Opuscula Math. 46, no. 1 (2026), 55-72
https://doi.org/10.7494/OpMath.202512261

 
Opuscula Mathematica

A short note on Harnack inequality for k-Hessian equations with nonlinear gradient terms

Ahmed Mohammed
Giovanni Porru

Abstract. In this short note we study a Harnack inequality for \(k\)-Hessian equations that involve nonlinear lower-order terms which depend on the solution and its gradient.

Keywords: \(k\)-Hessian equation, \(k\)-convex solutions, Harnack inequality, Liouville property.

Mathematics Subject Classification: 35J60, 35J70, 35B45, 35B53.

Full text (pdf)

  1. I. Birindelli, K.R. Payne, Principal eigenvalues for \(k\)-Hessian operators by maximum principle methods, Math. Eng. 3 (2021), no. 3, 1-37. https://doi.org/10.3934/mine.2021021
  2. L.A. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301. https://doi.org/10.1007/bf02392544
  3. K.-S. Chou, X.-J. Wang, A variational theory of the Hessian equation, Comm. Pure Appl. Math. 54 (2001), 1029-1064. https://doi.org/10.1002/cpa.1016
  4. F. Ferrari, A. Vitolo, Regularity properties for a class of non-uniformly elliptic Isaacs operators, Adv. Nonlinear Stud. 20 (2020), 213-241. https://doi.org/10.1515/ans-2019-2069
  5. X. Ji, J. Bao, Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Amer. Math. Soc. 138 (2010), 175-188. https://doi.org/10.1090/s0002-9939-09-10032-1
  6. N.S. Trudinger, X.-J. Wang, Hessian measures I, Topol. Methods Nonlinear Anal. 10 (1997), 225-239. https://doi.org/10.12775/tmna.1997.030
  7. N.S. Trudinger, Weak solutions of Hessian equations, Comm. Partial Differential Equations 22 (1997), 1251-1261. https://doi.org/10.1080/03605309708821299
  8. A. Vitolo, Lipschitz estimates for partial trace operators with extremal Hessian eigenvalues, Adv. Nonlinear Anal. 11 (2022), 1182-1200. https://doi.org/10.1515/anona-2022-0241
  9. X.-J. Wang, The \(k\)-Hessian equation, [in:] S.-Y. Chang, A. Ambrosetti, A. Malchiodi (eds), Geometric Analysis and PDEs, Lecture Notes in Mathematics, vol. 1977, Springer, Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-642-01674-5_5
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2025-11-15.
  • Revised: 2025-12-24.
  • Accepted: 2025-12-26.
  • Published online: 2026-01-27.
Opuscula Mathematica - cover

Cite this article as:
Ahmed Mohammed, Giovanni Porru, A short note on Harnack inequality for k-Hessian equations with nonlinear gradient terms, Opuscula Math. 46, no. 1 (2026), 55-72, https://doi.org/10.7494/OpMath.202512261

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.