ(z))N |(XIϕ)(z)| < ∞,

for all N ∈ N0 and all I ∈ (N0)2n+1. We topologize the space S(Hn) with the following
family of semi-norms:

∥ϕ∥S(Hn),N =
∑

d(I)≤N

sup
z∈Hn

(1 + ρ(z))N |(XIϕ)(z)| (N ∈ N0).

By S ′(Hn) we denote the dual space of S(Hn).
A fundamental solution for the sub-Laplacian on Hn was obtained by G. Folland

in [7]. More precisely, he proved the following result.

Theorem 2.3. cn ρ−2n is a fundamental solution for L with source at 0, where

ρ(x, t) = (|x|4 + t2)1/4,

and

cn =


n(n + 2)

∫

Hn

|x|2(ρ(x, t)4 + 1)−(n+4)/2dxdt




−1

.

In others words, for any u ∈ S(Hn),
(
Lu, cnρ−2n

)
= u(0).

Lemma 2.4. Let α > 0 and ρ(x, t) = (|x|4 + t2)1/4, then
∣∣∣X̃J

(
XIρ−α

)
(x, t)

∣∣∣ ≤ Cρ(x, t)−α−d(I)−d(J),

holds for all (x, t) ̸= e and every pair of multi-indixes I and J .

Proof. The proof follows from the homogeneity of the kernel ρ−α, i.e.

ρ(r · (x, t))−α = r−αρ(x, t)−α,

and from the homogeneity of the operators X̃J and XI .
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We conclude these preliminaries with the following supporting result.

Lemma 2.5. Let 0 < p < ∞ and let O be a measurable set of Hn such that |O| < ∞.
If h ∈ Lp(Hn \ O), then

|{z : |h(z)| < ε}| > 0, for all ε > 0.

Proof. Suppose that there exists ε0 > 0 such that |{z : |h(z)| < ε0}| = 0,
so |h(z)| ≥ ε0/2 a.e. z ∈ Hn, which implies that

∞ = |Oc| = |{z ∈ Oc : |h(z)| ≥ ε0/2}| ≤ (2/ε0)p∥h∥p
Lp(Oc),

contradicting the assumption that h ∈ Lp(Hn \ O). Then, the lemma follows.

3. HARDY SPACES ON THE HEISENBERG GROUP

In this section, we briefly recall the definition and the atomic decomposition of the
Hardy spaces on the Heisenberg group (see [9]).

Given N ∈ N, define

FN =
{

φ ∈ S(Hn) : ∥φ∥S(Hn),N ≤ 1
}

.

For any f ∈ S ′(Hn), the grand maximal function of f is defined by

MN f(z) = sup
t>0

sup
φ∈FN

|(f ∗ φt) (z)| ,

where φt(z) = t−2n−2φ(t−1 · z) with t > 0.
We put

Np =
{

⌊Q(p−1 − 1)⌋ + 1, if 0 < p ≤ 1,

0, if 1 < p ≤ ∞.

The Hardy space Hp(Hn) is the set of all f ∈ S′(Hn) for which MNpf ∈ Lp(Hn). In
this case, we define

∥f∥Hp(Hn) =
∥∥MNp

f
∥∥

Lp(Hn) .

For p > 1, it is well known that Hp(Hn) ≡ Lp(Hn), and for p = 1,
H1(Hn) ⊂ L1(Hn). On the range 0 < p < 1, the spaces Hp(Hn) and Lp(Hn) are
not comparable.

Now, we introduce the definition of an atom in Hn.

Definition 3.1. Let 0 < p ≤ 1 < p0 ≤ ∞. Fix an integer N ≥ Np. A measurable
function a(·) on Hn is called an (p, p0, N)-atom if there exists a ρ-ball B such that

(a1) supp(a) ⊂ B,
(a2) ∥a ∥Lp0 (Hn) ≤ |B| 1

p0
− 1

p ,
(a3)

∫
a(z) zI dz = 0 for all multi-index I such that d(I) ≤ N .
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A such atom is also called an atom centered at the ρ-ball B. We observe that every
(p, p0, N)-atom a(·) belongs to Hp(Hn). Moreover, there exists a universal constant
C > 0 such that ∥a ∥Hp(Hn) ≤ C for all (p, p0, N)-atom a(·).
Remark 3.2. It is easy to check that if a(·) is a (p, p0, N)-atom centered at the ρ-ball
B(z0, δ), then the function az0(·) := a(z0 · (·)) is a (p, p0, N)-atom centered at the
ρ-ball B(e, δ).

Definition 3.3. Let 0 < p ≤ 1 < p0 ≤ ∞ and let N ≥ Np be fixed. The space
Hp,p0,N

atom (Hn) is the set of all distributions f ∈ S ′(Hn) such that it can be written as

f =
∞∑

j=1
kjaj (3.1)

in S ′(Hn), where {kj}∞
j=1 is a sequence of non-negative numbers, the aj ’s are

(p, p0, N)-atoms and
∑

j kp
j < ∞. Then, one defines

∥f∥
H

p,p0,N
atom (Hn) := inf





∑

j

kp
j : f =

∞∑

j=1
kjaj



 ,

where the infimum is taken over all admissible expressions as in (3.1).

For 0 < p ≤ 1 < p0 ≤ ∞ and N ≥ Np, Theorem 3.30 in [9] asserts that

Hp,p0,N
atom (Hn) = Hp(Hn)

and the quantities ∥f∥
H

p,p0,N
atom (Hn) and ∥f∥Hp(Hn) are comparable. Moreover,

if f ∈ Hp(Hn), then admits an atomic decomposition f =
∑∞

j=1 kjaj such that
∑

j

kp
j ≤ C ∥f∥p

Hp(Hn),

where C does not depend on f .

4. CALDERÓN–HARDY SPACES ON THE HEISENBERG GROUP

Let Lq
loc(Hn), 1 < q < ∞, be the space of all measurable functions g on Hn that

belong locally to Lq for compact sets of Hn. We endowed Lq
loc(Hn) with the topology

generated by the seminorms

|g|q,B =


|B|−1

∫

B

|g(w)|q dw




1/q

,

where B is a ρ-ball in Hn and |B| denotes its Haar measure.
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For g ∈ Lq
loc(Hn), we define a maximal function ηq,γ(g; z) as

ηq,γ(g; z) = sup
r>0

r−γ |g|q,B(z,r),

where γ is a positive real number and B(z, r) is the ρ-ball centered at z with radius r.
Let k a non-negative integer and Pk the subspace of Lq

loc(Hn) formed by all the
polynomials of homogeneous degree at most k. We denote by Eq

k the quotient space of
Lq

loc(Hn) by Pk. If G ∈ Eq
k, we define the seminorm

∥G∥q,B = inf {|g|q,B : g ∈ G} .

The family of all these seminorms induces on Eq
k the quotient topology.

Given a positive real number γ, we can write γ = k + t, where k is a non-negative
integer and 0 < t ≤ 1. This decomposition is unique.

For G ∈ Eq
k, we define a maximal function Nq,γ(G; z) as

Nq,γ(G; z) = inf {ηq,γ(g; z) : g ∈ G} .

Lemma 4.1. The maximal function z 7→ Nq; γ(G; z) associated with a class G in Eq
k

is lower semicontinuous.
Proof. It is easy to check that ηq,γ(g; ·) is lower semicontinuous for every g ∈ G
(i.e. the set {z : ηq,γ(g; z) > α} is open for all α ∈ R). Then, for z0 ∈ Hn, we have

Nq; γ(G; z0) ≤ ηq,γ(g; z0) ≤ lim inf
z→z0

ηq,γ(g; z) for all g ∈ G.

So,
Nq; γ(G; z0) − ε < lim inf

z→z0
ηq,γ(g; z) for all ε > 0 and all g ∈ G. (4.1)

Suppose lim inf
z→z0

Nq; γ(G; z) < Nq; γ(G; z0). Then, there exists ε > 0 such that

lim inf
z→z0

Nq; γ(G; z) < Nq; γ(G; z0) − ε.

Thus, there exists δ0 > 0 such that for every 0 < δ < δ0 there exist
z ∈ B(z0, δ) \ {z0} and g = gz ∈ G such that

ηq,γ(g; z) ≤ Nq; γ(G; z0) − ε,

which contradicts (4.1). Hence, we have

Nq; γ(G; z0) ≤ lim inf
z→z0

Nq; γ(G; z).

The lemma then follows.

Definition 4.2. Let 0 < p < ∞ be fixed. We say that an element G ∈ Eq
k

belongs to the Calderón–Hardy space Hp
q,γ(Hn) if the maximal function

Nq,γ(G; · ) ∈ Lp(Hn). The “norm” of G in Hp
q,γ(Hn) is defined as

∥G∥Hp
q,γ (Hn) = ∥Nq,γ(G; · )∥Lp(Hn).
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Lemma 4.3. Let G ∈ Eq
k with Nq,γ(G; z0) < ∞, for some z0 ∈ Hn. Then:

(i) there exists a unique g ∈ G such that ηq,γ(g; z0) < ∞ and, therefore,
ηq,γ(g; z0) = Nq,γ(G; z0),

(ii) for any ρ-ball B, there is a constant c depending on z0 and B such that if g is
the unique representative of G given in (i), then

∥G∥q,B ≤ |g|q,B ≤ c ηq,γ(g; z0) = c Nq,γ(G; z0).

The constant c can be chosen independently of z0 provided that z0 varies in a com-
pact set.

Proof. Since every polynomial of homogeneous degree at most k can be centered
at z0, with z0 being an arbitrary point of Hn, by the formula that appears
in [2, Section 5.2, p. 272]) for the Taylor polynomial of a smooth function, it follows
that the argument used to prove [10, Lemma 3] works on Hn as well.

Corollary 4.4. If {Gj} is a sequence of elements of Eq
k converging to G in Hp

q,γ(Hn),
then {Gj} converges to G in Eq

k.

Proof. For any ρ-ball B, by (ii) of Lemma 4.3, we have

∥G − Gj∥q,B ≤ c ∥χB∥−1
Lp(Hn)∥χB Nq,γ(G − Gj ; · )∥Lp(Hn)

≤ c ∥G − Gj∥Hp
q,γ (Hn),

which proves the corollary.

Lemma 4.5. Let {Gj} be a sequence in Eq
k such that for a given point z0 ∈ Hn, the

series
∑

j Nq,γ(Gj ; z0) is finite. Then:

(i) the series
∑

j Gj converges in Eq
k to an element G and

Nq,γ(G; z0) ≤
∑

j

Nq,γ(Gj ; z0),

(ii) if gj is the unique representative of Gj satisfying ηq,γ(gj ; z0) = Nq,γ(Gj ; z0), then∑
j gj converges in Lq

loc(Hn) to a function g that is the unique representative
of G satisfying ηq,γ(g; z0) = Nq,γ(G; z0).

Proof. The proof is similar to the one given in [10, Lemma 4].

Proposition 4.6. The space Hp
q,γ(Hn), 0 < p < ∞, is complete.

Proof. It is enough to show that Hp
q,γ has the Riesz–Fisher property: given any

sequence {Gj} in Hp
q,γ such that

∑

j

∥Gj∥p
Hp

q,γ
< ∞,
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the series
∑

j Gj converges in Hp
q,γ . Let m ≥ 1 be fixed, then

∥∥∥∥∥∥

k∑

j=m

Nq,γ(Gj ; · )

∥∥∥∥∥∥

p

Lp

≤
k∑

j=m

∥Nq,γ(Gj ; · )∥p
Lp ≤

∞∑

j=m

∥Gj∥p
Hp

q,γ
=: αm < ∞,

for every k ≥ m. Thus,
∫

Hn


α−1/p

m

k∑

j=m

Nq,γ(Gj ; z)




p

dz

≤
∫

Hn




∥∥∥∥∥∥

k∑

j=m

Nq,γ(Gj ; · )

∥∥∥∥∥∥

−1

Lp

k∑

j=m

Nq,γ(Gj ; z)




p

dz = 1, ∀ k ≥ m,

by applying Fatou’s Lemma as k → ∞, we obtain
∫

Hn


α−1/p

m

∞∑

j=m

Nq,γ(Gj ; z)




p

dz ≤ 1,

so ∥∥∥∥∥∥

∞∑

j=m

Nq,γ(Gj ; · )

∥∥∥∥∥∥

p

Lp

≤ αm =
∞∑

j=m

∥Gj∥p
Hp

q,γ
< ∞, ∀ m ≥ 1. (4.2)

Taking m = 1 in (4.2), it follows that
∑

j Nq,γ(Gj ; z) is finite a.e. z ∈ Hn. Then, by (i)
of Lemma 4.5, the series

∑
j Gj converges in Eq

k to an element G. Now

Nq,γ


G −

k∑

j=1
Gj ; z


 ≤

∞∑

j=k+1
Nq,γ(Gj ; z).

From this and (4.2) we get
∥∥∥∥∥∥
G −

k∑

j=1
Gj

∥∥∥∥∥∥

p

Hp
q,γ

≤
∞∑

j=k+1
∥Gj∥p

Hp
q,γ

,

and since the right-hand side tends to 0 as k → ∞, the series
∑

j Gj converges to G
in Hp

q,γ(Hn).

Proposition 4.7. If g ∈ Lq
loc(Hn), 1 < q < ∞, and there is a point z0 ∈ Hn such

that ηq,γ(g; z0) < ∞, then g ∈ S ′(Hn).
Proof. We first assume that z0 = e = (0, 0). Given φ ∈ S(Hn) and N > γ + Q (where
Q = 2n + 2), we have that

|φ(w)| ≤ ∥φ∥S(Hn),N (1 + ρ(w))−N

for all w ∈ Hn.
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So, we obtain
∣∣∣∣∣∣

∫

Hn

g(w)φ(w)dw

∣∣∣∣∣∣
≤ ∥φ∥S(Hn),N

∫

ρ(w)<1

|g(w)|(1 + ρ(w))−N dw

+ ∥φ∥S(Hn),N

∞∑

j=0

∫

2j≤ρ(w)<2j+1

|g(w)|(1 + ρ(w))−N dw

≲ ∥φ∥S(Hn),N ηq,γ(g; e)

+ ∥φ∥S(Hn),N ηq,γ(g; e)
∞∑

j=0
2j(γ+Q−N),

where in the last estimate we use the Jensen’s inequality. Since N > γ + Q, it follows
that g ∈ S ′(Hn). For the case z0 ̸= e we apply the translation operator τz0 defined
by (τz0g)(z) = g(z−1

0 · z) and use the fact that ηq,γ(τz−1
0

g; e) = ηq,γ(g; z0) (see
Remark 2.2).

Proposition 4.8. Let g ∈ Lq
loc ∩ S ′(Hn) and f = Lg in S ′(Hn). If ϕ ∈ S(Hn) and

N > Q + 2, then

(Mϕf)(z) := sup
{

|(f ∗ ϕt)(w)| : ρ(w−1 · z) < t, 0 < t < ∞
}

≤ C∥ϕ∥S(Hn),N ηq,2(g; z)

holds for all z ∈ Hn.
Proof. Let ρ(w−1 · z) < t, since f = Lg in S ′(Hn) a computation gives

(f ∗ ϕt)(w) = t−2(g ∗ (Lϕ)t)(w) = t−2
∫

g(u)(Lϕ)t(u−1 · w)du.

Applying Remark 2.2 and (2.2), we get

(f ∗ ϕt)(w) = t−2
∫

g(z · tu)(Lϕ)(u−1 · t−1(z−1 · w))du. (4.3)

Being ρ(z−1 · w) < t, a computation gives

1 + ρ(u) ≤ 2
(
1 + ρ(u−1 · t−1(z−1 · w))

)
. (4.4)

On the other hand, for N > 2, we have
∣∣(Lϕ)(u−1 · t−1(z−1 · w))

∣∣ (
1 + ρ(u−1 · t−1(z−1 · w))

)N ≤ ∥ϕ∥S(Hn),N . (4.5)

Now, from (4.4) and (4.5), it follows that
∣∣(Lϕ)(u−1 · t−1(z−1 · w))

∣∣ ≤ 2N ∥ϕ∥S(Hn),N (1 + ρ(u))−N , (4.6)

for ρ(z−1 · w) < t.
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Then, (4.3), (4.6) and (2.2) give

2−N ∥ϕ∥−1
S(Hn),N |(f ∗ ϕt)(w)| ≤ t−2

∫
|g(z · tu)|(1 + ρ(u))−N du

= t−2t−Q

∫
|g(z · u)|(1 + ρ(t−1u))−N du

≤ t−2t−Q

∫

ρ(u)<t

|g(z · u)|(1 + ρ(t−1u))−N du

+ t−2t−Q

∫

2jt≤ρ(u)<2j+1t

|g(z · u)| ρ(t−1u)−N du

≲


1 +

∞∑

j=0
2j(Q+2−N)


 ηq,2(g; z),

for ρ(z−1 · w) < t. Applying Jensen’s inequality and taking N > Q + 2 in the last
inequality the proposition follows.

Remark 4.9. We observe that if G ∈ Hp
q,2(Hn), then Nq,2(G; z0) < ∞,

for some z0 ∈ Hn. By (i) in Lemma 4.3, there exists g ∈ G such that
Nq,2(G; z0) = ηq,2(g; z0). From Proposition 4.7 it follows that g ∈ S ′(Hn). So Lg is well
defined in sense of distributions. On the other hand, since any two representatives of G
differ in a polynomial of homogeneous degree at most 1, we get that Lg is independent
of the representative g ∈ G chosen. Therefore, for G ∈ Hp

q,2(Hn), we define LG as the
distribution Lg, where g is any representative of G.

Theorem 4.10. If G ∈ Hp
q,2(Hn) and LG = 0, then G ≡ 0.

Proof. Let G ∈ Hp
q,2(Hn) and g ∈ G such that ηq,2(g; z0) = Nq,2(G; z0) < ∞ for some

z0 ∈ Hn \ {e}. If Lg = 0, by Theorem 2 in [12], we have that g is a polynomial.
To conclude the proof it is suffices to show that g is a polynomial of homogeneous
degree less than or equal to 1. Suppose

g(z) =
∑

d(I)≤k

cIzI ,

with k ≥ 2.
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Then, for δ ≥ 2ρ(z0), we obtain

[ηq,2(g; z0)]qδ(2−k)q ≥ Cδ−Q−kq

∫

ρ(z−1
0 ·w)<δ

∣∣∣∣∣∣
∑

d(I)≤k

cI wI

∣∣∣∣∣∣

q

dw

≥ Cδ−Q−kq

∫

ρ(w)<δ/2

∣∣∣∣∣∣
∑

d(I)≤k

cI wI

∣∣∣∣∣∣

q

dw

= C2−Q−kq

∫

ρ(z)<1

∣∣∣∣∣∣
∑

d(I)=k

cI zI

∣∣∣∣∣∣

q

dz + oδ(1).

Thus, if k > 2, letting δ → ∞, we have

∫

ρ(z)<1

∣∣∣∣∣∣
∑

d(I)=k

cI zI

∣∣∣∣∣∣
dz = 0,

which implies that cI = 0 for d(I) = k, contradicting the assumption that g is of
homogeneous degree k. On the other hand, if k = 2, letting δ → ∞, we obtain that

∫

ρ(z)<1

∣∣∣∣∣∣
∑

d(I)=2

cI zI

∣∣∣∣∣∣
dz ≲ [ηq,2(g; z0)]q = [Nq,2(G; z0)]q.

Since Nq,2(G; ·) ∈ Lp(Hn), to apply Lemma 2.5 with O = {z : Nq,2(G; z) > 1} and
h = Nq,2(G; ·), the amount Nq,2(G; z0) can be taken arbitrarily small and so

∫

ρ(z)<1

∣∣∣∣∣∣
∑

d(I)=2

cI zI

∣∣∣∣∣∣
dz = 0,

which contradicts that g is of homogeneous degree 2. Thus, g is a polynomial of homo-
geneous degree less than or equal to 1, as we wished to prove.

If a is a bounded function with compact support, its potential b, defined as

b(z) :=
(
a ∗ cn ρ−2n

)
(z) = cn

∫

Hn

ρ(w−1 · z)−2na(w)dw,

is a locally bounded function and, by Theorem 2.3, Lb = a in the sense of distributions.
For these potentials, we have the following result.

In the sequel, Q = 2n + 2 and β is the constant in [9, Corollary 1.44], we observe
that β ≥ 1 (see [9, p. 29]).
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Lemma 4.11. Let a(·) be a (p, p0, N)-atom centered at the ρ-ball B(z0, δ) with N ≥ Np.
If

b(z) =
(
a ∗ cn ρ−2n

)
(z),

then, for ρ(z−1
0 z) ≥ 2β2δ and every multi-index I there exists a positive constant CI

such that ∣∣(XIb)(z)
∣∣ ≤ CI δ2+Q|B|− 1

p ρ(z−1
0 · z)−Q−d(I)

holds.
Proof. We fix a multi-index I, by the left invariance of the operator XI and Remark 2.2,
we have that

(XIb)(z) = cn

∫

B(z0,δ)

(
XIρ−2n

)
(w−1 · z) a(w)dw

= cn

∫

B(e,δ)

(
XIρ−2n

)
(u−1 · z−1

0 · z) a(z0 · u)du,

for each z /∈ B(z0, 2β2δ). By the condition a3) of the atom a(·) and Remark 3.2,
it follows for z /∈ B(z0, 2β2δ) that

(XIb)(z) = cn

∫

B(e,δ)

[(
XIρ−2n

)
(u−1 · z−1

0 · z) − q(u−1)
]

a(z0 · u) du, (4.7)

where u 7→ q(u−1) is the right Taylor polynomial at e of homogeneous degree 1 of the
function

u 7→
(
XIρ−2n

)
(u−1 · z−1

0 · z).
Then by the right-invariant version of the Taylor inequality in [9, Corollary 1.44],

∣∣(XIρ−2n
)

(u−1 · z−1
0 · z) − q(u−1)

∣∣

≲ ρ(u)2 sup
ρ(v)≤β2ρ(u),d(J)=2

∣∣∣
(

X̃J
(
XIρ−2n

))
(v · z−1

0 · z)
∣∣∣ .

(4.8)

Now, for u ∈ B(e, δ), z−1
0 · z /∈ B(e, 2β2δ) and ρ(v) ≤ β2ρ(u), we obtain that

ρ(z−1
0 · z) ≥ 2ρ(v) and hence ρ(v · z−1

0 · z) ≥ ρ(z−1
0 · z)/2. Then (4.8) and Lemma 2.4

with α = 2n and d(J) = 2 allow us to get
∣∣(XIρ−2n

)
(u−1 · z−1

0 · z) − q(u−1)
∣∣ ≲ δ2ρ(z−1

0 · z)−2n−2−d(I).

This estimate, (4.7), and the conditions (a1) and (a2) of the atom a(·) lead to
∣∣(XIb)(z)

∣∣ ≲ δ2ρ(z−1
0 · z)−2n−2−d(I)∥a ∥L1(Hn)

≲ δ2ρ(z−1
0 · z)−2n−2−d(I)|B|1− 1

p0 ∥a ∥Lp0 (Hn)

≲ δ2ρ(z−1
0 · z)−2n−2−d(I)|B|1− 1

p

≲ δ2+Q|B|− 1
p ρ(z−1

0 · z)−Q−d(I),

for ρ(z−1
0 · z) ≥ 2β2δ. This concludes the proof.
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The following result is crucial to get Theorem 5.1.
Proposition 4.12. Let a(·) be a (p, p0, N)-atom centered at the ρ-ball
B = B(z0, δ). If b(z) = (a ∗ cnρ−2n)(z), then for all z ∈ Hn

Nq,2

(
b̃ ; z

)
≲ |B|−1/p [(MχB)(z)]

2+Q/q
Q + χ4β2B(z)(Ma)(z)

+ χ4β2B(z)
∑

d(I)=2

(T ∗
I a)(z), (4.9)

where b̃ is the class of b in Eq
1 , M is the Hardy–Littlewood maximal operator and

(T ∗
I a)(z) = sup

ε>0

∣∣∣∣∣∣∣

∫

ρ(w−1·z)>ε

(XIρ−2n)(w−1 · z)a(w) dw

∣∣∣∣∣∣∣
.

Proof. For an atom a(·) satisfying the hypothesis of the proposition, we set

R(z, w) = b(z · w) −
∑

0≤d(I)≤1

(XIb)(z)wI

= b(z · w) −
∑

0≤d(I)≤1




∫

B(z0,δ)

(XIcnρ−2n)(u−1 · z)a(u) du


 wI ,

where w 7→ ∑
(XIb)(z)wI is the left Taylor polynomial of the function

w 7→ b(z · w) at w = e of homogeneous degree 1 (see [2, p. 272]). We observe that if
I = (i1, . . . , i2n, i2n+1) is a multi-index such that d(I) ≤ 1, then i2n+1 = 0.

Next, we shall estimate |R(z, w)| considering the cases

ρ(z−1
0 · z) ≥ 4β2δ and ρ(z−1

0 · z) < 4β2δ

separately, and then we will obtain the estimate (4.9).
Case 1. ρ(z−1

0 · z) ≥ 4β2δ.
For ρ(z−1

0 ·z) ≥ 4β2δ, ρ(w) ≤ 1
2β2 ρ(z−1

0 ·z) and ρ(u) ≤ β2ρ(w), a computation gives
ρ(z−1

0 ·z ·u) ≥ 2β2δ. Then, by the left-invariant Taylor inequality in [9, Corollary 1.44]
and Lemma 4.11, we get

|R(z, w)| ≲ ρ(w)2 sup
ρ(u)≤β2ρ(w),d(I)=2

∣∣(XIb)(z · u)
∣∣

≲ |B|−1/p

(
δ

ρ(z−1
0 · z)

)2+Q

ρ(w)2.

(4.10)

Now, let ρ(w) ≥ 1
2β2 ρ(z−1

0 · z). We have

|R(z, w)| ≤ |b(z · w)| +
∑

0≤d(I)≤1

|(XIb)(z)||wI |.
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Since ρ(z−1
0 · z) ≥ 4β2δ, by Lemma 4.11 and observing that ρ(w)/ρ(z−1

0 · z) > 1
2β2 , we

have

|(XIb)(z)||wI | ≲ |B|−1/p

(
δ

ρ(z−1
0 · z)

)2+Q

ρ(w)2.

As for the other term, |b(z · w)|, we consider separately the cases

ρ(z−1
0 · z · w) > 2β2δ and ρ(z−1

0 · z · w) ≤ 2β2δ.

In the case ρ(z−1
0 · z · w) > 2β2δ, we apply Lemma 4.11 with I = 0, obtaining

|b(z · w)| ≲ |B|−1/pδ2+Qρ(z−1
0 · z · w)−Q.

Then

|R(z, w)| ≲ |B|−1/pδ2+Qρ(z−1
0 · z · w)−Q + |B|−1/p

(
δ

ρ(z−1
0 · z)

)2+Q

ρ(w)2 (4.11)

holds if ρ(z−1
0 · z) > 4β2δ, ρ(w) ≥ 1

2β2 ρ(z−1
0 · z) and ρ(z−1

0 · z · w) > 2β2δ.
For ρ(z−1

0 · z · w) ≤ 2β2δ, we have

B(z0, δ) ⊂ {u : ρ(u−1 · z · w) < (1 + 2β2)δ} =: Ωδ,

so it follows that

|b(z · w)| = cn

∣∣∣∣∣∣∣

∫

B(z0,δ)

ρ(u−1 · z · w)−2na(u)du

∣∣∣∣∣∣∣

≲ ∥a∥Lp0




∫

B(z0,δ)

ρ(u−1 · z · w)−2np′
0du




1/p′
0

≲ ∥a∥Lp0




∫

Ωδ

ρ(u−1 · z · w)−2np′
0du




1/p′
0

.

Since a(·) is an (p, p0, N)-atom, we can choose p0 > Q/2, and get

|b(z · w)| ≲ |B|−1/pδQ/p0




(1+2β2)δ∫

0

r−2np′
0+Q−1dr




1/p′
0

≲ |B|−1/pδQ/p0δ−2nδQ/p′
0 = |B|−1/pδ2.

Since ρ(z−1
0 · z) ≥ 4β2δ, we conclude that

|R(z, w)| ≲ |B|−1/pδ2 + |B|−1/p

(
δ

ρ(z−1
0 · z)

)2+Q

ρ(w)2, (4.12)

for all |ρ(w)| ≥ 1
2β2 ρ(z−1

0 z) and ρ(z−1
0 · z · w) ≤ 2β2δ.
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Let us the estimate

r−2


|B(e, r)|−1

∫

B(e,r)

|R(z, w)|qdw




1/q

, r > 0.

For them, we split the domain of integration into three subsets:

D1 =
{

w ∈ B(e, r) : ρ(w) ≤ 1
2β2 ρ(z−1

0 · z)
}

,

D2 =
{

w ∈ B(e, r) : ρ(w) ≥ 1
2β2 ρ(z−1

0 · z), ρ(z−1
0 · z · w) > 2β2δ

}
,

D3 =
{

w ∈ B(e, r) : ρ(w) ≥ 1
2β2 ρ(z−1

0 · z), ρ(z−1
0 · z · w) ≤ 2β2δ

}
.

According to the estimates obtained for |R(z, w)| above, we use on D1 the estimate
(4.10), on D2 the estimate (4.11) and on D3 the estimate (4.12) to get

r−2


|B(e, r)|−1

∫

B(e,r)

|R(z, w)|qdw




1/q

≲ |B|−1/p

(
δ

ρ(z−1
0 · z)

)2+Q/q

.

Thus,
Nq,2

(
b̃ ; z

)
≲ |B|−1/pM(χB)(z)

2+Q/q
Q , (4.13)

if ρ(z−1
0 · z) ≥ 4β2δ.

Case 2. ρ(z−1
0 · z) < 4β2δ.

We have

R(z, w) = cn

∫ [
ρ−2n(u−1 · z · w) −

∑

0≤d(I)≤1

(XIρ−2n)(u−1 · z)wI
]
a(u)du

=
∫

ρ(u−1·z)<2β2ρ(w)

+
∫

ρ(u−1·z)≥2β2ρ(w)

= J1(z, w) + J2(z, w).

Assuming that u ̸= z · w and u ̸= z, we can write

U = ρ−2n(u−1 · z · w) − ρ−2n(u−1 · z) −
∑

d(I)=1

(XIρ−2n)(u−1 · z)wI .

By Lemma 2.4, we get

|U | ≲ ρ(u−1 · z · w)−2n + ρ(u−1 · z)−2n + ρ(w) ρ(u−1 · z)−2n−1.
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Observing that ρ(u−1 · z) < 2β2ρ(w) implies ρ(u−1 · z · w) < 3β2ρ(w), we obtain

|J1(z, w)| ≤
∫

ρ(u−1·z)<2β2ρ(w)

|U ||a(u)|du

≲
∫

ρ(u−1·z·w)<3β2ρ(w)

ρ(u−1 · z · w)−2n|a(u)|du

+
∫

ρ(u−1·z)<2β2ρ(w)

ρ(u−1 · z)−2n|a(u)|du

+ ρ(w)
∫

ρ(u−1·z)<2β2ρ(w)

ρ(u−1 · z)−2n−1|a(u)|du

=
∞∑

k=0

∫

3−kβ2ρ(w)≤ρ(u−1·z·w)<3−(k−1)β2ρ(w)

ρ(u−1 · z · w)−2n|a(u)|du

+
∞∑

k=0

∫

2−kβ2ρ(w)≤ρ(u−1·z)<2−(k−1)β2ρ(w)

ρ(u−1 · z)−2n|a(u)|du

+ ρ(w)
∞∑

k=0

∫

2−kβ2ρ(w)≤ρ(u−1·z)<2−(k−1)β2ρ(w)

ρ(u−1 · z)−2n−1|a(u)|du

≲ ρ(w)2(Ma)(z).

To estimate J2(z, w), we can write (see [2, p. 272], taking into account that xtJx = 0
for all x ∈ R2n)

U =


ρ−2n(u−1 · z · w) −

∑

d(I)≤2

(XIρ−2n)(u−1 · z) wI

|I|!




+
∑

d(I)=2

(XIρ−2n)(u−1 · z) wI

|I|!

= U1 + U2.

For ρ(u−1 · z) ≥ 2β2ρ(w) and ρ(ν) ≤ β2ρ(w), we have ρ(u−1 · z · ν) ≥ ρ(u−1 · z)/2.
Then, by the left-invariant Taylor inequality in [9, Corollary 1.44] and Lemma 2.4,
we get

|U1| ≲ ρ(w)3 sup
ρ(ν)≤β2ρ(w),d(I)=3

∣∣(XIρ−2n)(u−1 · z · ν)
∣∣

≲ ρ(w)3ρ(u−1 · z)−2n−3.
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Therefore,

|J2(z, w)| ≲ ρ(w)3
∫

ρ(u−1·z)≥2β2ρ(w)

ρ(u−1 · z)−2n−3|a(u)|du

+

∣∣∣∣∣∣∣

∫

ρ(u−1·z)≥2β2ρ(w)

U2 a(u)du

∣∣∣∣∣∣∣

≲ ρ(w)2


(Ma)(z) +

∑

d(I)=2

(T ∗
I a)(z)


 ,

where

(T ∗
I a)(z) = sup

ε>0

∣∣∣∣∣∣∣

∫

ρ(u−1·z)>ε

(XIρ−2n)(u−1 · z)a(u) du

∣∣∣∣∣∣∣
.

Now, it is easy to check that

r−2


|B(e, r)|−1

∫

B(e,r)

|J1(z, w)|qdw




1/q

≲ (Ma)(z)

and

r−2


|B(e, r)|−1

∫

B(e,r)

|J2(z, w)|qdw




1/q

≲ (Ma)(z) +
∑

d(I)=2

(T ∗
I a)(z).

So

r−2


|B(e, r)|−1

∫

B(e,r)

|R(z, w)|qdw




1/q

≲ (Ma)(z) +
∑

d(I)=2

(T ∗
I a)(z).

This estimate is global. In particular, we have that

Nq,2

(
b̃ ; z

)
≲ (Ma)(z) +

∑

d(I)=2

(T ∗
I a)(z), (4.14)

for ρ(z−1
0 · z) < 4β2δ. Finally, the estimates (4.13) and (4.14) for Nq,2

(
b̃ ; z

)
allow us

to obtain (4.9).
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5. MAIN RESULTS

We are now in a position to prove our main results.

Theorem 5.1. Let Q = 2n + 2, 1 < q < n+1
n and Q(2 + Q

q )−1 < p ≤ 1. Then the
sub-Laplacian L on Hn is a bijective mapping from Hp

q,2(Hn) onto Hp(Hn). Moreover,
there exist two positive constant c1 and c2 such that

c1∥G∥Hp
q,2(Hn) ≤ ∥LG∥Hp(Hn) ≤ c2∥G∥Hp

q,2(Hn) (5.1)

hold for all G ∈ Hp
q,2(Hn).

Proof. The injectivity of the sublaplacion L in Hp
q,2(Hn) was proved in Theorem 4.10.

Let G ∈ Hp
q,2(Hn), since Nq,2(G; z) is finite a.e. z ∈ Hn, by (i) in Lemma 4.3

and Proposition 4.7 the unique representative g of G (which depends on z),
satisfying ηq,2(g; z) = Nq,2(G; z), is a function in Lq

loc(Hn) ∩ S ′(Hn). In particular, for
a commutative approximate identity1) ϕ, by Remark 4.9 and Proposition 4.8 we get

Mϕ(LG)(z) ≤ Cϕ Nq,2(G; z).

Then, this inequality and [9, Corollary 4.17] give LG ∈ Hp(Hn) and

∥LG∥Hp(Hn) ≤ C ∥G∥Hp
q,2(Hn). (5.2)

This proves the continuity of sub-Laplacian L from Hp
q,2(Hn) into Hp(Hn).

Now we shall see that the operator L is onto. Given f ∈ Hp(Hn), there exist
a sequence of nonnegative numbers {kj}∞

j=1 and a sequence of ρ-balls {Bj}∞
j=1 and

(p, p0, N)-atoms aj supported on Bj , such that f =
∑∞

j=1 kjaj and

∞∑

j=1
kp

j ≲ ∥f∥p
Hp(Hn). (5.3)

For each j ∈ N, we put

bj(z) = (aj ∗ cnρ−2n)(z) =
∫

Hn

cnρ(w−1 · z)−2naj(w)dw.

From Proposition 4.12 we have

Nq,2

(
b̃j ; z

)
≲ |Bj |−1/p

[
(MχBj

)(z)
] 2+Q/q

Q + χ4β2Bj
(z)(Maj)(z)

+ χ4β2Bj
(z)

∑

d(I)=2

(T ∗
I aj)(z).

1) A commutative approximate identity is a function ϕ ∈ S(Hn) such that
∫

ϕ(z) dz = 1 and
ϕs ∗ ϕt = ϕt ∗ ϕs for all s, t > 0.
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So it follows that

∞∑

j=1
kjNq,2

(
b̃j ; z

)
≲

∞∑

j=1
kj |Bj |−1/p

[
(MχBj

)(z)
] 2+Q/q

Q

+
∞∑

j=1
kjχ4β2Bj

(z)(Maj)(z)

+
∞∑

j=1
kjχ4β2Bj

(z)
∑

d(I)=2

(T ∗
I aj)(z)

= I + II + III.

To study I, by hypothesis, we have that 0 < p ≤ 1 and (2 + Q/q)p > Q. Then

∥I∥Lp(Hn) =

∥∥∥∥∥∥

∞∑

j=1
kj |Bj |−1/pM(χBj

)(·)
2+Q/q

Q

∥∥∥∥∥∥
Lp(Hn)

=

∥∥∥∥∥∥∥





∞∑

j=1
kj |Bj |−1/pM(χBj

)(·)
2+Q/q

Q





Q
2+Q/q

∥∥∥∥∥∥∥

2+Q/q
Q

L
2+Q/q

Q
p(Hn)

≲

∥∥∥∥∥∥∥





∞∑

j=1
kj |Bj |−1/pχBj (·)





Q
2+Q/q

∥∥∥∥∥∥∥

2+Q/q
Q

L
2+Q/q

Q
p(Hn)

=

∥∥∥∥∥∥

∞∑

j=1
kj |Bj |−1/pχBj

(·)

∥∥∥∥∥∥
Lp(Hn)

≲




∞∑

j=1
kp

j




1/p

≲ ∥f∥Hp(Hn),

where the first inequality follows from [13, Theorem 1.2], the condition 0 < p ≤ 1 gives
the second inequality, and (5.3) gives the last one.

To study II, since p ≤ 1 we have that

∥II∥p
Lp(Hn) ≲

∥∥∥∥∥∥
∑

j

kj χ4β2Bj
(Maj)(·)

∥∥∥∥∥∥

p

Lp(Hn)

≲
∑

j

kp
j

∫
χ4β2Bj

(z)(Maj)p(z) dz,
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applying Hölder’s inequality with p0
p , using that the maximal operator M is bounded

on Lp0(Hn) and that every aj(·) is an (p, p0, N)-atom, we get

∥II∥p
Lp(Hn) ≲

∑

j

kp
j |Bj |1− p

p0

(∫
(Maj)p0(z) dz

) p
p0

≲
∑

j

kp
j |Bj |1− p

p0 ∥aj∥p
Lp0 (Hn)

≲
∑

j

kp
j |Bj |1− p

p0 |Bj |
p

p0
−1

=
∑

j

kp
j ≲ ∥f∥p

Hp(Hn),

where the last inequality follows from (5.3)
To study III, by [7, Theorem 3] and [19, Corollary 2, p. 36] (see also [19, 2.5, p. 11]),

we have, for every multi-index I with d(I) = 2, that the operator T ∗
I is bounded

on Lp0(Hn) for each 1 < p0 < ∞. Proceeding as in the estimate of II, we get

∥III∥Lp(Hn) ≲




∞∑

j=1
kp

j




1/p

≲ ∥f∥Hp(Hn).

Thus, ∥∥∥∥∥∥

∞∑

j=1
kjNq,2

(
b̃j ; ·

)
∥∥∥∥∥∥

Lp(Hn)

≲ ∥f∥Hp(Hn).

Then,
∞∑

j=1
kjNq,2

(
b̃j ; z

)
< ∞ a.e. z ∈ Hn (5.4)

and ∥∥∥∥∥∥

∞∑

j=M+1
kjNq,2

(
b̃j ; ·

)
∥∥∥∥∥∥

Lp(Hn)

→ 0, as M → ∞. (5.5)

From (5.4) and Lemma 4.5, there exists a function G such that
∞∑

j=1
kj b̃j =G in Eq

1 and

Nq,2





G −

M∑

j=1
kj b̃j


 ; z


 ≤ C

∞∑

j=M+1
kjNq,2(̃bj ; z).

This estimate together with (5.5) implies
∥∥∥∥∥∥
G −

M∑

j=1
kj b̃j

∥∥∥∥∥∥
Hp

q,2(Hn)

→ 0, as M → ∞.
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By Proposition 4.6, we have that G ∈ Hp
q,2(Hn) and G =

∑∞
j=1 kj b̃j in Hp

q,2(Hn).
Since L is a continuous operator from Hp

q,2(Hn) into Hp(Hn), we get

LG =
∑

j

kjLb̃j =
∑

j

kjaj = f,

in Hp(Hn). This shows that L is onto Hp(Hn). Moreover,

∥G∥Hp
q,2(Hn) =

∥∥∥∥∥∥

∞∑

j=1
kj b̃j

∥∥∥∥∥∥
Hp

q,2(Hn)

≲

∥∥∥∥∥∥

∞∑

j=1
kjNq,2(̃bj ; ·)

∥∥∥∥∥∥
Lp(Hn)

≲ ∥f∥Hp(Hn) = ∥LG∥Hp(Hn).

(5.6)

Finally, (5.2) and (5.6) give (5.1), and the proof is thus complete.

Therefore, Theorem 5.1 allows us to conclude, for Q(2 + Q/q)−1 < p ≤ 1, that
the equation

LF = f, f ∈ Hp(Hn)
has a unique solution in Hp

q,2(Hn), namely, F := L−1f .
We shall now see that the case 0 < p ≤ Q(2 + Q

q )−1 is trivial.

Theorem 5.2. If 1 < q < n+1
n and 0 < p ≤ Q(2 + Q

q )−1, then Hp
q,2(Hn) = {0}.

Proof. Let G ∈ Hp
q,2(Hn) and assume G ̸= 0. Then there exists g ∈ G that is not

a polynomial of homogeneous degree less or equal to 1. It is easy to check that there
exist a positive constant c and a ρ-ball B = B(e, r) with r > 1 such that

∫

B

|g(w) − P (w)|q dw ≥ c > 0,

for every P ∈ P1.
Let z be a point such that ρ(z) > r and let δ = 2ρ(z). Then B(e, r) ⊂ B(z, δ).

If h ∈ G, then h = g − P for some P ∈ P1 and

δ−2|h|q,B(z,δ) ≥ cρ(z)−2−Q/q.

So Nq,2(G; z) ≥ c ρ(z)−2−Q/q, for ρ(z) > r. Since p ≤ Q(2 + Q/q)−1, we have
∫

Hn

[Nq,2(G; z)]pdz ≥ c

∫

ρ(z)>r

ρ(z)−(2+Q/q)p dz = ∞,

which gives a contradiction. Thus, Hp
q,2(Hn) = {0}, if p ≤ Q(2 + Q/q)−1.
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