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Abstract. For 0 < p <1 < ¢ < oo and v > 0, we introduce the Calderén—
—Hardy spaces H§77(H") on the Heisenberg group H", and show for every
f € HP(H™) that the equation

LF=f

has a unique solution F in H§72(H7’), where L is the sub-Laplacian on H",
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1. INTRODUCTION
The Laplace operator or Laplacian A on R" is defined by

The ubiquity and the importance of this operator in physics and mathematics is well
known. Needless to say that the study of problems involving the Laplacian are of
interest either because of their applications or in their own right.

Given m € N, consider the inhomogeneous equation

A™F = §, (1.1)

where A™ is the iterated Laplacian, f is a given data function and F' is
an unknown function. Then, the problem consists in finding a function F' that solves
(1.1) in some sense. It is common to address this problem by means of the fundamental
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solution of the operator A™. A fundamental solution for A™ is a distribution K on R"
such that A™K = § in the distributional sense, where ¢ is Dirac’s delta at the origin.
In this case, for every m € N fixed, we have that

Cy |z|*™ " log |z|, if n is even and 2m —n > 0,
D, (z) =
Co |z|*m=", otherwise

is a fundamental solution for A™ on R™ (see [11, 201-202]). That fundamental solution
is not uniquely determined. Indeed, ®,, + v with A™wu = 0, it is other fundamental
solution for A™. These fundamental solutions are useful for producing solutions of
the equation (1.1). For instance, if m > 1 and f is a C*°-function with compact
support, then F' = &, * f solves (1.1) in the classical sense. This formula also works
for m = 1 when one assumes f € L'(R"), and that [ |f(z)|log(|z|)dz < oo in the
case n = 2, (see [8, Theorem 2.21]). For m > 1 and f € LP(R") with 1 < p < o0,
A.P. Calderén proved that there exists a locally integrable function F' what solves
(1.1) in the distributional sense and [|0%F||, < C||f]|, for all multi-index « such that
|| = 2m, with C independent of f (see [3, Lemma 8]).

It is known that the Hardy spaces HP(R™) are good substitutes for Lebesgue spaces
LP(R™) when 0 < p <1 (see [5, 19]). In this direction, A. Gatto, J. Jiménez and C.
Segovia in [10], posed the problem (1.1) for m > 1 and f € HP(R™), 0 < p < 1. To
solve it they introduce the Calderén—Hardy spaces ’HSW(R"), 0<p<l<g<ooand
v > 0, and proved for n(2m +n/q)~! < p < 1 that given f € HP(R") there exists
a unique F' € H ,, (R™) that solves (1.1).

The underlying idea in [10] to address this problem is the following: given
f € HP(R"), there exists an atomic decomposition f = Y kja;, such that
||f|\§’{p(Rn) ~ >7kY (see [14]), then once defined the space H} ,,,(R") (which is

q,2m
defined as a quotient space) together with its “norm” || - ||H§Y2M(Rn), they define

bj = (aj * ®,,) and consider the class B; € H ,, (R") such that b; € Bj. Finally, for

n(2m+n/q)~" < p <1, they prove that the series Y~ k; B; converges to F in Hj ,,, (R")
and A™F = f. Moreover, A™ is a bijective mapping from Hf;,zm(R") onto HP(R™),
with [|[Fllyr |, ®n) ~ [A™F||lge@n).

In [4], R. Durdn extended the definition and atomic decomposition of Hj ,,, to the
case of non-isotropic dilations on R™, solving an analogue problem to (1.1) for more
general elliptic operators with symbols of the form 5%1“ o & with ky, ...k, € N.

The equation (1.1), for f € HP)(R") and f € HP(R™ w), was studied by the
present author in [17] and [18] respectively, obtaining analogous results to those of
Gatto, Jiménez and Segovia.

Recently, Z. Liu, Z. He and H. Mo in [15] extended the definition of Calderén—Hardy
spaces to Orlicz setting. These new Orlicz Calderén—Hardy spaces can cover classical
Calderén—Hardy spaces in [10]. As an application, they solved the equation (1.1) when

f € H®(R"), where H®?(R") are the Orlicz-Hardy spaces defined in [16].
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On the other hand, it is well known that the Lie group “most commutative’
among the non-commutative is the Heisenberg group, it plays an important role
in several branches of mathematics (see [20]). So, one has the opportunity to ask
whether certain standard results of Euclidean harmonic analysis can be adapted to the
non-commutative setting of the Heisenberg group. Following this line, the purpose of
this work is to pose and solve an analogous problem to (1.1) on the Heisenberg group
with m = 1. More precisely, for f € HP(H"), 0 < p < 1, we consider the equation

LF =, (1.2)

where £ is the sub-Laplacian on H". The solution obtained in [10], for the Euclidean
case, suggests us that once defined the space 7-[572(]1-]1") a representative for the solution
F € Hf ,(H") of (1.2) should be > k;j(a; *m» @), where ) kja; is an atomic decom-
position for f € HP(H") (see [9]), and ® is the fundamental solution of £ obtained by
G. Folland in [7]. We shall see that this argument works as well on H", but taking
into account certain non-trivial aspects inherent to the Heisenberg group.

Our main results are contained in Theorems 5.1 and 5.2 (see Section 5 below).
The first of them states that if @ =2n+2, 1 < ¢ < ”TH and Q(2 + %)’1 <p<1,
then the sub-Laplacian £ on H" is a bijective mapping from # ,(H") onto H?(H").
Moreover, for every G € H} ,(H"), the quantities |LG||gr@n) and ||G||HZY2(H7L) are

comparable with implicit constants independent of G. In other words, for Q(2+ %)_1 <
p<1land f € HP(H"), the equation (1.2) has a unique solution in H} ,(H").

A key technical result needed to get Theorem 5.1 is Proposition 4.12 below. This
establishes a pointwise inequality in H"™ which can be inferred from Gatto, Jiménez
and Segovia’s approach, however its analogous in R™ is not explicitly stated in [10].

Although the fundamental solutions for the powers of the sub-Laplacian £™ are
known for every integer m > 2 (see [1]), the problem in this case is much more
complicated. For this reason we focus solely on the case m = 1.

Finally, our second result says that the case 0 < p < Q(2+ %)_1 is trivial. Indeed,
we have that if 1 < ¢ < ™ and 0 <p < Q(2+ %)*1, then M ,(H") = {0}.

This paper is organized as follows. In Section 2 we state the basics of the Heisen-
berg group. The definition and atomic decomposition of Hardy spaces on the Heisenberg
group are presented in Section 3. We introduce the Calderén—Hardy spaces on the
Heisenberg group and investigate their properties in Section 4. The key technical
result mentioned above is also stated in Section 4. Finally, our main results are
proved in Section 5.

We will use the following notation. The symbol A < B stands for the inequality
A < ¢B for some constant ¢. We denote by B(zg,d) the p-ball centered at zy € H"
with radius §. Given § > 0 and a p-ball B = B(z,d), we set 3B = B(zp,0). For
a measurable subset £ C H" we denote by |E| and xg the Haar measure of E and
the characteristic function of E respectively. Given a real number s > 0, we write |s]
for the integer part of s.

Throughout this paper, C' will denote a positive constant, not necessarily the same
at each occurrence.
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2. PRELIMINARIES

The Heisenberg group H" can be identified with R?" x R whose group law (noncom-
mutative) is given by

(z,1) - (y,5) = (x +y, t + s + 2" Jy),

where J is the 2n x 2n skew-symmetric matrix given by

J=2 < I?L _OI" )
being I, the n x n identity matrix.
The dilation group on H" is defined by
r(z,t) = (ra,rt), r>0.
With this structure we have that e = (0,0) is the neutral element,
(z,t)7" = (~z, 1)
is the inverse of (z,t), and
r-((@,0) - (y,8)) = (r- (2,9)) - (- (y,9))-

The Koranyi norm on H™ is the function p : H" — [0, 00) defined by

pla,t) = (ja|' + )", (2t) e ", (2.1)
where | - | is the usual Euclidean norm on R?". Tt is easy to check that |z| < p(x,t)
and [t| < p(x,t)2.

Let z = (z,t) and w = (y,s) € H", the Koranyi norm satisfies the following
properties:

p(z)=0 if and only if z = e,
p(z7Y) = p(2) for all z € H",
p(r-z)=rp(z) for all z € H" and all r» > 0,
plz-w) < p(z)+ p(w) for all z,w € H",
|p(2) — p(w)] < p(z - w) for all z,w € H".

Moreover, p is continuous on H" and is smooth on H" \ {e}. The p-ball centered at
zo € H™ with radius § > 0 is defined by

B(20,0) :={w € H" : p(25* - w) < 6}.

The topology in H" induced by the p-balls coincides with the Euclidean topology of
R?" x R = R?>"*! (see [6, Proposition 3.1.37]). So, the borelian sets of H™ are identified
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with those of R2"*+!, The Haar measure in H" is the Lebesgue measure of R?"*! thus
LP(H™) = LP(R?"H1), for every 0 < p < co. Moreover, for f € L!(H") and for 7 > 0

fixed, we have
/f(r 2)dz =19 / f(z)dz, (2.2)

Hn H"L
where Q = 2n + 2. The number 2n + 2 is known as the homogeneous dimension of H"

(we observe that the topological dimension of H" is 2n + 1).
Let |B(zp,0)| be the Haar measure of the p-ball B(zy,d) C H". Then,

|B(z0,0)| = 69,
where ¢ = |B(e, 1)| and Q = 2n + 2. Given A > 0, we put
AB = AB(z¢,0) = B(z0, \9).
So [AB| = A¥|B].
Remark 2.1. For any z,2z9 € H" and § > 0, we have
20 - B(z,8) = Bz - 2,9).

In particular, B(z,d) = z - B(e,d). It is also easy to check that B(e,d) = ¢ - B(e, 1)
for any § > 0.

Remark 2.2. If f € L'(H"), then for every p-ball B and every z; € H", we have

[rwaw= [ fGo-wn
B 2B

The Hardy-Littlewood maximal operator M is defined by

M(2) sup|B\1/|f )| duw,

B>z

where f is a locally integrable function on H™ and the supremum is taken over all the
p-balls B containing z.

If f and g are measurable functions on H", their convolution f * g is defined by
(£ +9)( / Fwglw™" - 2) duw,

when the integral is finite.
For every i = 1,2,...,2n + 1, X, denotes the left invariant vector field given by

0 0
Xi=+— 22'77.77 ‘:1325"'3
FIL TA "
0 0
Xitn 2x; 1=1,2,...,n,

R
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and
0

Xopt1 = 5

Similarly, we define the right invariant vector fields {)?1}122;'1 by

= 0 0
Xi:7_2in7a .:]—,27"', )
0w rop ! "
~ 0 0 .
Xi+n = a$i+n + 2.’,51&, = 1727 y Ty
and 5
Xoni1 = =
2n+1 8t

The sub-Laplacian on H", denoted by L, is the counterpart of the Laplacain A
on R™. The sub-Laplacian £ is defined by

2n
L=-) X7,
i=1

where X;, i =1,...,2n, are the left invariant vector fields defined above.
Given a multi-index I = (1,42, ... ,42,,i2n+1) € (NU{0})?" 1 we set

|I| =141 +i2+ ...+ i + l2n+1, d(])zll +ia+ ... Fion + 299n41.

The amount |I| is called the length of I and d(I) the homogeneous degree of I. We adopt
the following multi-index notation for higher order derivatives and for monomials on
H". If I = (i1,49,...,i2,41) is a multi-index, X = {X;}2", X = {X;}2"7!, and
z=(x,t) = (x1,...,%an,t) € H", we put

I . vi1yiz i2n41 v . i1 yie vion+1
X=X X5 "'X2n+17 X' =X"X5 ---X2n+1,

and

I._ i1, plon | glongl
Zh =y v A

A computation gives
X (f(r-2) =" DX (r-2), X(fr-2) =r" DX ) -2)
and
(r- z)I = pdD) T

So, the operators X! and X! and the monomials z! are homogeneous of

degree d(I). In particular, the sub-Laplacian £ is an operator homogeneous of degree 2.
The operators X!, X!, and £ interact with the convolutions in the following way:

X' (frg)=f*(X"g), X'fxg)=(X"f)xg, (X'f)rg=[x(X"g),
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and
L(f*g)=f=Lg.

Every polynomial p on H" can be written as a unique finite linear combination of
the monomials z!, that is

p(z) = e, (2.3)

IeNg

where all but finitely many of the coefficients ¢; € C vanish. The homogeneous
degree of a polynomial p written as (2.3) is max{d(l) : I € Nj with ¢; # 0}.
Let £k € N U {0}, with P, we denote the subspace formed by all the polyno-
mials of homogeneous degree at most k. So, every p € P, can be written as

p(2) = X an<k 1 2! with ¢; € C.
The Schwartz space S(H™) is defined as the collection of all ¢ € C°°(H™) such that

28611}5(1 +p(2))V(XT9)(2)] < o0,

for all N € Ny and all I € (Ng)?"*1. We topologize the space S(H") with the following
family of semi-norms:

lolls@m,y = D sup (L+p()V|(XT9)(z)| (N € No).
d(I)SNzeHn

By &'(H™) we denote the dual space of S(H"™).
A fundamental solution for the sub-Laplacian on H"™ was obtained by G. Folland
in [7]. More precisely, he proved the following result.

Theorem 2.3. ¢, p~2"

is a fundamental solution for L with source at 0, where
p(x,t) = (|CL"4 + t2)1/47

and
—1

Cn = n(n+2)/|x\2(p(x,t)4+1)*<"+4>/2dxdt
H'n
In others words, for any u € S(H"), (Lu,c,p™?") = u(0).
Lemma 2.4. Let a > 0 and p(z,t) = (|z|* + t2)'/4, then
X7 (X1 p2) (1) < Cpla, ) oD,

holds for all (z,t) # e and every pair of multi-indizes I and J.
Proof. The proof follows from the homogeneity of the kernel p~¢, i.e.
p(r-(z,t)"% = r_ap(x7t)_a7

and from the homogeneity of the operators X7 and X7. O
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We conclude these preliminaries with the following supporting result.
Lemma 2.5. Let 0 < p < 0o and let O be a measurable set of H" such that |O| < oo.
If h e LP(H" \ O), then
{z:|h(2)| <e}| >0, foralle>O0.

Proof. Suppose that there exists g > 0 such that |[{z : |h(z)] < eo}| = 0,
so |h(z)| > €9/2 a.e. z € H", which implies that

00 = |0 = [{z € O°: |h(2)] 2 g0/2}] < (2/€0)”[12l|70 (o)

contradicting the assumption that h € LP(H" \ O). Then, the lemma follows. O

3. HARDY SPACES ON THE HEISENBERG GROUP

In this section, we briefly recall the definition and the atomic decomposition of the
Hardy spaces on the Heisenberg group (see [9]).
Given N € N, define

Fn={peSH"): [lollsmmn <1}.

For any f € S'(H"), the grand maximal function of f is defined by

My f(2) =sup sup |(f* @) (2)],
t>0 peFy
where o, (z) = t72"2p(t71 - 2) with t > 0.
We put
N QT =D+ 1 if0<p<

o, if 1 <p<oo.
The Hardy space HP(H") is the set of all f € S'(H") for which My, f € LP(H"). In
this case, we define

”f”HP(]HI") = ||MprHLP(H") :

For p > 1, it is well known that HP(H") = LP(H"), and for p = 1,
H'(H") C L'(H"). On the range 0 < p < 1, the spaces HP(H") and LP(H") are
not comparable.

Now, we introduce the definition of an atom in H".

Definition 3.1. Let 0 < p <1 < py < oo. Fix an integer N > N,. A measurable
function a(-) on H" is called an (p, po, N)-atom if there exists a p-ball B such that
(a1) supp(a) € B,

(a2) lla || Lpo @ny < [Bl7o ™7,
(a3) [a(z)z!dz =0 for all multi-index I such that d(I) < N.
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A such atom is also called an atom centered at the p-ball B. We observe that every
(p, po, N)-atom a(-) belongs to HP(H™). Moreover, there exists a universal constant
C > 0 such that |la || g»@n) < C for all (p, po, NV)-atom af(-).

Remark 3.2. It is easy to check that if a(-) is a (p, po, IV)-atom centered at the p-ball
B(zp,9), then the function a,,(-) := a(zo - (+)) is a (p,po, N)-atom centered at the
p-ball B(e,0).

Definition 3.3. Let 0 < p <1 < py < oo and let N > N, be fixed. The space
HPPoN (H™) is the set of all distributions f € S'(H™) such that it can be written as

atom
f=Y" ki, (3.1)
j=1

in §'(H™), where {kj};il is a sequence of non-negative numbers, the a;’s are
(p, po, N )-atoms and Zj kf < 00. Then, one defines

1100 gy = QD KT 2 f =D kjas o
J j=1

where the infimum is taken over all admissible expressions as in (3.1).

For 0 < p<1<py<ooand N> N, Theorem 3.30 in [9] asserts that

HPvPO,N(Hn) = HP(H")

atom

and the quantities ||f|| 70N gy and I fll z7o(mny are comparable. Moreover,
atom
if f € HP(H"), then admits an atomic decomposition f = 250:1 k;a; such that

SR < Ol
J

where C' does not depend on f.

4. CALDERON-HARDY SPACES ON THE HEISENBERG GROUP

Let LY

loc

belong locally to LY for compact sets of H". We endowed L
generated by the seminorms

(H™), 1 < g < 00, be the space of all measurable functions g on H" that
(H™) with the topology

1/q

mw:|m*/mwww ,
B

where B is a p-ball in H" and | B| denotes its Haar measure.
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For g € L} (H"), we define a maximal function 14 (g; z) as

Mg (95 2) = supr 7 gl B(zr)s
>0

where ~ is a positive real number and B(z,r) is the p-ball centered at z with radius r.
Let k a non-negative integer and Py, the subspace of Lj, (H") formed by all the

loc
polynomials of homogeneous degree at most k. We denote by E{ the quotient space of

L} (H") by Py. If G € E}, we define the seminorm

1Gllg.p = inf{lgly5: g €G}.

The family of all these seminorms induces on E} the quotient topology.

Given a positive real number «y, we can write v = k + ¢, where k is a non-negative
integer and 0 < ¢t < 1. This decomposition is unique.

For G € E}, we define a maximal function N, ,(G; z) as

Ny (G;2) = inf{n,,(g;2) : g € G}.

Lemma 4.1. The mazimal function z — N, (G z) associated with a class G in E}
is lower semicontinuous.

Proof. 1t is easy to check that n,,(g; -) is lower semicontinuous for every g € G
(i.e. the set {2z :14~(g; 2) > a} is open for all & € R). Then, for zy € H", we have

Ny~ (G5 20) < ng(g5 20) < lirginf Ng~(g; z) forall g € G.
z Z0

So,
Ng.+(G; 20) —e < liminfn, (g; z) foralle >0andall g € G. (4.1)
Z—r20

Suppose lim inf Ny, 4 (G; 2) < Ny, (G5 20). Then, there exists € > 0 such that
Z—20

lirginf Ny ~(G52) < Ny (G 29) — €.

z Z0

Thus, there exists 09 > 0 such that for every 0 < § < §y there exist
z € B(z0,0) \ {#0} and g = g, € G such that

Na+(95 2) < Nos (G 20) — &,
which contradicts (4.1). Hence, we have

Ny +(G; z9) < liminf Ny, (G; 2).

Z—r 20
The lemma then follows. O

Definition 4.2. Let 0 < p < oo be fixed. We say that an element G € EY
belongs to the Calderén-Hardy space HP_ (H") if the maximal function
Ny(G; ) € LP(H™). The “norm” of G in H} _ (H") is defined as

Gl ) = INa i (G5 )l Lo qaarm) -
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Lemma 4.3. Let G € E] with Ny ~(G;z) < 00, for some zy € H". Then:

(i) there exists a unique g € G such that n4,(9;20) < oo and, therefore,
N (93 20) = Ngy (G5 20),

(ii) for any p-ball B, there is a constant ¢ depending on zy and B such that if g is
the unique representative of G given in (i), then

||G||q,B < |9|q,B < qu,v(% 20) = CNqW(G?ZO)-

The constant ¢ can be chosen independently of zg provided that zg varies in a com-
pact set.

Proof. Since every polynomial of homogeneous degree at most k can be centered
at zg, with zy being an arbitrary point of H", by the formula that appears
in [2, Section 5.2, p. 272]) for the Taylor polynomial of a smooth function, it follows
that the argument used to prove [10, Lemma 3] works on H" as well. O

Corollary 4.4. If {G;} is a sequence of elements of El converging to G in H? _ (H"),
then {G;} converges to G in EJ.

Proof. For any p-ball B, by (ii) of Lemma 4.3, we have

G =G,

B < C”XBHZ;(Hn)HXB NIL"/(G -Gy ')”LP(H")
< c|G = Gjlluz @,
which proves the corollary. O

Lemma 4.5. Let {G;} be a sequence in E}l such that for a given point zo € H", the
series Y No~(Gjs 20) is finite. Then:

i) the series S . G, converges in El to an element G and
Jj g 9 k
Ny (G5 20) < ZNqﬁ(Gj? 20),
J

(ii) if g; is the unique representative of G; satisfying 1q.~(g;; 20) = Ng~(Gj; 20), then
Zj gj converges in L] (H™) to a function g that is the unique representative
of G satisfying 1q.~(g; 20) = Ng,4(G; 20)-

Proof. The proof is similar to the one given in [10, Lemma 4]. O
Proposition 4.6. The space HI;N(H”), 0 < p < o0, is complete.

Proof. 1t is enough to show that H? | has the Riesz Fisher property: given any
sequence {G;} in HP _ such that

SIGS Iz, <o,
J
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the series > j G converges in Hfl’ﬁ. Let m > 1 be fixed, then

P

IN

k k o
S Nun(@i | < D INan (G L < DI 12 =5 o < o0,
j=m e d=m j=m
for every k > m. Thus,

P
k
O‘;zl/p Z Ng~(Gjs 2) dz
j=m

H’Vl
—1 p
k k
< / Z Ny ~(Gy; +) NyA(Gji2) | dz=1, VYEk>m,
Hn j=m Lp j=m
by applying Fatou’s Lemma as k — oo, we obtain
- P
/ a /P Z Nyg~(Gj; 2) | dz <1,
H» Jj=m
SO
o0 P o0
S N (G )| <om=) IG5 <00, ¥m>1. (4.2)
j=m e j=m

Taking m = 1 in (4.2), it follows that ; Ny (Gj; 2) is finite a.e. 2 € H". Then, by (i)
of Lemma 4.5, the series 3, G converges in E} to an element G. Now

N~y G_ZGJ;Z < Z Ng~(Gj; 2).

j=1 j=k+1
From this and (4.2) we get
k P S
-6 <3G, .
=t g gk

and since the right-hand side tends to 0 as k& — oo, the series Zj G; converges to G
in HP_ (H™). O

Proposition 4.7. If g € L} (H"), 1 < q < oo, and there is a point zo € H" such

loc

that 1g,~(g; 2z0) < 00, then g € S'(H™).

Proof. We first assume that zp = e = (0,0). Given ¢ € S(H") and N > v+ @ (where
Q@ = 2n + 2), we have that

lp(w)| < [lollsmy,n 1+ pw)) N
for all w € H".
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So, we obtain

/ g(w)pw)dw| < [@llsgm. / g(w)| (1 + p(w)) N duw

H~ p(w)<1

+ ||90||5(Hn),NZ / lg(w)|(1 4 p(w)) N dw

=093 < p(w) <2i+1

= |\<P||S(Hn),zv nq,y(g;e)

+ ||Q0||S(H7L)’N nq’v(g; e) Z 2J‘(W"‘!‘Q—N)7
j=0

where in the last estimate we use the Jensen’s inequality. Since N > v + @, it follows
that g € §’'(H"). For the case zy # e we apply the translation operator 7., defined
by (7.,9)(2) = g(z5" - 2z) and use the fact that 77,177(7'2519; e) = ng~(9; 20) (see
Remark 2.2). O

Proposition 4.8. Let g € L} . NS'(H") and f = Lg in S'(H"). If ¢ € S(H") and
N > Q+ 2, then

(Mg f)(2) := sup {|(f * &) (w)| : plw™ - 2) <t,0 <t < 00}
< C||¢||$(Hn),N 77q,2(9; Z)

holds for all z € H".
Proof. Let p(w™! - 2) < t, since f = Lg in S’'(H") a computation gives

(f * @) (w) = t72(g % (L)e) (w) =t~ /Q(U)(ﬁcﬁ)t(u_l - w)du.

Applying Remark 2.2 and (2.2), we get
(F o0 =17 [ gz t)(Lo)u £ (= w)du (43)

Being p(z~! - w) < t, a computation gives
L+p(u) <2(1+put -t z""w))). (4.4)

On the other hand, for N > 2, we have

[(Lo) (™7 = w)| (L4 plu™ 7 T w)) Y < ldlsqmy e (45)
Now, from (4.4) and (4.5), it follows that
(L) (™ - 7 (=1 - w))| < 2V [[@llsqamy, v (1 + p(u) Y, (4.6)

for p(z=1-w) < t.
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Then, (4.3), (4.6) and (2.2) give

26l g 1 5 000w <72 [ gz )] (1 4 pla)
=26 [ lg(e- w1+ plt ™) N

<o [ el ot w) N

plu)<t

+t7%9 lg(z - w)| p(t™ u) "N du

27t<p(u)<2itit

ST+ D 2@y a(g52),
j=0

for p(z=1 - w) < t. Applying Jensen’s inequality and taking N > Q + 2 in the last
inequality the proposition follows. O

Remark 4.9. We observe that if G € H},(H"), then N,2(G;20) < o0,
for some zp € H". By (i) in Lemma 4.3, there exists ¢ € G such that
Ny.2(G; 20) = 14,2(g; 20). From Proposition 4.7 it follows that g € S’(H™). So Lg is well
defined in sense of distributions. On the other hand, since any two representatives of G
differ in a polynomial of homogeneous degree at most 1, we get that Lg is independent
of the representative g € G chosen. Therefore, for G € ’Hf;’z(H”), we define LG as the
distribution Lg, where g is any representative of G.

Theorem 4.10. If G € H} ,(H") and LG = 0, then G = 0.

Proof. Let G € H{ ,(H") and g € G such that 742(g; 20) = Ng,2(G; 20) < oo for some
zo € H"\ {e}. If Lg = 0, by Theorem 2 in [12], we have that g is a polynomial.
To conclude the proof it is suffices to show that g is a polynomial of homogeneous
degree less than or equal to 1. Suppose

with k > 2.
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Then, for § > 2p(zg), we obtain

2(g; 2o 152=k)a > 0§—Q—ka crw!| dw
[14,2(93 20)]
plzg twy<s 1<K
q
> (0§~ Qka Z crw'| dw

p(w)<d/2 d(I)<k

= (2 9 ha Z cr 2H| dz + o5(1).

p(z)<1 D=k

Thus, if k£ > 2, letting § — oo, we have

Z cr2t|dz=0,

p()<1 D=k

which implies that ¢; = 0 for d(I) = k, contradicting the assumption that g is of
homogeneous degree k. On the other hand, if k = 2, letting 6 — oo, we obtain that

S et dz S [mg2(g: 20))7 = [Na2(Gs 20))%
p(2)<1 |d(D)=2

Since N, 2(G; -) € LP(H™), to apply Lemma 2.5 with O = {z : N, 2(G; z) > 1} and
h = Ny 2(G; ), the amount N, 2(G; zp) can be taken arbitrarily small and so

Z cr 2l dz =0,

p(z)<1 |4(1)=2

which contradicts that g is of homogeneous degree 2. Thus, g is a polynomial of homo-
geneous degree less than or equal to 1, as we wished to prove. O

If @ is a bounded function with compact support, its potential b, defined as

b(z) = (a *cop™ ") (2) = cn/,o(uf1 - 2) " a(w)dw,

H»

is a locally bounded function and, by Theorem 2.3, £b = a in the sense of distributions.
For these potentials, we have the following result.

In the sequel, @ = 2n + 2 and f is the constant in [9, Corollary 1.44], we observe
that § > 1 (see [9, p. 29]).
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Lemma 4.11. Let a(-) be a (p, po, N)-atom centered at the p-ball B(zy, ) with N > Np,.
If

b(z) = (a *cnp™?") (2),
then, for p(zalz) > 28326 and every multi-index I there exists a positive constant C

such that 1
[(XTb)(2)| < C16*FQ|B| v p(zg "t - 2)~ QD)

holds.

Proof. We fix a multi-index I, by the left invariance of the operator X’ and Remark 2.2,
we have that

(XTD)(2) = cp / (XTp72) (w™' - 2) a(w)dw
B(z0,9)
=cp, / (XTp72") (™' - 25" - 2) alz0 - w)du,

B(e,6)

for each 2z ¢ B(z9,283%)). By the condition a3) of the atom a(-) and Remark 3.2,
it follows for z ¢ B(zg,2328) that

) = [ X @tz ) - gl el w)du, (4)

B(e,d)

where u — q(u™!) is the right Taylor polynomial at e of homogeneous degree 1 of the
function

ur (XTp72") (u! czgt2).
Then by the right-invariant version of the Taylor inequality in [9, Corollary 1.44],
[(XTp™2) (™t 25t 2) — q(u™)]

< p(u)? sup ’()N(J (le_Q")) (v-z5t- z)‘ .
p(v)<B2p(u),d(J)=2

Now, for u € B(e,d), zo_l -2 ¢ B(e,28%5) and p(v) < B?p(u), we obtain that
p(zg '+ 2) > 2p(v) and hence p(v-zy ' - 2) > p(z5* - 2)/2. Then (4.8) and Lemma 2.4
with o = 2n and d(J) = 2 allow us to get

|(X1p72n) (uil . Zo—l . Z) - q(u71)| /S 52p(zo—1 . Z)f2n72fd(l).
This estimate, (4.7), and the conditions (a1) and (ag) of the atom a(-) lead to
[(XT0)(2)| S 6%zt - 2) " Dla || pr.am)
S Pp(agt - 2) 22D B 56 la || oo )
< 52p(zo—1 . Z)—Zn—2—d(I)|B‘17%

S OMQB| T p(zgt - 2) "D,

(4.8)

for p(z5 " - 2) > 2626. This concludes the proof. O
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The following result is crucial to get Theorem 5.1.

Proposition 4.12. Let a(-) be a (p,po,N)-atom centered at the p-ball
B = B(z0,0). If b(2) = (a * c,p~2")(2), then for all = € H"

Noz (532) S 1B [(Mxe)(@) 8 + xapen(2) (Ma)(2)

+xas(z) Y (Tra)(2),

d(I)=2

(4.9)

where b is the class of bin E{, M is the Hardy-Littlewood mazimal operator and

(o)) =swp| [ Xy 2aw)dul.
=0 p(w—1-2)>e

Proof. For an atom a(-) satisfying the hypothesis of the proposition, we set

R(z,w) =b(z-w) — Z (X1b)(2)w!

0<d(I)<1

=b(z w)— Z (XTe,p ™) (u™t - 2)a(u) du| w!,
0<d(I)<1 B(z0,8)

where w +  SJ(XTb)(2)w! is the left Taylor polynomial of the function
w — b(z - w) at w = e of homogeneous degree 1 (see [2, p. 272]). We observe that if
I=(i1,...,%2n,%n+1) is a multi-index such that d(I) < 1, then is,11 = 0.

Next, we shall estimate |R(z,w)| considering the cases

plzot-2) >4B%0 and p(zy'-2) < 482
separately, and then we will obtain the estimate (4.9).
Case 1. p(z5* - 2) > 4425,
For p(zy'-2) > 4525, p(w) < ﬁp(zo_l -z) and p(u) < B2p(w), a computation gives
p(z5 - z-u) > 26%6. Then, by the left-invariant Taylor inequality in [9, Corollary 1.44]

and Lemma 4.11, we get

Rlzw) S pw)?  sup (X))
p(w)<B2p(w),d(1)=2

s 24+Q
< BV () plw)?.
P(Zo Z)

(4.10)

Now, let p(w) > 5k p(z5" - 2). We have

R(z,w)| < bz w)l + Y (X B)(2)||w]].

0<d(I)<1
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Since p(zy ' - 2) > 4426, by Lemma 4.11 and observing that p(w)/p(z, " -

have

24Q
| S B () ol
0

As for the other term, |b(z - w)|, we consider separately the cases

plzg - z-w) >28% and p(zp'-z-w) < 26%.

1

Z) > TBQ’We

In the case p(za1 -z -w) > 2328, we apply Lemma 4.11 with I = 0, obtaining

bz - w)| S |BI7/P6% (57 2 - ) €.
Then
)

|R(z,w)| < |B|—1/p52+Qp(ZO—1 ca w)—Q + |B|—1/p ( R
P\Zy -

24Q
(12)) p(w)?  (4.11)

holds if p(zy ! - 2) > 45825, p(w) > ﬁp(zo_1 -z) and p(z5 ' -z - w) > 2626,

For P(Zo_l cz-w) < 23%5, we have
Blz0,0) € {u plu™" - z-w) < (1+268%)8} = Qs

so it follows that

b(z - w)| = cn / plu=t -z w) " a(u)du
B(Zo,(;)
1/p,
S llall 2o / plu™t-z- w)’Z"pédu
B(ZQ,(S)

1/py
S llal[zro /p(u_1 Czew)T2Pody,
Qs

Since a(-) is an (p, pg, N)-atom, we can choose py > Q/2, and get
(1+28°)5 1/,
b(z - w)| < |B|~Y/Ps@/ro / P2+ Q—1 g,

0

< |B|71/P5Q/P0572n(;@/176 — |B|—1/p52'

Since p(zy ' - 2) > 4325, we conclude that
5 24+Q
Rz, w)| < |BIV/75% 1 |B|V/r (p)) p(w)?,

for all |p(w)| > ﬁp(z&lz) and p(z5 ' - 2 - w) < 28%.

(4.12)
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Let us the estimate
1/q
72 [ 1B(e, )| / Rz w)dw | . r>o0.

B(e,r)

For them, we split the domain of integration into three subsets:

Dy ={we Bler) s plu) < oty -2}

Do = {u € Bler): o) 2 gizoleyt+2)pley -2 0) > 275

D3 = {weB(e,r) cp(w) > —p(zpt - 2), (25t - 2 w) §262(5}.

According to the estimates obtained for |R(z,w)| above, we use on D; the estimate
(4.10), on Dy the estimate (4.11) and on D3 the estimate (4.12) to get

1/q
) L . 5 2+Q/q
2 1Ben [ RG] s ()
B(e,r) 0
Thus,
~ 2+Q/
Nya (B:2) < 1B /70 () () 28 (1.13)

if p(zy ! 2) > 458%.
Case 2. p(z5 " - 2) < 453%0.
We have

R(z,w) = cn/ [/)_Zn(u_1 cz-w) — Z (XTp=2)(ut- z)wI} a(u)du

0<d(I)<1

— / + / = Ji(z,w) + Jo(z,w).

p(u=t2)<2B2p(w)  p(u=t-2)>2B2p(w)
Assuming that u # z - w and u # z, we can write

U=p 2wt z-w)—p 2" (" 2) - (XTp72")(u™t - 2)wl.

By Lemma 2.4, we get

Ul S pu™ 2z w) " + p(u™" - 2) 72" + p(w) p(u™" - 2) 7"



92

Pablo Rocha

Observing that p(u=! - 2) < 28%p(w) implies p(u~=! - z - w) < 33%p(w), we obtain

1 (2, 0)] < / U la(u)|du
p(u=t-2)<2p2p(w)
< / p(u - 2 - w) " |a(u) | du

plu=t-z-w)<382p(w)
o[ et e
p(u=1-2)<28%p(w)

4 plw) / p(ut - 2)~2n a(u)du

p(u=t-2)<2p2p(w)

-y / p(u™ -2 ) a(u)|du

=03k g2 p(w) < p(u=1-z-w) <3~ (k=1 B2 p(w)

=05k 82 p(w) < p(u=T-2) <2 (E=1) B2 p(w)

+ Z / plu™ - 2)72"|a(u)|du

o)y / pu - 2)~2"a(u) du

=09~k g2 p(w) < p(u=1-2) <2~ (k=1) 82 p(w)

< p(w)*(Ma)(2).

To estimate Ja(z,w), we can write (see [2, p. 272], taking into account that z'Jxz = 0

for all z € R*")

d(I)<2
I -2 -1 w!
+ Z (XTp™ ") (u 'Z)W
d(I)=2
=U; + Us.

For p(u~™! - 2) > 28%p(w) and p(v) < B%p(w), we have p(u™t - z-v) > p(u™! - 2)/2.
Then, by the left-invariant Taylor inequality in [9, Corollary 1.44] and Lemma 2.4,

we get

U1 € p(w)? sup (X o) (u™ 2 v)

p() <82 p(w) d(1)=3
S plw)’plut - 2)720 72,
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Therefore,

| Ja(2,w)| S p(w)® plu™t - 2) 72" Pla(u)|du
p(u=1-2)>282p(w)
+ / Us a(u)du
p(u=1-2)>282%p(w)
Spw)* [ (Ma)(z)+ Y (Tra)(z) |,
d(I)=2
where

Tia)@ =sw| [ & () dal.
=0 plu=t-z)>e

Now, it is easy to check that

1/q
1B [ ol | £ (o)
B(e,r)
and
1/q
2| 1B(e,r) / hEwlide | < Mo+ S (TFa)().
B(e,r) d(I)=2
So
1/q
1B [ RGeS MaE)+ Y @)
Blewr) d(I)=2
This estimate is global. In particular, we have that
Noo (0:2) S (Ma)(2) + Y (Tra)(2), (4.14)

d(I)=2

for p(z5 " - 2) < 48%4. Finally, the estimates (4.13) and (4.14) for N, 2 (3, z) allow us
to obtain (4.9). O
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5. MAIN RESULTS

We are now in a position to prove our main results.

Theorem 5.1. Let Q =2n+2,1 < g < "T'H and Q(2 + %)_1 < p < 1. Then the
sub-Laplacian £ on H" is a bijective mapping from Hy ,(H") onto HP(H™). Moreover,
there exist two positive constant c¢1 and co such that

CIHGHHQQ(H") < LG gr@ny < C2||G||H§72(IHI") (5.1)

hold for all G € H} ,(H").

Proof. The injectivity of the sublaplacion £ in H’q’Q(H”) was proved in Theorem 4.10.

Let G € M} ,(H"), since Nyo(G;2) is finite a.e. z € H", by (i) in Lemma 4.3
and Proposition 4.7 the unique representative g of G (which depends on z),
satisfying 74,2(9; 2) = Ng,2(G; 2), is a function in L}, (H™) NS’(H™). In particular, for
a commutative approzimate identity?) ¢, by Remark 4.9 and Proposition 4.8 we get

M¢(£G)(Z) g C¢ Nq’Q(G;Z).
Then, this inequality and [9, Corollary 4.17] give LG € HP(H"™) and

LG e @) < C NGz, @n)- (5.2)

This proves the continuity of sub-Laplacian £ from H ,(H") into H?(H").

Now we shall see that the operator £ is onto. Given f € HP(H"), there exist
a sequence of nonnegative numbers {k;}52, and a sequence of p-balls {B;}52, and
(p, po, N)-atoms a; supported on Bj, such that f = Z;’;l kja; and

Zkf S ||fHZ;Ip(Hn)' (53)

j=1
For each j € N, we put

bi(2) = (0 cap )(2) = [ enplu )20 (w)do.
H‘n.

From Proposition 4.12 we have

24+Q/q

Nya (B33 2) SIBIYP [(Mxp))] %+ xapes, (2) (May)(2)

+ Xap2; (2) Z (T7 a;)(2).

d(I)=2

1 A commutative approximate identity is a function ¢ € S(H™) such that f¢)(z) dz = 1 and
¢s * Py = Pt * ¢ for all s,t > 0.



Calderén—Hardy type spaces and the Heisenberg sub-Laplacian 95

So it follows that

> ksMaa (55 2) £ kB [ )]
j=1

J=1

+ Z kixapz2B,(2)(Maj)(z)

j=1
+ijX4ﬁ2Bj(Z) Z (T a;j)(2)
=1 d(I)=2
=I+I1I+1I1I.

To study I, by hypothesis, we have that 0 < p <1 and (2+ Q/q)p > Q. Then

s B 24Q/q
Tl Loy = || 1By /P M (x,) ()
=1 LP(Hn)
2+Q/q
Q _—ao—
%) 2+Q/q
_ 2+Q/q
= |3 ksIBy TP M (x, ) ()@
j=1 2+Q/qp
L~ Q Pmn)
o 24+Q/q
- =074
SUQ D k1B P xs, ()
j=1 2+Q/q

LT9 P

= D2 ki1Bs 1 Px, ()
= Ly (")
1/p

Do S llasn,
j=1

A

where the first inequality follows from [13, Theorem 1.2], the condition 0 < p < 1 gives
the second inequality, and (5.3) gives the last one.
To study I, since p < 1 we have that

p

My S |3 ks xase, (Ma) ()
J Lp (Hn)

S [, ()(May) () d
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applying Holder’s inequality with %’, using that the maximal operator M is bounded
on LPo(H") and that every a;(-) is an (p, po, N )-atom, we get

D

_r P0
10y S S R1B 1 ( [0tag0a: )
J
_ P
S ZkﬂBJ'l o Hasz[)/PD(H”)
J
S KE|B; 0| Byl
J
= Zkf S ”f”Z[){p(Hn)?
J

where the last inequality follows from (5.3)

To study II1, by [7, Theorem 3] and [19, Corollary 2, p. 36] (see also [19, 2.5, p. 11]),
we have, for every multi-index I with d(I) = 2, that the operator T} is bounded
on LPo(H™) for each 1 < py < co. Proceeding as in the estimate of I1, we get

- 1/p
LT Loy S Zkf S A N e amy -
j=1
Thus,
> kiNgs (bj; ) S 1 vy
=1 Lp(H")
Then,
0 (~
Zk‘qu,g (bj; z) <oo ae.z€H" (5.4)
j=1
and
0 ~
> kiNga (byie) 0, as M — co. (5.5)
J=M+1 Lp (Hm)

From (5.4) and Lemma 4.5, there exists a function G such that > kjgj =G in B and
j=1

M o
Nea [ | G=D kb | 12| <C D kiNga(bs: 2).
j=1 J=M+1
This estimate together with (5.5) implies

M
G_ijgj — 0, as M — oo.
j=1

Hy o (H?)
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By Proposition 4.6, we have that G € H} ,(H") and G = 3 77 k;b; in HY o (H).
Since £ is a continuous operator from Hj ,(H") into H?(H"), we get

LG = Z kjﬁgj = Z kjaj = f,
J J

in HP(H"). This shows that £ is onto H?(H™). Moreover,

Gl any = ijbj < Zk‘qu,z(bj; ) .
A AC O R Le(H") (56)
S W lee @y = LG e -
Finally, (5.2) and (5.6) give (5.1), and the proof is thus complete. O

Therefore, Theorem 5.1 allows us to conclude, for Q(2 + Q/q)~! < p < 1, that
the equation
LF=f feHPH")
has a unique solution in H} ,(H"), namely, F := L' f.
We shall now see that the case 0 < p < Q(2 + %)_1 is trivial.

Theorem 5.2. If 1<g< ”:1 and 0 <p < Q(2+ %)71} then %572(Hn) = {0}.

Proof. Let G € 7—[2’2(]1-]1") and assume G # 0. Then there exists g € G that is not
a polynomial of homogeneous degree less or equal to 1. It is easy to check that there
exist a positive constant ¢ and a p-ball B = B(e,r) with r > 1 such that

/ lg(w) — P(w)|dw > ¢ > 0,
B

for every P € P;.
Let z be a point such that p(z) > r and let 6 = 2p(z). Then B(e,r) C B(z,9).
If h € G, then h = g — P for some P € P; and

62| —2-Q/a,

q,B(z,6) Z C,O(Z)

So N, 2(G; z) > cp(2)~279/9, for p(z) > r. Since p < Q(2+ Q/q) ™!, we have

/[ng(G; 2)|Pdz > ¢ / p(z) " CHRIDP gy = o0,

H™ p(z)>r
which gives a contradiction. Thus, H} ,(H") = {0}, if p < Q(2+ Q/q)™". O
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