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1. INTRODUCTION

In this paper, we develop a Harnack inequality for non-positive solutions of k-Hessian
equations whose lower-order terms are non-linear functions of the solution and its
gradient. We follow the methods outlined in [9, Lemma 4.1], thus extending the
Harnack inequality, [9, Theorem 4.2] given for non-positive solutions of

Sk(D2u) = c,

where c is a non-negative constant. In [3], the authors show a Liouville property for
k-convex functions u ∈ C3(Rn) that satisfy Sk(D2u) = 0 in Rn, with u(x) = o(|x|) at
infinity. Our main result provides Harnack inequality for non-positive, k-convex, and
smooth solutions to a wide class of equations which includes

Sk(D2u) = a(x)|u|k,

where a is a non-negative C1 function which, together with its gradient, is bounded.
We begin by recalling some basic definitions leading up to the operator Sk and

some of its properties that are useful to our subsequent work. We refer the reader to
the papers in the references for more properties.

Let us denote by Sn×n the family of all n × n symmetric matrices with real entries,
and an integer 1 ≤ k ≤ n. Given X ∈ Sn×n and an integer 1 ≤ k ≤ n, consider the
k-Hessian operator

Sk(X) := σk(λ(X)).
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Here, σk represents the k-th elementary symmetric polynomial of λ := (λ1, . . . , λn);
that is

σk(λ) :=
∑

1≤i1<...<ik≤n

λi1λi2 . . . λik
,

and λ(X) stands for the n-tuple of real eigenvalues λ(X) = (λ1, . . . , λn) of X. In
particular, we note that

σ1(λ) =
n∑

j=1
λj , and σn(λ) = λ1λ2 . . . λn.

In connection with these elementary symmetric functions, we consider the following
open and convex cones in Rn, with vertex at the origin:

Γk := {λ ∈ Rn : σj(λ) > 0 for j = 1, . . . , k}.

We note that
Γ+ ⊂ Γn ⊂ Γn−1 ⊂ . . . ⊂ Γ1,

where
Γ+ := {λ ∈ Rn : λj > 0 j = 1, . . . , n}.

In fact, it is known that Γn = Γ+. The cone Γk can also be characterized as

Γk = {λ ∈ Rn : 0 < σk(λ) ≤ σk(λ + µ) ∀ µ = (µ1, . . . , µn), µj ≥ 0, j = 1, . . . , n}.

A function u ∈ C2(Ω) is said to be k-convex if and only if

D2u(x) ∈ Γk, ∀ x ∈ Ω.

We remark that 1-convex functions are subharmonic in Ω, in the sense that D2u has
a non-negative trace in Ω. Therefore, any k-convex function in Ω is subharmonic in Ω.

In an open connected set Ω ⊂ Rn, we take X = D2u, and consider the k-Hessian
equation

Sk(D2u) = g(x, |u|) + h(x, |u|)|Du|α in Ω, 0 ≤ α ≤ 1, 2 ≤ k ≤ n, (1.1)

where g, h : Ω ×R+
0 → R+

0 are given C1 functions, and will be required to meet further
conditions to be specified later. Following [3, 9], we write

σk;j(λ) := σk(λ)|λj=0 .

In this notation, we see that

∂σk(λ)
∂λj

= σk−1;j(λ).

Given a real symmetric matrix X = (xij)n×n, we write

Sij
k (X) := σk(λ(X))

∂xij
.
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It is well-known that if u ∈ C2(Ω) is k-convex, then the k-Hessian operator is
degenerate elliptic at u in the sense that (Sij

k (X)) is positive semi-definite with
X = D2u. The k-Hessian operator Sk(D2u) can also be written as

Sk(D2u) = [D2u]k,

where for X ∈ Sn×n we used [X]k to denote the sum of the k-th principal minors of X.
With the notation

S :=
n∑

i=1
Sii

k , (1.2)

we recall the following useful relation, see the identity [9, (ii) on p. 7],

S = (n − k + 1)Sk−1(X) for X ∈ Sn×n. (1.3)

Finally, we adopt the following notations: Given an open set Ω ⊆ Rn, we will use
the notation Br(x) to denote a ball of radius r > 0, centered at x, and compactly
contained in Ω. We will also write R+

0 for the set of non-negative real numbers. In this
paper, we always suppose that 0 ≤ α ≤ 1.

2. THE SUB-LINEAR EQUATION FOR 2 ≤ k ≤ n

In this section we will consider sub-linear equations (see [9, Section 6] or [3, p. 1031])
for the case 2 ≤ k ≤ n.

In view of this we now suppose that the non-negative non-linearities g, h in
Problem (1.1) satisfy the following conditions for some constants C0 > 0, 0 ≤ α ≤ 1,
and for all (x, t) ∈ Ω × R+

0 :
(c-g) |gx(x, t)| ≤ C0tk, |gt(x, t)| ≤ C0tk−1,
(c-h) h(x, t) + |hx(x, t)| ≤ C0tk−α, |ht(x, t)| ≤ C0tk−1−α.

Note that if u is a non-positive k-convex solution of (1.1) in Br(x), then −u is
a non-negative superharmonic function and hence either −u > 0 in Br(x) or −u ≡ 0
in Br(x). In view of this, in the theorem below we will consider nowhere vanishing
k-convex solutions of (1.1).
Theorem 2.1. Suppose g, h : Ω × R+

0 → R+
0 are C1 functions that satisfy conditions

(c-g) and (c-h). For any nowhere vanishing k-convex solution u ∈ C3(Br(x̃)), 0 < r ≤ 1,
of (1.1), the following estimate holds:

|Du(x̃)| ≤ C
M

r
. (2.1)

Here, M := 4 sup
Br(x̃)

|u| and C is a positive constant that depends on n, k, and C0 only.

Proof. The proof is an adaptation of the one given in [9]. See also [3, 7]. Let

ϱ(x) =
(

1 − |x − x̃|2
r2

)+

, and φ(t) = 1
(M − t)1/2 , t < M.
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It is easy to see that

2√
5M

≤ φ(t) ≤ 2√
3M

, for |t| <
M

4 . (2.2)

We also note that
φ′′ − 2(φ′)2

φ
≥ 1

16M−5/2. (2.3)

Let us consider the following auxiliary function

G(x, ξ) = uξ(x)φ(u(x))ϱ(x), (x, ξ) ∈ Br(x̃) × Sn−1,

where Sn−1 ⊂ Rn is the unit sphere. We note that G(x, ξ) = 0 for |x − x̃| = r
and ξ ∈ Sn−1. Suppose G(x, ξ) attains its maximum at (x0, ξ0). We begin with some
preliminaries. By rotating coordinates we can assume that ξ0 = e1 = (1, 0, . . . , 0).
Then it follows that Du(x0) = (u1(x0), 0, . . . , 0). We must have u1(x0) ≥ 0 (recall that
G = 0 on the boundary of Br(x̃)). We also make a further rotation of coordinates
so that uij = 0 at x0 for i, j ≥ 2, i ≠ j. Let us write µi = uii for 1 ≤ i ≤ n, and
µ := (µ1, . . . , µn). As noted in [3], we have the following equation at x0 and will be
used later.

Sk−1(D2u) = S11
k (D2u) + u11Sk−2;1(µ) −

n∑

i=2
u2

1iSk−3,1i(µ). (2.4)

From now on we write G(x) := G(x, ξ0) for x ∈ Br(x̃). Moreover, all the quantities
will be evaluated at x0. We have Gi(x0) = 0 and {Gij(x0)} ≤ 0. Thus,

u1i = − u1
φϱ

(uiφ
′ϱ + φϱi) . (2.5)

Moreover, we compute

Gij = u1ijφ(u)ϱ + u1iφ
′(u)ujϱ + u1iφ(u)ϱj + u1jφ′(u)uiϱ + u1φ′′(u)uiujϱ

+ u1φ′(u)uijϱ + u1φ′(u)uiϱj + u1jφ(u)ϱi + u1φ′(u)ujϱi + u1φ(u)ϱij .

Therefore, we find

0 ≥ Sij
k Gij = φϱSij

k uij1 + 2Sij
k u1i (ujφ′ϱ + φϱj) + u1φ′′ϱSij

k uiuj

+ u1φ′ϱSij
k uij + u1φSij

k ϱij + u1φ′Sij
k (uiϱj + ujϱi) .

Let us compute

u1i (ujφ′ϱ + φϱj) = − u1
φϱ

(uiφ
′ϱ + φϱi) (ujφ′ϱ + φϱj)

= − u1
φϱ

(
uiuj(φ′)2ϱ2 + uiφφ′ϱϱj + ujφφ′ϱϱi + φ2ϱiϱj

)

= −ϱu1
(φ′)2

φ
uiuj − u1uiφ

′ϱj − u1ujφ′ϱi − u1
φ

ϱ
ϱiϱj .
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Hence,

0 ≥ Sij
k Gij = φϱSij

k uij1 − 2ϱu1
(φ′)2

φ
Sij

k uiuj − 4u1φ′Sij
k uiϱj − 2u1

φ

ϱ
Sij

k ϱiϱj

+ u1φ′′ϱSij
k uiuj + u1φ′ϱSij

k uij + u1φSij
k ϱij + 2u1φ′Sij

k uiϱj .

On using (2.3), from the latter inequality we find

0 ≥ Sij
k Gij = φϱSij

k uij1 + ϱu1
1
16M− 5

2 Sij
k uiuj − 2u1φ′Sij

k uiϱj

− 2u1
φ

ϱ
Sij

k ϱiϱj + u1φSij
k ϱij .

(2.6)

Note that we have omitted the term u1φ′ϱSij
k uij because

u1φ′ϱSij
k uij = ku1φ′ϱ (g(x, |u|) + h(x, |u|)|Du|α) ≥ 0.

Now let us assume that
|Du(x̃)| >

20M

r
, (2.7)

for otherwise there is nothing left to show.
Let us first make the following observation. Since G(x, ξ) takes its maximum

in Br(x̃) × Sn−1 at (x0, ξ0) we have

Du(x̃) · ξφ(u(x̃)) ≤ u1(x0)φ(u(x0))ϱ(x0), ∀ ξ ∈ Sn−1.

By considering ξ := Du(x̃)/|Du(x̃)| in the above relation, and on recalling (2.2),
we find

|Du(x̃)| ≤ 2u1ϱ. (2.8)

Therefore,
u1ϱ ≥ 1

2 |Du(x̃)| ≥ 10M

r
. (2.9)

Using this and (2.5), let us show that

−3
2

φ′

φ
u2

1 ≤ u11 ≤ −1
2

φ′

φ
u2

1. (2.10)

For this, we first note that 2r|ϱ1| ≤ 4 and 4(M − u) ≤ 5M . These inequalities,
together with 2φ′(M − u) = φ, show that

2r|ϱ1| ≤ 5M

M − u
= 10M

φ′

φ
. (2.11)

Note that by (2.9) we have 10M ≤ rϱu1, which on using in (2.11), leads to

−φ′

φ
u1ϱ ≤ −2ϱ1 ≤ φ′

φ
u1ϱ. (2.12)
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We now multiply all sides of (2.12) by u1
2ρ , and then add − φ′

φ u2
1 to obtain

−3
2

φ′

φ
u2

1 ≤ −u2
1

φ′

φ
− u1ϱ1

ϱ
≤ −1

2
φ′

φ
u2

1. (2.13)

On taking i = 1 in (2.5), we get

u11 = −u2
1

φ′

φ
− u1ϱ1

ϱ
. (2.14)

Inserting (2.14) in (2.13) leads to the claimed inequality (2.10).
Note that (2.9) implies

1
ϱu1

≤ r

M
. (2.15)

Now we estimate the term Sij
k uij1. For this we differentiate Equation (1.1) with

respect to the first variable x1. We find the following at x0, on recalling that uj(x0) = 0
for j ≥ 2,

Sij
k uij1 = gx1(x, |u|) + (sgn u)gt(x, |u|)u1 + hx1(x, |u|)uα

1 + (sgn u)ht(x, |u|)uα+1
1

+ αh(x, |u|)uα−1
1 u11. (2.16)

Using conditions (c-g) and (c-h), we estimate (2.16) as follows.

Sij
k uij1 ≥ −|Sij

k uij1|
≥ −|gx1(x, |u|)| − |gt(x, |u|)|u1 − |hx1(x, |u|)|uα

1 − |ht(x, |u|)|uα+1
1

− |u11||h(x, |u|)|uα−1
1

≥ −C0
(
|u|k + |u|k−1u1 + |u|k−αuα

1 + |u|k−1−αuα+1
1 − |u|k−αuα−1

1 u11
)

≥ −C0

(
|u|k + |u|k−1u1 + |u|k−αuα

1 + |u|k−1−αuα+1
1 + 3

2 |u|k−αuα+1
1

φ′

φ

)
,

(2.17)

where the left inequality of (2.10) has been used to get (2.17). Let us show that

3
2 |u|k−αuα+1

1
φ′

φ
≤ |u|k−1−αuα+1

1 .

Indeed, since |u| ≤ M/4, we have

3
2 |u|φ

′

φ
= 3|u|

4(M − u) ≤ 1.

In view of this remark, we can write (2.17) as

Sij
k uij1 ≥ −2C0

(
|u|k + |u|k−1u1 + |u|k−αuα

1 + |u|k−1−αuα+1
1

)
. (2.18)
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Using (2.18) in (2.6) we find

0 ≥ Sij
k Gij ≥ −2C0φϱ

(
|u|k + |u|k−1u1 + |u|k−αuα

1 + |u|k−1−αuα+1
1

)

+ 1
16M− 5

2 u1ϱSij
k uiuj

− 2u1φ′Sij
k uiϱj − 2u1

φ

ϱ
Sij

k ϱiϱj + u1φSij
k ϱij .

(2.19)

By Young’s inequality, we have

2Sij
k uiϱj ≤ 2

(
Sij

k uiuj

)1/2 (
Sij

k ϱiϱj

)1/2
≤ εSij

k uiuj + 1
ε

Sij
k ϱiϱj . (2.20)

With the choice of
ε := 1

32M−5/2 ϱ

φ′ ,

we now use inequality (2.20) in (2.19) to get,

0 ≥ −2C0φϱ
(
|u|k + |u|k−1u1 + |u|k−αuα

1 + |u|k−α−1uα+1
1

)

+ 1
32M−5/2u1ϱSij

k uiuj

− 32M5/2 (φ′)2

ϱ
u1Sij

k ϱiϱj − 2u1
φ

ϱ
Sij

k ϱiϱj + u1φSij
k ϱij .

(2.21)

In subsequent calculations it will be convenient to denote any positive constant that
depends at most on k, n, and C0 by C, and its value may vary from line to line.
Recalling that ui(x0) = 0 for i = 2, . . . , n, we find

Sij
k uiuj = S11

k u2
1,

and
1
32M−5/2u1ϱSij

k uiuj = 1
32M−5/2u1ϱS11

k u2
1. (2.22)

Moreover, since
Sij

k ϱiϱj ≤ tr((Sij
k ))|∇ϱ|2 ≤ 4

r2 S,

we find
−32M5/2 (φ′)2

ϱ
u1Sij

k ϱiϱj ≥ −CM− 1
2

u1S
ϱr2 (2.23)

and
−2u1

φ

ϱ
Sij

k ϱiϱj ≥ −CM− 1
2

u1S
ϱr2 . (2.24)

Finally, since
ϱij = −δij

r2 , δij = Kronecker delta,

we find
u1φSij

k ϱij ≥ −8M− 1
2

u1S
r2 ≥ −8M− 1

2
u1S
ϱr2 . (2.25)
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Using (2.22), (2.23), (2.24) and (2.25) in (2.21) we find

0 ≥ −Cφϱ
(
|u|k + |u|k−1u1 + |u|k−αuα

1 + |u|k−α−1uα+1
1

)
+ 1

32M−5/2ϱS11
k u3

1

− CM− 1
2

u1S
ϱr2 .

Multiplying both sides of this inequality by 32M5/2ϱ2, we find

0 ≥ −Cφϱ3 (|u|k + |u|k−1u1 + |u|k−αuα
1 + |u|k−1−αuα+1

1
)

M5/2+ϱ3S11
k u3

1−C
M2

r2 Sϱu1,

and thus

(ϱu1)3S11
k ≤ C

M2

r2 Sϱu1 + Cφϱ3(|u|k + |u|k−1u1 + |u|k−αuα
1 + |u|k−1−αuα+1

1
)
M5/2.

(2.26)

Multiplying both sides of (2.26) by S−1(ϱu1)−2 and using (2.15) we obtain

ϱu1S11
k S−1

≤ C
M2

ϱu1r2 +Cφϱ3
( |u|k

(ϱu1)2 + |u|k−1u1
(ϱu1)2 + |u|k−αuα

1
(ϱu1)2 + |u|k−1−αuα+1

1
(ϱu1)2

)
M5/2S−1

≤ C
M2

ϱu1r2 +CM2
(|u|kϱ3

(ϱu1)2 + |u|k−1ϱ2

ϱu1
+ |u|k−αϱ3−α

(ϱu1)2−α
+ |u|k−1−αϱ2−α

(ϱu1)1−α

)
S−1

≤ C
M

r
+CM2

(
|u|k

( r

M

)
2+|u|k−1

( r

M

)
+|u|k−α

( r

M

)
2−α+|u|k−1−α

( r

M

)
1−α
)

S−1

≤ C
M

r
+C

M

r

(
r3 |u|k

M
+r2|u|k−1+r3−α |u|k−α

M1−α
+r2−α |u|k−1−α

M−α

)
S−1,

(2.27)

where we have used the inequality ϱ(x) ≤ 1 and 0 ≤ α ≤ 1. To find a bound for
S−1, let (ρ1, . . . , ρn) with ρ1 ≥ . . . ≥ ρn be the eigenvalues of D2u at x0. Then, at x0,
we have

ρn ≤ ζT D2uζ,

for any unit vector η ∈ Rn. Taking ζ = e1 we see that eT
1 D2u(x0)e1 = u11. Hence,

ρn ≤ u11 ≤ − φ′

2φ
u2

1 ≤ − 1
4M

u2
1. (2.28)

Now we observe that at x0

0 ≤ g(x, |u|) + h(x, |u|)|Du|α = σk(ρ1, . . . , ρn)
= ρnσk−1(ρ1, . . . , ρn−1) + σk(ρ1, . . . ρn−1)

≤ ρnσk−1(ρ1, . . . , ρn−1) + C [σk−1(ρ1, . . . , ρn−1)]k/(k−1)
,



A short note on Harnack inequality for k-Hessian equations. . . 63

where, for the last inequality, [9, (vi) on p. 7] has been used, with a positive constant
C that depends on n and k only. Hence,

−ρn ≤ C(σk−1(ρ1, . . . , ρn−1))1/(k−1). (2.29)

From (2.28) and (2.29), we find

S̃nn
k = σk−1(ρ1, . . . , ρn−1) ≥ C|ρn|k−1 ≥ C

u2k−2
1

Mk−1 . (2.30)

Note that, since S is invariant under rotation, we have

S = S11
k + . . . + Snn

k = S̃11
k + . . . + S̃nn

k .

Therefore, (2.30) implies that

S ≥ C
u2k−2

1
Mk−1 . (2.31)

From (2.9), we have

u1 ≥ u1ϱ ≥ 1
2 |Du(x̃)| ≥ M

r
.

Using this in (2.31), we find that

S ≥ C
Mk−1

r2k−2 .

Employing this last inequality in (2.27), we obtain, on recalling that 0 < r ≤ 1,

ϱu1S11
k S−1

≤ C
M

r
+C

M

r

(
|u|k r3

M
+r2|u|k−1+r2|u|k−α

( r

M

)
1−α+|u|k−α−1

( r

M

)
2−αM2

)
r2k−2

Mk−1

≤ C
M

r
+C

M

r

(
r2k+1

(|u|
M

)
k +r2k

(|u|
M

)
k−1+r2k+1−α

(|u|
M

)
k−α+r2k−α

(|u|
M

)
k−α−1

)

≤ C
M

r
,

(2.32)

where C is a positive constant that depends on n, k and C0 only.
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Recalling that u11 < 0 at x0, we use (2.4) to find S11
k ≥ Sk−1. From (1.3), with

X = D2u(x0), we have Sk−1 = (n − k + 1)−1S. From these two relations, we obtain

S11
k S−1 ≥ (n − k + 1)−1.

Using this in (2.32) we see that

ϱu1 ≤ C
M

r
. (2.33)

From (2.8) and (2.33) we find that

|Du(x̃)| ≤ C
M

r
,

as was to be shown.

Theorem 2.2. Let g, h : Ω × R+
0 → R+

0 satisfy conditions (c-g) and (c-h). Then
there is a positive constant C that depends on n, k, and C0 only such that for any
non-positive k-convex solution u ∈ C3(BR(0)), 0 < R ≤ 1, of (1.1) we have

sup
BR/2(0)

(−u) ≤ C inf
BR/2(0)

(−u) (2.34)

Proof. The Harnack inequality now follows from Theorem 2.1, [9, Lemma 4.1],
and the same argument used to prove [9, Theorem 4.2]. In fact, by Theorem 2.1, and
[9, Lemma 4.1] we have

sup
BR/2(0)

(−u) ≤ C

|BR(0)|

∫

BR(0)

(−u). (2.35)

Since u is subharmonic, we also have

1
|BR(0)|

∫

BR(0)

(−u) ≤ C inf
BR/2(0)

(−u). (2.36)

The conclusion follows from (2.35) and (2.36).

3. THE SUPER-LINEAR EQUATION FOR THE CASE 2 ≤ k ≤ n

It is also possible to obtain Harnack inequality for a family of smooth, non-positive
and k-convex solutions of super-linear equations (see [9, Section 6] or [3, p. 1031])
that are bounded in the uniform metric of C0. These class of equations include those
of the form

Sk(D2u) = |u|p, p > k.
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For p > k we assume conditions similar to (c-g) and (c-h) with p in place of k; that is
we suppose the following hold in Ω × R+

0 for some C0 > 0, p > k and 0 ≤ α ≤ 1.
(p-g) |gx(x, t)| ≤ C0tp, |gt(x, t)| ≤ C0tp−1,
(p-h) h(x, t) + |hx(x, t)| ≤ C0tp−α, |ht(x, t)| ≤ C0tp−1−α.

Given a constant L > 0, and a subset E ⊂ Ω, let us write FL(E) for the family of
all real-valued functions on E that are bounded by L.
Theorem 3.1. Suppose g, h : Ω × R+

0 → R+
0 are C1 functions that satisfy conditions

(p-g) and (p-h). Given a constant L > 0, then for any nowhere vanishing k-convex
solution u ∈ C3(Br(x̃)) ∩ FL(B1(x̃)), 0 < r ≤ 1, of (1.1), the following estimate holds:

|Du(x̃)| ≤ C
M

r
. (3.1)

Here, M := 4 supBr(x̃)|u| and C is a positive constant that depends on n, k, p, L and
C0 only.

Proof. Consider first the case Λ ≤ 1, where Λ := 4L. The proof is the same as that of
Theorem 2.1 until formula (2.32), which now becomes

ϱu1S11
k S−1 ≤ C

M

r
+ C

M

r

(
|u|p r3

M
+ r2|u|p−1 + r2|u|p−α

( r

M

)1−α

+ |u|p−α−1
( r

M

)2−α

M2

)
r2k−2

Mk−1 .

Since M ≤ 4 supBr(x̃) |u(x)| ≤ 1, and p > k we have 1
Mk−1 ≤ 1

Mp−1 . Hence,

ϱu1S11
k S−1≤ C

M

r
+ C

M

r

(
r2k+1

( |u|
M

)p

+ r2k

( |u|
M

)p−1

+ r2k+1−α

( |u|
M

)p−α

+ r2k−α

( |u|
M

)p−α−1
)

≤ C
M

r
.

(3.2)

From here on, the proof continues as in that of Theorem 2.1.
Now let Λ > 1. Putting u = Λv, equation (1.1) implies

Sk(D2v) = Λ−k
[
g(x, Λv) + h(x, Λv)Λα|Dv|α

]
in Br(x̃). (3.3)

If we put g̃(x, t) := Λ−kg(x, Λt) and h̃(x, t) := Λα−kh(x, Λt), equation (3.3) reads as

Sk(D2v) = g̃(x, v) + h̃(x, v)|Dv|α in Br(x̃).

From (p-g) and (p-h) we find
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(Λ-g) |g̃x(x, t)| ≤ Λp−kC0tp, |g̃t(x, t)| ≤ Λp−kC0tp−1,
(Λ-h) h̃(x, t) + |h̃x(x, t)| ≤ Λp−kC0tp−α, |h̃t(x, t)| ≤ Λp−kC0tp−α−1.

Now the proof is the same as before and uses (Λ-g) and (Λ-h), instead of (p-h)
and (p-g). One finds

|Dv(x̃)| ≤ C
M

r
, 0 < r ≤ 1, (3.4)

where,
M := 4 sup

Br(x̃)
|v|,

and C is a positive constant that depends on n, k, p, L and C0 only.
Since u = Λv, (3.4) implies

|Du(x̃)| ≤ C
M̃

r
, 0 < r ≤ 1,

with
M̃ := 4 sup

Br(x̃)
|u|.

The theorem is proved.

Clearly, we also have the following theorem.
Theorem 3.2. Suppose g, h : Ω × R+

0 → R+
0 are C1 functions that satisfy conditions

(p-g) and (p-h). Given a constant L > 0, then for any nowhere vanishing, non-positive,
and k-convex solution u ∈ C3(BR(0)) ∩ FL(B1(0)), 0 < R ≤ 1, of (1.1), there is
a positive constant C, that depends on n, k, p, L, and C0 only, such that

sup
BR/2(0)

(−u) ≤ C inf
BR/2(0)

(−u).

Proof. The proof uses (3.4) and is the same as that of Theorem 2.2.

4. THE SUB/SUPER-LINEAR EQUATION FOR THE CASE k = 1

We have proved our previous results for k ≥ 2. Now we discuss the case k = 1. Consider
the equation

∆u = g(x, |u|) + h(x)|Du| in Ω, (4.1)
where g : Ω × R+

0 → R+
0 and h : Ω → R+

0 are non-negative C1 functions satisfying,
for some constant C0 > 0,
(c′-g) |gx(x, t)| ≤ C0t, |gt(x, t)| ≤ C0, t > 0,
(c′-h) h(x) + |hx(x)| ≤ C0.

It is conceivable that the Harnack inequality for equation (4.1), under assumptions
(c′-g) and (c′-h), has been addressed in the existing literature. However, in the absence
of specific references known to us, we have elected to include a discussion of the
Harnack inequality for non-negative solutions of (4.1).
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Theorem 4.1. Suppose g : Ω × R+
0 → R+

0 and h : Ω → R+
0 are non-negative C1

functions that satisfy conditions (c’-g) and (c’-h). For any nowhere vanishing solution
u ∈ C3(Br(x̃)), 0 < r ≤ 1, of (4.1), the following estimate holds:

|Du(x̃)| ≤ C
M

r
. (4.2)

Here, M := 4 supBr(x̃) |u| and C is a positive constant that depends on n and C0 only.
Proof. We use the same notations as in the proof of Theorem 2.1. Let us compute

∆u1 = gx1(x, |u|) + (sign u)gt(x, |u|)u1 + hx1(x)u1 + h(x)u11. (4.3)

Using (c′-g) and (c′-h) and the left inequality of (2.10) in (4.3), we find

|∆u1| ≤ C0
(
|u| + 2u1 + |u11|

)

≤ C0

(
|u| + 2u1 + 3 φ′

2φ
u2

1

)
.

(4.4)

Since
3 φ′

2φ
= 3

4(M − u) ≤ 1
M

,

from (4.4) we find

|∆u1| ≤ 2C0

(
|u| + u1 + u2

1
M

)
. (4.5)

Using the estimate (4.5), we now proceed as in the proof Theorem 2.1, up to (2.26).
Since in case of k = 1 we have S11

1 = 1 and S = n, the inequality (2.26) becomes

(ϱu1)3 ≤ C
M2

r2 ϱu1 + Cφϱ3
(

|u| + u1 + u2
1

M

)
M5/2, (4.6)

where the constant C depends on n and C0 only. Multiplying both sides of (4.6) by
(ϱu1)−2 and using the estimate

1
ϱu1

≤ r

M

we obtain

ϱu1 ≤ C
M2

r2
1

ϱu1
+ Cφϱ3

( |u|
(ϱu1)2 + u1

(ϱu1)2 + u2
1

M

1
(ϱu1)2

)
M5/2

≤ C
M

r
+ CM2

( |u|ϱ3

(ϱu1)2 + ϱ2

ϱu1
+ ϱ

M

)

≤ C
M

r
+ CM2

(
|u|
( r

M

)2
+ r

M
+ 1

M

)

= C
M

r
+ C

M

r

(
r3 |u|

M
+ r2 + r

)

≤ C
M

r
,

where we have used the inequalities ϱ(x) ≤ 1 and 0 ≤ r ≤ 1.
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We have found
ϱu1 ≤ C

M

r
. (4.7)

From (2.8) and (4.7), it follows that

|Du(x̃)| ≤ C
M

r
,

as was to be shown.

Theorem 4.2. Let g and h be as in Theorem 4.1. Then there is a positive constant C
that depends on n and C0 only such that for any non-positive solution u ∈ C3(BR(0)),
0 < R ≤ 1, of (4.1) we have

sup
BR/2(0)

(−u) ≤ C inf
BR/2(0)

(−u). (4.8)

Proof. The proof uses Theorem 4.1 and is the same as that of Theorem 2.2.

Consider now Equation (4.1) with g and h satisfying, for some p > 1,
(p′-g) |gx(x, t)| ≤ C0tp, |gt(x, t)| ≤ C0tp−1, t > 0,
(p′-h) h(x) + |hx(x)| ≤ C0tp−1.

As in (4.3), we have

∆u1 = gx1(x, |u|) + (sign u)gt(x, |u|)u1 + hx1(x)u1 + h(x)u11.

Using (p′-g) and (p′-h) and the left inequality in (2.10), from the latter equation
we find

|∆u1| ≤ C0
(
|u|p + 2|u|p−1u1 + |u|p−1|u11|

)

≤ C0

(
|u|p + 2|u|p−1u1 + |u|p−13 φ′

2φ
u2

1

) (4.9)

Since
3 φ′

2φ
≤ 1

M
,

from (4.9) we find

|∆u1| ≤ 2C0

(
|u|p + |u|p−1u1 + |u|p−1 u2

1
M

)
. (4.10)

As in the previous Section, given a constant L > 0 and a subset E ⊂ Ω, let us
write FL(E) for the family of all real-valued functions on E that are bounded by L.
Theorem 4.3. Suppose g : Ω × R+

0 → R+
0 and g : Ω → R+

0 are C1 functions that
satisfy conditions (p′-g) and (p′-h). Given a constant L > 0 then, for any nowhere
vanishing solution u ∈ C3(Br(x̃)) ∩ FL(B1(x̃)), 0 < r ≤ 1, of (4.1), the following
estimate holds:

|Du(x̃)| ≤ C
M

r
. (4.11)

Here, M := 4 supBr(x̃) |u| and C is a positive constant that depends on n, p, L
and C0 only.
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Proof. Consider first the case Λ ≤ 1, where Λ := 4L. For the proof we may start from
the inequality (4.6) replacing estimate (4.5) by estimate (4.10). We find

(ϱu1)3 ≤ C
M2

r2 ϱu1 + Cφϱ3
(

|u|p + |u|p−1u1 + |u|p−1 u2
1

M

)
M5/2

≤ C
M2

r2 ϱu1 + Cϱ3M
(
M |u|p + M |u|p−1u1 + |u|p−1u2

1
)

.

Since M ≤ 4 supBr(x̃) |u(x)| ≤ 1, and p > 1 we have 1 ≤ 1
Mp−1 . Hence, on using (2.33)

we find

ϱu1 ≤C
M2

r2
1

ϱu1
+CM

(
M |u|p ϱ3

(ϱu1)2 +Mϱ3|u|p−1u1
1

(ϱu1)2 +ϱ3|u|p−1u2
1

1
(ϱu1)2

)
1

Mp−1

≤C
M

r
+CM

(
M |u|p r2

M2 +M |u|p−1 r

M
+|u|p−1

)
1

Mp−1

=C
M

r
+C

M

r

(
r3
( |u|

M

)p

+r2
( |u|

M

)p−1
+r
( |u|

M

)p−1
)

≤C
M

r
.

(4.12)
If Λ > 1, one puts u = Λv and continues as in the proof of Theorem 3.1. One finds

(4.12) again, but now C depends on n, C0 and L. The theorem is proved.

Clearly, we also have the following theorem.
Theorem 4.4. Let g and h be as in Theorem 4.3. Given a constant L > 0, then for
any nowhere vanishing, non-positive solution u ∈ C3(BR(0)) ∩ FL(B1(0)), 0 < R ≤ 1,
of (4.1), there is a positive constant C, that depends on n, p, L, and C0 only, such that

sup
BR/2(0)

(−u) ≤ C inf
BR/2(0)

(−u).

Proof. The proof uses Theorem 4.3 and is the same as that of Theorem 2.2.

5. A LIOUVILLE-TYPE THEOREM

In [3, 9], it is noted that any k convex solution u ∈ C3(Rn) of Sk(D2u) = 0 in Rn

is a constant. The proof relies on the interior gradient estimate derived therein.
Here, we prove a type of Liouville theorem for k-convex solutions u ∈ C2(Rn) of
Sk(D2u) ≥ ω(|x|), where ω(t) is a positive and non-decreasing continuous function.
Our proof relies on a standard comparison principle, which we recall here for the
reader’s convenience. See [6] for a more general result.
Theorem 5.1. Let Ω ⊂ Rn be a bounded open set, and suppose that u, v ∈ C2(Ω)∩C(Ω)
are k-convex functions such that

Sk(D2u) ≥ Sk(D2v) in Ω.

If u ≤ v on ∂Ω, then u ≤ v in Ω.
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Now we state and prove the following Liouville theorem.

Theorem 5.2. Suppose u ∈ C2(Rn) is a k-convex solution of

Sk(D2u) ≥ ω(|x|) in Rn (5.1)

for some continuous and non-decreasing function ω : R+
0 → R+

0 with ω(t) > 0 for t > 0.
Then

lim sup
|x|→∞

|u(x)|
|x| > 0.

Proof. Suppose the conclusion fails. Then u(x) = o(|x|) as |x| → ∞. We may assume
that u(0) ≥ 0; for otherwise, we can replace u(x) by u(x) − u(0). Given δ > 0, we
select ρ = ρ(δ) > 0 such that

u(x) ≤ u(0) + δ, x ∈ Bρ(0). (5.2)

Let us fix ε0 := ε0(n, k, ρ, c) > 0 small enough such1) that
(

n − 1
k

)
εk

0 ≤ ρkω(ρ).

Let 0 < ε < ε0 be arbitrary. Since

lim
|x|→∞

u(x)
|x| − ρ

= 0,

there is R = R(ε) > ρ such that u(x) ≤ ε(|x| − ρ) for all |x| ≥ R. Let

vε(x) := u(0) + δ + ε(|x| − ρ), |x| > ρ.

Then
Sk(D2vε) =

(
n − 1

k

)
εk|x|−k ≤ ω(|x|), |x| ≥ ρ.

For any fixed r ≥ R, we note that u(x) ≤ vε(x) on the boundary ∂(Br(0) \ Bρ(0)).
By the comparison principle, Theorem 5.1, we have

u(x) ≤ vε(x), ρ ≤ |x| ≤ r.

Letting r → ∞, followed by sending ε → 0+, we obtain u(x) ≤ u(0) + δ for all |x| ≥ ρ.
This, together with (5.2), gives u(x) ≤ u(0) + δ in Rn. Since δ is arbitrary we see
that u(x) ≤ u(0). Since u is subharmonic, the Strong Maximum Principle shows that
u(x) = u(0) in Rn. From (5.1), we get ω(|x|) ≤ Sk(D2u(0)) = 0, contradicting the
condition ω(|x|) > 0.

1) Here
(

n−1
k

)
is interpreted to be zero for k = n.
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We wish to point out that gradient estimates analogous to those obtained in
Sections 2, 3, and 4 can also be established for viscosity solutions of equation
P(D2u) = 0, where P belongs to a related class of degenerate elliptic operators
depending on the eigenvalues of the Hessian matrix D2u. This class includes, in
particular, the partial trace operators (see [4]), corresponding to the case

P(D2u) = λi1(D2u) + . . . + λik
(D2u),

with i1 = 1 and ik = n. For details, we refer to [8].
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