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1. INTRODUCTION

In this paper, we develop a Harnack inequality for non-positive solutions of k-Hessian
equations whose lower-order terms are non-linear functions of the solution and its
gradient. We follow the methods outlined in [9, Lemma 4.1], thus extending the
Harnack inequality, [9, Theorem 4.2] given for non-positive solutions of

Sk(DQU’) =G

where ¢ is a non-negative constant. In [3], the authors show a Liouville property for
k-convex functions u € C3(R™) that satisfy Sg(D?u) =0 in R™, with u(z) = o(|z|) at
infinity. Our main result provides Harnack inequality for non-positive, k-convex, and
smooth solutions to a wide class of equations which includes

S(D?u) = a(x)|ul",

where a is a non-negative C'! function which, together with its gradient, is bounded.

We begin by recalling some basic definitions leading up to the operator S; and
some of its properties that are useful to our subsequent work. We refer the reader to
the papers in the references for more properties.

Let us denote by S™*™ the family of all n X n symmetric matrices with real entries,
and an integer 1 < k < n. Given X € §™*™ and an integer 1 < k < n, consider the
k-Hessian operator

Sk(X) := o (A(X)).
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Here, oy represents the k-th elementary symmetric polynomial of A := (A1,...,Ay);

that is
oA = D> Ay A,

1<ii<..<ixg<n

and A(X) stands for the n-tuple of real eigenvalues A\(X) = (A\y,..., ;) of X. In
particular, we note that

o1(N) =Y A, and on(A) = Adg. . A
j=1

In connection with these elementary symmetric functions, we consider the following
open and convex cones in R™, with vertex at the origin:

I'py:={AeR":0;(A)>0 forj=1,...,k}.

We note that
rrcr,crl,_;C...CcTy,

where
I*:={AeR":)\;>0j=1,...,n}.

In fact, it is known that I',, = I'". The cone I';, can also be characterized as
I'e={AeR":0<0,(\) <orA+p) V= (1, .. pn), >0, j=1,...,n}.
A function u € C?(€Q) is said to be k-convex if and only if
D*u(z) €Ty, Ve

We remark that 1-convex functions are subharmonic in €2, in the sense that D?u has
a non-negative trace in 2. Therefore, any k-convex function in 2 is subharmonic in Q.

In an open connected set Q C R”, we take X = D?u, and consider the k-Hessian
equation

Sp(D*u) = g(x,|ul) + h(z,|u))|Dul* nQ, 0<a<l, 2<k<n, (1.1)

where g, h : Q x Rf — R are given C! functions, and will be required to meet further
conditions to be specified later. Following [3, 9], we write

Ok (A) i= Uk()\)|)\j:0.
In this notation, we see that

do(A)
o,

= 0p—1;5(A).

Given a real symmetric matrix X = (2;j)nxn, We write

ar(\(X))

5P (X) = ==
iJ
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It is well-known that if u € C?(Q) is k-convex, then the k-Hessian operator is
degenerate elliptic at « in the sense that (S}’(X)) is positive semi-definite with
X = D?u. The k-Hessian operator Si(D?u) can also be written as

Sk(DQu) = [D2u]k,

where for X € S™*" we used [X]j to denote the sum of the k-th principal minors of X.
With the notation

S = Z Sit, (1.2)
i=1
we recall the following useful relation, see the identity [9, (ii) on p. 7],
S=n—k+1)Sx_1(X) for X € S"*". (1.3)

Finally, we adopt the following notations: Given an open set 2 C R", we will use
the notation B,(z) to denote a ball of radius r > 0, centered at x, and compactly
contained in 2. We will also write R{ for the set of non-negative real numbers. In this
paper, we always suppose that 0 < a < 1.

2. THE SUB-LINEAR EQUATION FOR 2 <k <n

In this section we will consider sub-linear equations (see [9, Section 6] or [3, p. 1031])
for the case 2 < k < n.

In view of this we now suppose that the non-negative non-linearities g, h in
Problem (1.1) satisfy the following conditions for some constants Cp > 0, 0 < o < 1,
and for all (z,t) € Q x R}:

(C_g) |gx(x7t)| S Cotk, ‘gt(xvt” S COtkil,
(c-h) h(z,t) + |he(z, t)] < Coth=e,  |hy(z,t)| < Coth172.

Note that if u is a non-positive k-convex solution of (1.1) in B,.(z), then —u is
a non-negative superharmonic function and hence either —u > 0 in B,.(x) or —u =0
in B,(x). In view of this, in the theorem below we will consider nowhere vanishing
k-convex solutions of (1.1).

Theorem 2.1. Suppose g,h : Q x RS‘ — ]RS' are C' functions that satisfy conditions
(c-g) and (c-h). For any nowhere vanishing k-convex solution u € C3(B,(%)),0 < r < 1,
of (1.1), the following estimate holds:

|Du(@)] < c%. (2.1)

Here, M := 4 sup |u| and C' is a positive constant that depends on n,k, and Cy only.
B (&)

Proof. The proof is an adaptation of the one given in [9]. See also [3, 7]. Let

lo — 22\ " 1
3 s and So(t):m7 t< M.

o(z) = (1 -

r
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It is easy to see that

‘We also note that

Let us consider the following auxiliary function

G(x,6) = ug(z)p(u(@))e(), (2,€) € By(7) x "7,

where S"~! C R™ is the unit sphere. We note that G(z,£) = 0 for |z — & = r
and £ € S"~1. Suppose G(x, ) attains its maximum at (xg,&y). We begin with some
preliminaries. By rotating coordinates we can assume that £, = e; = (1,0,...,0).
Then it follows that Du(zg) = (u1(20),0,...,0). We must have uy(z9) > 0 (recall that
G = 0 on the boundary of B,.(Z)). We also make a further rotation of coordinates
so that u;; = 0 at zo for 4,5 > 2, ¢ # j. Let us write p; = uy; for 1 <4 < n, and

p:= (fi1,- .., in). As noted in [3], we have the following equation at zy and will be
used later.
Sp-1(D*u) = SEH(D*u) + unSp—oa (1) — Y ud;Shs.14(1)- (2.4)
i=2

From now on we write G(z) := G(z,&) for © € B,(Z). Moreover, all the quantities
will be evaluated at zy. We have G;(zg) = 0 and {G;;(zo)} < 0. Thus,

U1
wi=-_ (ui' 0 + poi) - (2.5)
Moreover, we compute
Gij = urijp(u)o + uri@ (u)ujo + urip(u)oj + urj@ (u)uio + ur@” (u)uiuzo
+ ure’ (w)uijo + ur@’ (w)uioj + urje(u) o + w1 (u)ujo; + u1p(u) ;.

Therefore, we find

0> S;ijGij = wQS;ijuz‘ﬂ + QS,ijuu (uje' o+ poj) + Ul‘;ONQS]ijuiuj

+ ulga’gS,ijuij + ule,ijQij + ulcp/S',ij (ui0; + ujos) -

Let us compute

Uy
uy; (uj0'o + wo5) = —— (i’ 0 + @oi) (uj’ 0 + o))
_ N2 2 / / 2
=" (uiu (@)% 0% + uipe 00j + ujpe’ 00; + ©*0i05)
\2
= Qul(i)uiuj - UluiSOIQj - ulujﬁplgi - Ul%@i@j-
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Hence,

.. .. , 2 P . ..
0> S5Gij = poSPuij1 — 20un (@SO)SZJWW — dur 'SP ui0; — 2u1%5‘;§ 0i0;

+urg” 08 uiuy + ur' 05 ui; + w1 Sy 04 + 2u19' S ui0;.

On using (2.3), from the latter inequality we find

ij ij 1.5 ij ij
0> S/Gij = oSy wijn + gu11—6M gSk]uiuj — 2u1¢' S w05 2
- - 2.6
- 2U1%52]Qi0j + w105y 0.

Note that we have omitted the term ulw’gS,ijuij because
urp' 08y iy = kurp o (g(x, [ul) + h(x, u])| Dul*) > 0.

Now let us assume that 20M
Du(@)] > 2, (27)

for otherwise there is nothing left to show.

Let us first make the following observation. Since G(z,&) takes its maximum
in B,.(Z) x S~ at (x0,&) we have

Du() - &p(u()) < ur(zo)p(u(wo))o(wo), VEe€ S

By considering & := Du(&)/|Du(Z)| in the above relation, and on recalling (2.2),
we find
Du(@)| < 2ur0. (28)

Therefore,
1 10M
uLo > §|Du(§:)| > - (2.9)

Using this and (2.5), let us show that

3¢ 1¢

For this, we first note that 2r|g;| < 4 and 4(M — u) < 5M. These inequalities,
together with 2¢’'(M — u) = ¢, show that

5M '
2 < =10M —. 2.11
rlorl < o = 10ar% 2.11)

Note that by (2.9) we have 10M < rpu;, which on using in (2.11), leads to

/ /

—gulg < 201 < ﬁulg. (2.12)
® '
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We now multiply all sides of (2.12) by %, and then add —£u3 to obtain

/
ST (2.13)

On taking ¢ = 1 in (2.5), we get

!
Uil = —u%ﬁ — % (2.14)

2 Y

Inserting (2.14) in (2.13) leads to the claimed inequality (2.10).
Note that (2.9) implies
1 T
— < —. 2.15
oo S0 (2.15)
Now we estimate the term S,ijuijl. For this we differentiate Equation (1.1) with
respect to the first variable 1. We find the following at ¢, on recalling that u;(2o) =0
for j > 2,

S wigt = o, (@ lul) + (sgnw)ge(@, Jul)ur + he, (2, [u))uf + (sgnw)h (e, fuljui ™
+ ah(z, |Ju)ug ™ty . (2.16)
Using conditions (c-g) and (c-h), we estimate (2.16) as follows.

Siluijt > —18y uijnl
> ~[ga, (@, |ul)| = lge (2, Jul)lur — |ha, (2, [u))[uf — (@, [u]) [uf*!

= [uaa[[A(z, [ul)|uf ™ (2.17)
> —Co (Jul® + [u* s + a0 + [ o )
>

_ _ _1- 3 k- '
—Cy <u|k+u|k 1u1—|—|u|k au‘f+|u\k 1 au?+1+§‘u|k au?+1i),

where the left inequality of (2.10) has been used to get (2.17). Let us show that

/
Sl < g,

Indeed, since |u| < M/4, we have

!
o Bl
4(M — u)

In view of this remark, we can write (2.17) as

Siluig > =200 (|uf* + [u* ey + ful* " + o 0ug ) (218)
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Using (2.18) in (2.6) we find
0> SlijGij > —QCoapQ (|u\k + Jul* Ly + |ulF g + |u|k_1_aui"+1)
+ 16M 2u195 i (2.19)
— 2u1¢' S} w05 — 2U1§5;? 0i0; + u1pS; 0ij.
By Young’s inequality, we have
g y /2 , .. 1/2
257 uj0; <2 (S?um» ( ,?Qigj) < ES g+ Sk 0i0j. (2.20)
With the choice of
€= iM75/2£,
32 4
we now use inequality (2.20) in (2.19) to get,
0 Z _200909 (|u‘k + |u‘k—1u1 4 |u|k—au? 4 |u|k—a—1utlx+1)
Lo 52 ij
+ 3—2M u1 05, uiu; (2.21)

32M5/2( Q) ulS’k 0i0j — 2u1%5,1jgigj + ulgpS,ijgij.

In subsequent calculations it will be convenient to denote any positive constant that
depends at most on k, n, and Cy by C, and its value may vary from line to line.

Recalling that u;(z9) = 0 for i = 2,...,n, we find
Slijuiuj = Situ?,

and

1 - 1
EM_F’/zulgSguiuj = 3—2M 52, oSitu?.

Moreover, since

4
Sy 0i0; < tr((S2))IVol? < 7?257

we find
S
32M5/2( ) U1Sk 0i0j > CM,l U12
Y or
and <
—2U1£Sk cQZQ] Z C’J\47luq2
o or
Finally, since
0ij
0ij = —T—zj, d;; = Kronecker delta,
we find
1 ul'S 1 ulS

ulgaSk 0ij > SM’*T—2 > —8M™ gr2’

(2.22)

(2.23)

(2.24)

(2.25)
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Using (2.22), (2.23), (2.24) and (2.25) in (2.21) we find

1
0> =Cipo (Jul® + [ul*~ o + [uf 2w + fu 7T ) 4+ S M7 S ud
—omhs
or

Multiplying both sides of this inequality by 32M5/29%, we find

3 (1, 1k k k k—1 1 2, sci, 3 M
0> —Copo® (Jul* + [ul"tur + [u]""*ug + [u|* 17 ut )MS/ +o SklulfCT—QSgul,
and thus

M? _ — —l-a,a
(0u1)* 811 < O Sous + Cooo® (Jul® + ul* by + ul* g + a1 oug 1) M5/2,
(2.26)

Multiplying both sides of (2.26) by S~!(ou;)~2 and using (2.15) we obtain

Quls'ilS_l
M2 U k U k:—lu U k:—aua U k:—l—ozuOrH

SC 2_'_09093(' | 2_’_| ‘ 21+| ‘ 21+| ‘ 21 >M5/28_1
ourr (ou1)*  (ow1) (ou1) (ou1)

<0 M2 +CM2<u|kQ3 ‘ulk—ng |u|k—o¢Q3—a |u|k:—l—ozg2—a)8_1

+
ourr? (ou1)? ouy (oup)?~ (oup)t—

< O oM (ulf ()2l (e ()l () ) s

M M glul® | o air salul o Gfulf Y
SCT+C’T<T Sy [ul" ™ 4 et =)

(2.27)

where we have used the inequality o(z) < 1 and 0 < a < 1. To find a bound for
S~ let (p1,...,pn) with p; > ... > p, be the eigenvalues of D?u at zg. Then, at g,
we have

pn < ¢TD?ug,

for any unit vector n € R™. Taking { = e; we see that elTD2u(x0)el = u11. Hence,

! 1
Pn Supr < *ﬂuf < 1

Now we observe that at zg

0 <g(z, |ul) + h(z, [u])|Dul® = o%(p1;- - s pn)

= pn0k-1(p1, - Pn—1) + ok(p1, - pn1)

< Pn0k=1(p1y -+ pua1) + C [0 (p1y - - pr)] 7Y
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where, for the last inequality, [9, (vi) on p. 7] has been used, with a positive constant
C' that depends on n and k only. Hence,

—pn < C(Uk—l(ph cee apn—l))l/(k71)~ (229)

From (2.28) and (2.29), we find

u2k—2
Sgnzak—l(pla"'vpn 1)>C|p |k ! >CMk; 1° (230)
Note that, since S is invariant under rotation, we have
S=S14 . 45m=814. . 48
Therefore, (2.30) implies that
u%k 2
§2Con (2.31)

From (2.9), we have

M
r

1
Uy > U0 > §|D“(3~3)‘ > —

Using this in (2.31), we find that

k—1

5§20 5.

Employing this last inequality in (2.27), we obtain, on recalling that 0 < r < 1,

QU1S,}:1871

soreT

M. M [ul\ ul —aflul\ k- —aflul\k—a-
< 2k+1 k—1 2kH —oa [ 1P Y E—a 2k—a [ 1Y Vk—a—1
<o () () b (M (i

<cM

r

(2.32)

where C' is a positive constant that depends on n, k and Cj only.
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Recalling that ui; < 0 at zg, we use (2.4) to find S{' > Sk_;1. From (1.3), with
X = D?%u(zg), we have Sy_1 = (n — k + 1)~1S. From these two relations, we obtain

SHSTt>(n—k+1)71
Using this in (2.32) we see that
M
ou; < C—. (2.33)
r

From (2.8) and (2.33) we find that
M
|Du(z)| < CT’

as was to be shown. O

Theorem 2.2. Let g,h : Q x Rf — R satisfy conditions (c-g) and (c-h). Then
there is a positive constant C that depends on n,k, and Cy only such that for any
non-positive k-convex solution u € C3(Bg(0)), 0 < R <1, of (1.1) we have

sup (—u) <C inf (—u 2.34
P (W <O inf (- (2.34)

Proof. The Harnack inequality now follows from Theorem 2.1, [9, Lemma 4.1],
and the same argument used to prove [9, Theorem 4.2]. In fact, by Theorem 2.1, and
[9, Lemma 4.1] we have

c
Bitlﬁo)(*U) < mB [O | (—u). (2.35)

Since u is subharmonic, we also have

1 .
|Br(0)] / (Fu) < OBzglaf(O)(_u)' (2.36)
Br(0)

The conclusion follows from (2.35) and (2.36). O

3. THE SUPER-LINEAR EQUATION FOR THE CASE 2 <k <n

It is also possible to obtain Harnack inequality for a family of smooth, non-positive
and k-convex solutions of super-linear equations (see [9, Section 6] or [3, p. 1031])
that are bounded in the uniform metric of C°. These class of equations include those
of the form

Sk(D*u) = |ulP, p>k.
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For p > k we assume conditions similar to (c-g) and (c-h) with p in place of k; that is
we suppose the following hold in 2 x Rar for some Cyp >0, p>kand 0 <o < 1.

(p'g) |gw(xat)| < Cotp’ |gt($7t)| < Cotp_l,
(p_h) h(l‘,t) + ‘hl“('rat” < Cotp_av |ht($,t)‘ < Cotp_l_a'

Given a constant L > 0, and a subset E C €, let us write F(FE) for the family of
all real-valued functions on E that are bounded by L.

Theorem 3.1. Suppose g,h: Q x Ry — Ry are C* functions that satisfy conditions
(p-g) and (p-h). Given a constant L > 0, then for any nowhere vanishing k-convex
solution u € C3(B,.(2)) N FL(B1(7)), 0 <r < 1, of (1.1), the following estimate holds:

Du(@) < . (3.1)

Here, M :=4 supBT(j)|u| and C' is a positive constant that depends on n,k,p, L and
Cy only.

Proof. Consider first the case A < 1, where A := 4L. The proof is the same as that of
Theorem 2.1 until formula (2.32), which now becomes

M M 3 11—«
ou SIS < O— + 0= <|up;/[ + 2 [ufP~t 4 2 [ufPe (&)

o ro\2-a ,,,2k72
+up=et (5) M2>M“

Since M < 4 supp, (z) |u(z)| <1, and p > k we have 7+ < 37— Hence,

- M M lu\” [ \*~!
11 1< 2k+1 2k
ou1 S S _07 —|—C’7 (r <M) +7r (M

p—« p—a—1
4 p2kti-a (|“|> 4 p2k-a <U|) > (3.2)
M M

<M
T

From here on, the proof continues as in that of Theorem 2.1.
Now let A > 1. Putting u = Av, equation (1.1) implies

Sp(D*v) = A~F [9(z, Av) + h(z, Av)A®|Dv|*] in B,(%). (3.3)
If we put §(z,t) :== A *g(z, At) and h(z,t) := A**h(z, At), equation (3.3) reads as
Sp(D*v) = §(z,v) + h(z,v)|Dv|*  in B,(Z).

From (p-g) and (p-h) we find
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(A-g) |Ga(a, t)] < APTRCotP,  |ge(z,t)] < APTFCotr~t,
(A-h) h(z,t) + [ha(w,8)] < APFCotr=2, |hy(, £)] < APFCotr oL,

Now the proof is the same as before and uses (A-g) and (A-h), instead of (p-h)
and (p-g). One finds

M
|Du(Z)| SCT’ 0<r<l1, (3.4)
where,
M :=4 sup |v|,
B,.(&)

and C' is a positive constant that depends on n, k, p, L and Cj only.
Since u = Av, (3.4) implies

M
|Du(Z)] < 07’ 0<r<1,

with

M :=4 sup |ul.
B.(7)

The theorem is proved. O
Clearly, we also have the following theorem.

Theorem 3.2. Suppose g,h : Q x RS‘ — ]Ra' are C' functions that satisfy conditions
(p-g) and (p-h). Given a constant L > 0, then for any nowhere vanishing, non-positive,
and k-convez solution u € C3(Br(0)) N FL(B1(0)), 0 < R < 1, of (1.1), there is
a positive constant C, that depends on n,k,p, L, and Cy only, such that

sup (—u) <C inf (—u).
BR/Q((])( ) BR/z(O)( )

Proof. The proof uses (3.4) and is the same as that of Theorem 2.2. O

4. THE SUB/SUPER-LINEAR EQUATION FOR THE CASE k =1

We have proved our previous results for k£ > 2. Now we discuss the case k£ = 1. Consider
the equation
Au = g(x, |u|]) + h(z)|Du| in Q, (4.1)

where g : @ x Rf — R{ and h : @ — RJ are non-negative C'! functions satisfying,
for some constant Cy > 0,

(C/'g) |gw(m7t)| S Cot, |gt($at)| S CO? t> Oa
(¢’-h) h(z) + |he(z)] < Co.

It is conceivable that the Harnack inequality for equation (4.1), under assumptions
(¢’-g) and (c’-h), has been addressed in the existing literature. However, in the absence
of specific references known to us, we have elected to include a discussion of the
Harnack inequality for non-negative solutions of (4.1).
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Theorem 4.1. Suppose g : @ x Rj — Ry and h : Q — Rb” are non-negative C*
functions that satisfy conditions (c’-g) and (c’-h). For any nowhere vanishing solution
u € C3(B.(2)), 0 <r <1, of (4.1), the following estimate holds:

|Du(z)| < O%. (4.2)
Here, M := 4supg, (z) lu| and C is a positive constant that depends on n and Cy only.
Proof. We use the same notations as in the proof of Theorem 2.1. Let us compute
Auy = ga, (@, [ul) + (sign w)ge(@, [ul)ur + ha, (#)ur + h(@)uas. (4.3)
Using (¢’-g) and (¢’-h) and the left inequality of (2.10) in (4.3), we find
|[Auy| < C’O(|u| + 2ug + \u11|)

! 4.4
P
Since ,
W3 _1
20 AM—-u) — M
from (4.4) we find
ui
|Auy| < 2Co(|u| +uy + M)' (4.5)

Using the estimate (4.5), we now proceed as in the proof Theorem 2.1, up to (2.26).
Since in case of k = 1 we have S{! = 1 and S = n, the inequality (2.26) becomes

3 M? 3 ui 5/2
(oup)” < CT—qul + Cpo° | |u|l +u1 + i M>/= (4.6)

where the constant C' depends on n and Cj only. Multiplying both sides of (4.6) by
(ou1)~?2 and using the estimate

we obtain

M? 1 21 5
reoouy (

(owm)?  owm M
2
<™y one <|u|(7") 4 1)
T

M 3 2
r

M M M
M M
=C—+C— (r3|u|+7’2+r)
r r M
<cM.
r

where we have used the inequalities g(z) < 1and 0 <r < 1.
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We have found \
oup < CT. (4.7)

From (2.8) and (4.7), it follows that

M
Du(@)] < €=,

as was to be shown. O

Theorem 4.2. Let g and h be as in Theorem 4.1. Then there is a positive constant C
that depends on n and Cy only such that for any non-positive solution u € C3(Br(0)),
0< R<1, of (4.1) we have

sup (—u) <C inf (—u). 4.8
S () SO int () (48)
Proof. The proof uses Theorem 4.1 and is the same as that of Theorem 2.2. O

Consider now Equation (4.1) with g and h satisfying, for some p > 1,

(p-8) lg2(z, )] < Cot?, |gu(x,1)] < Cot? ™, £ >0,
(p"-h) h(z) + |he(x)] < Cot?~L.

As in (4.3), we have
Auy = ga, (2, [u]) + (sign w)gi(z, [ul)ur + he, (2)ur + h(z)urs-

Using (p’-g) and (p’-h) and the left inequality in (2.10), from the latter equation
we find

|Auy| < Co(Jul? + 2fulP~ uy + [uP~ us])

/ 1.9
< Colul + 20 ur + a3 L2 Y
2
Since , )
3 <
20 M
from (4.9) we find
2
|Auy| < 200(\u|p P+ mw—l%). (4.10)

As in the previous Section, given a constant L > 0 and a subset F C €, let us
write Fr(E) for the family of all real-valued functions on E that are bounded by L.

Theorem 4.3. Suppose g : Q@ x R — R} and g : Q@ — R{ are C' functions that
satisfy conditions (p'-g) and (p’-h). Given a constant L > 0 then, for any nowhere
vanishing solution u € C3(B,.(%)) N Fr(B1(%)), 0 < r < 1, of (4.1), the following
estimate holds:

Du(®)] < c%. (4.11)

Here, M := 4 supp |u| and C is a positive constant that depends on n,p, L
and Cy only.



A short note on Harnack inequality for k-Hessian equations. . . 69

Proof. Consider first the case A < 1, where A := 4L. For the proof we may start from
the inequality (4.6) replacing estimate (4.5) by estimate (4.10). We find

3 M 3 p p—1 p—1 u% 5/2
(ou1)” < CTTQUI + Cpo” ( ul” + [ulP™ ur + [ul i M

M2
< C’T—zgul + Co®M (M|uP + MulP~ uy + |ufP~ ul) .

Since M < 4 supp ;) [u(z)| <1, and p > 1 we have 1 < 27— Hence, on using (2.33)
we find

M? 1 0® 1 1 1
<C—_—1+CM | MlulP Mo3|ulP~ ! 3, p—1,2 + \ L
i1 <O b OM (MY L M P i o Pl ) 1
M r? r 1
- Pl p—1__ p—1
<C . +CM (Mu| e +Mul M+|u| ) =
MM sfulNe g lul\PTuf P
oot CT<T (Gr) +G) +(5p)
<
r
(4.12)
If A > 1, one puts u = Av and continues as in the proof of Theorem 3.1. One finds
(4.12) again, but now C depends on n,Cy and L. The theorem is proved. O

Clearly, we also have the following theorem.

Theorem 4.4. Let g and h be as in Theorem 4.3. Given a constant L > 0, then for
any nowhere vanishing, non-positive solution u € C3(Bgr(0)) N Fr(B1(0)), 0 < R <1,
of (4.1), there is a positive constant C, that depends on n,p, L, and Cy only, such that

sup (—u) < C inf (—u).
BR/Z(O)( ) BR/z(O)( )

Proof. The proof uses Theorem 4.3 and is the same as that of Theorem 2.2. O

5. A LIOUVILLE-TYPE THEOREM

In [3, 9], it is noted that any k convex solution u € C3(R") of S(D?*u) = 0 in R"
is a constant. The proof relies on the interior gradient estimate derived therein.
Here, we prove a type of Liouville theorem for k-convex solutions u € C?(R") of
Si.(D%*u) > w(|z|), where w(t) is a positive and non-decreasing continuous function.
Our proof relies on a standard comparison principle, which we recall here for the
reader’s convenience. See [6] for a more general result.

Theorem 5.1. Let Q C R” be a bounded open set, and suppose that u,v € C?*(Q)NC(Q)
are k-convex functions such that

Si(D?*u) > Si(D*v) in Q.
If u <wv on 99, then u <wv in .
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Now we state and prove the following Liouville theorem.

Theorem 5.2. Suppose u € C*(R") is a k-convex solution of
Sr(D*u) > w(|z|) in R™ (5.1)
for some continuous and non-decreasing function w : Rj — RS‘ with w(t) > 0 fort > 0.

Then
lim sup M > 0.

Proof. Suppose the conclusion fails. Then u(x) = o(|z|) as |z] — co. We may assume
that «(0) > 0; for otherwise, we can replace u(z) by u(z) — u(0). Given § > 0, we
select p = p(d) > 0 such that

u(z) <u(0)+94, € B,(0). (5.2)

Let us fix g9 := go(n, k, p, ¢) > 0 small enough such®) that

n—1
Let 0 < € < gg be arbitrary. Since

11m

9

there is R = R(e) > p such that u(x) < e(|z| — p) for all |z| > R. Let
velw) = w(0) + 6 + (] — ), J2] > p.
Then

n—1
D) = (" )Ml <ol el 2

For any fixed » > R, we note that u(z) < v.(z) on the boundary 9(B,(0) \ B,(0)).
By the comparison principle, Theorem 5.1, we have

u(@) <ve(z), p<lz|<r

Letting r — oo, followed by sending € — 0%, we obtain u(z) < u(0) + ¢ for all |x| > p.
This, together with (5.2), gives u(x) < u(0) 4+ ¢ in R™. Since § is arbitrary we see
that u(x) < w(0). Since u is subharmonic, the Strong Maximum Principle shows that
u(x) = u(0) in R™. From (5.1), we get w(|z|) < Sk(D?*u(0)) = 0, contradicting the
condition w(|z|) > 0. O

1 Here (";1) is interpreted to be zero for k = n.
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We wish to point out that gradient estimates analogous to those obtained in

Sections 2, 3, and 4 can also be established for viscosity solutions of equation
P(D?u) = 0, where & belongs to a related class of degenerate elliptic operators
depending on the eigenvalues of the Hessian matrix D?u. This class includes, in
particular, the partial trace operators (see [4]), corresponding to the case

P (D*u) = N\, (D*u) + ... + N\, (D?u),

with ¢; = 1 and i, = n. For details, we refer to [8].
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