Opuscula Math. 46, no. 1 (2026), 41-54
https://doi.org/10.7494/OpMath.202512101
Opuscula Mathematica
Wintner-type asymptotic behavior of linear differential systems with a proportional derivative controller
Abstract. This study investigated the asymptotic behavior of linear differential systems incorporating a proportional derivative-type (PD) differential operator. Building on the classical asymptotic convergence property of Wintner, a generalized Wintner-type asymptotic result was established for such systems. The proposed framework encompasses a wide class of time-varying coefficient matrices and extends classical asymptotic theory to equations governed by PD operators. An illustrative example is presented to demonstrate the applicability of the proposed theorem.
Keywords: Wintner-type, asymptotic behavior, linear differential systems, proportional-derivative controller.
Mathematics Subject Classification: 34D05, 26A24.
- T. Abdeljawad, On conformable fractional calculus, J. Comp. Appl. Math. 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
- M. Abu-Shady, M.K. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng. 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803
- N. Aliman, R. Ramli, S.M. Haris, M.S. Amiri, M. Van, A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton, Eng. Sci. Technol. Int. J. 35 (2022), 101097. https://doi.org/10.1016/j.jestch.2022.101097
- D.R. Anderson, Even-order self-adjoint boundary value problems for proportional derivatives, Electron. J. Differ. Equ. 2017 (2017), 1-18.
- D.R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Appl. Nonlinear Anal. 24 (2017), 17-48.
- D.R. Anderson, S.G. Georgiev, Conformable Dynamic Equations on Time Scales, CRC Press, Boca Raton, FL, 2020.
- D.R. Anderson, D.J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109-137.
- H. Arfaoui, A. Ben Makhlouf, Stability of a fractional advection-diffusion system with conformable derivative, Chaos Solitons Fractals 164 (2022), 112649. https://doi.org/10.1016/j.chaos.2022.112649
- K. Balachandran, An Introduction to Fractional Differential Equations, Springer Nature Singapore Pte Ltd., 2023.
- F. Brauer, Asymptotic equivalence and asymptotic behaviour of linear systems, Michigan Math. J. 9 (1962), 33-43. https://doi.org/10.1307/mmj/1028998618
- F. Çetinkaya, A review of the evolution of the conformable derivatives, Funct. Diff. Equ. 29 (2022), 23-37. https://doi.org/10.26351/fde/29/1-2/2
- F.A. Çetinkaya, T. Cuchta, Sturm-Liouville and Riccati conformable dynamic equations, Adv. Dyn. Syst. Appl. 15 (2020), no. 1, 1-13.
- H. Chhabra, V. Mohan, A. Rani, V. Singh, Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator, Neural Comput. Appl. 32 (2020), 2055-2079. https://doi.org/10.1007/s00521-019-04074-3
- W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D.C. Heath and Company, Boston, MA, 1965. https://doi.org/10.2307/2315010
- F. Gao, C. Chi, Improvement on conformable fractional derivative and its applications in fractional differential equations, J. Funct. Spaces 2020 (2020), 5852414. https://doi.org/10.1155/2020/5852414
- P. Hartman, Ordinary Differential Equations, SIAM, Philadelphia, 2002. https://doi.org/10.1137/1.9780898719222
- K. Ishibashi, Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations, Opuscula Math. 43 (2023), 67-79. https://doi.org/10.7494/opmath.2023.43.1.67
- K. Ishibashi, Wintner-type nonoscillation theorems for conformable linear Sturm-Liouville differential equations, Opuscula Math. 44 (2024), 727-748. https://doi.org/10.7494/opmath.2024.44.5.727
- K. Ishibashi, Riccati technique and nonoscillation of damped linear dynamic equations with the conformable derivative on time scales, Results Appl. Math. 25 (2025), 100553. https://doi.org/10.1016/j.rinam.2025.100553
- K. Ishibashi, M. Onitsuka, Oscillation criteria of the Leighton-Wintner-type and the Hille-Kneser-type for linear differential equations with a proportional derivative controller, Math. Methods Appl. Sci. 45 (2025), 16690-16699. https://doi.org/10.1002/mma.70119
- U.N. Katugampola, A new fractional derivative with classical properties, (2014), arXiv:1410.6535.
- R. Khalil, M.A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
- S. Khan, Existence theory and stability analysis to a class of hybrid differential equations using confirmable fractal fractional derivative, Journal of Fractional Calculus and Nonlinear Systems 5 (2024), no. 1, 1-11. https://doi.org/10.48185/jfcns.v5i1.1103
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies, Amsterdam, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)80001-0
- A. Moulai-Khatir, A. Cherraf, On asymptotics of some conformable differential equations, J. Fract. Calc. Appl. 14 (2023), no. 1, 147-156.
- M.D. Ortigueira, J.A.T. Machadob, What is the fractional derivative?, J. Comput. Phys. 293 (2015), 4-13. https://doi.org/10.1016/j.jcp.2014.07.019
- M. Pasic, S. Tanaka, Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order, J. Math. Anal. Appl. 381 (2011), no. 1, 27-42. https://doi.org/10.1016/j.jmaa.2011.03.051
- L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dyn. Control 11 (2023), 1276-1284. https://doi.org/10.1007/s40435-022-01061-w
- M.S. Souid, A. Benkerrouche, S. Guedim, S. Pinelas, A. Amara, Solvability of boundary value problems for differential equations combining ordinary and fractional derivatives of non-autonomous variable order, Symmetry 17(2) (2025), 184. https://doi.org/10.3390/sym17020184
- A. Wintner, An Abelian lemma concerning asymptotic equilibria, Amer. J. Math. 68 (1946), 451-454. https://doi.org/10.2307/2371826
- A. Wintner, Asymptotic integration constants, Amer. J. Math. 68 (1946), 553-559. https://doi.org/10.2307/2371784
- L.G. Zivlaei, A.B. Mingarell, On the basic theory of some generalized and fractional derivatives, Fractal Fract. 6 (2022), 672. https://doi.org/10.3390/fractalfract6110672
- Kazuki Ishibashi
https://orcid.org/0000-0003-1812-9980- Department of Civil and Environmental Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Communicated by Josef Diblík.
- Received: 2025-08-01.
- Revised: 2025-10-14.
- Accepted: 2025-12-10.
- Published online: 2026-01-27.

