Opuscula Math. 46, no. 1 (2026), 41-54
https://doi.org/10.7494/OpMath.202512101

 
Opuscula Mathematica

Wintner-type asymptotic behavior of linear differential systems with a proportional derivative controller

Kazuki Ishibashi

Abstract. This study investigated the asymptotic behavior of linear differential systems incorporating a proportional derivative-type (PD) differential operator. Building on the classical asymptotic convergence property of Wintner, a generalized Wintner-type asymptotic result was established for such systems. The proposed framework encompasses a wide class of time-varying coefficient matrices and extends classical asymptotic theory to equations governed by PD operators. An illustrative example is presented to demonstrate the applicability of the proposed theorem.

Keywords: Wintner-type, asymptotic behavior, linear differential systems, proportional-derivative controller.

Mathematics Subject Classification: 34D05, 26A24.

Full text (pdf)

  1. T. Abdeljawad, On conformable fractional calculus, J. Comp. Appl. Math. 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
  2. M. Abu-Shady, M.K. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng. 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803
  3. N. Aliman, R. Ramli, S.M. Haris, M.S. Amiri, M. Van, A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton, Eng. Sci. Technol. Int. J. 35 (2022), 101097. https://doi.org/10.1016/j.jestch.2022.101097
  4. D.R. Anderson, Even-order self-adjoint boundary value problems for proportional derivatives, Electron. J. Differ. Equ. 2017 (2017), 1-18.
  5. D.R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Appl. Nonlinear Anal. 24 (2017), 17-48.
  6. D.R. Anderson, S.G. Georgiev, Conformable Dynamic Equations on Time Scales, CRC Press, Boca Raton, FL, 2020.
  7. D.R. Anderson, D.J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109-137.
  8. H. Arfaoui, A. Ben Makhlouf, Stability of a fractional advection-diffusion system with conformable derivative, Chaos Solitons Fractals 164 (2022), 112649. https://doi.org/10.1016/j.chaos.2022.112649
  9. K. Balachandran, An Introduction to Fractional Differential Equations, Springer Nature Singapore Pte Ltd., 2023.
  10. F. Brauer, Asymptotic equivalence and asymptotic behaviour of linear systems, Michigan Math. J. 9 (1962), 33-43. https://doi.org/10.1307/mmj/1028998618
  11. F. Çetinkaya, A review of the evolution of the conformable derivatives, Funct. Diff. Equ. 29 (2022), 23-37. https://doi.org/10.26351/fde/29/1-2/2
  12. F.A. Çetinkaya, T. Cuchta, Sturm-Liouville and Riccati conformable dynamic equations, Adv. Dyn. Syst. Appl. 15 (2020), no. 1, 1-13.
  13. H. Chhabra, V. Mohan, A. Rani, V. Singh, Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator, Neural Comput. Appl. 32 (2020), 2055-2079. https://doi.org/10.1007/s00521-019-04074-3
  14. W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D.C. Heath and Company, Boston, MA, 1965. https://doi.org/10.2307/2315010
  15. F. Gao, C. Chi, Improvement on conformable fractional derivative and its applications in fractional differential equations, J. Funct. Spaces 2020 (2020), 5852414. https://doi.org/10.1155/2020/5852414
  16. P. Hartman, Ordinary Differential Equations, SIAM, Philadelphia, 2002. https://doi.org/10.1137/1.9780898719222
  17. K. Ishibashi, Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations, Opuscula Math. 43 (2023), 67-79. https://doi.org/10.7494/opmath.2023.43.1.67
  18. K. Ishibashi, Wintner-type nonoscillation theorems for conformable linear Sturm-Liouville differential equations, Opuscula Math. 44 (2024), 727-748. https://doi.org/10.7494/opmath.2024.44.5.727
  19. K. Ishibashi, Riccati technique and nonoscillation of damped linear dynamic equations with the conformable derivative on time scales, Results Appl. Math. 25 (2025), 100553. https://doi.org/10.1016/j.rinam.2025.100553
  20. K. Ishibashi, M. Onitsuka, Oscillation criteria of the Leighton-Wintner-type and the Hille-Kneser-type for linear differential equations with a proportional derivative controller, Math. Methods Appl. Sci. 45 (2025), 16690-16699. https://doi.org/10.1002/mma.70119
  21. U.N. Katugampola, A new fractional derivative with classical properties, (2014), arXiv:1410.6535.
  22. R. Khalil, M.A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  23. S. Khan, Existence theory and stability analysis to a class of hybrid differential equations using confirmable fractal fractional derivative, Journal of Fractional Calculus and Nonlinear Systems 5 (2024), no. 1, 1-11. https://doi.org/10.48185/jfcns.v5i1.1103
  24. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, North-Holland Mathematics Studies, Amsterdam, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)80001-0
  25. A. Moulai-Khatir, A. Cherraf, On asymptotics of some conformable differential equations, J. Fract. Calc. Appl. 14 (2023), no. 1, 147-156.
  26. M.D. Ortigueira, J.A.T. Machadob, What is the fractional derivative?, J. Comput. Phys. 293 (2015), 4-13. https://doi.org/10.1016/j.jcp.2014.07.019
  27. M. Pasic, S. Tanaka, Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order, J. Math. Anal. Appl. 381 (2011), no. 1, 27-42. https://doi.org/10.1016/j.jmaa.2011.03.051
  28. L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dyn. Control 11 (2023), 1276-1284. https://doi.org/10.1007/s40435-022-01061-w
  29. M.S. Souid, A. Benkerrouche, S. Guedim, S. Pinelas, A. Amara, Solvability of boundary value problems for differential equations combining ordinary and fractional derivatives of non-autonomous variable order, Symmetry 17(2) (2025), 184. https://doi.org/10.3390/sym17020184
  30. A. Wintner, An Abelian lemma concerning asymptotic equilibria, Amer. J. Math. 68 (1946), 451-454. https://doi.org/10.2307/2371826
  31. A. Wintner, Asymptotic integration constants, Amer. J. Math. 68 (1946), 553-559. https://doi.org/10.2307/2371784
  32. L.G. Zivlaei, A.B. Mingarell, On the basic theory of some generalized and fractional derivatives, Fractal Fract. 6 (2022), 672. https://doi.org/10.3390/fractalfract6110672
  • Kazuki Ishibashi
  • ORCID iD https://orcid.org/0000-0003-1812-9980
  • Department of Civil and Environmental Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
  • Communicated by Josef Diblík.
  • Received: 2025-08-01.
  • Revised: 2025-10-14.
  • Accepted: 2025-12-10.
  • Published online: 2026-01-27.
Opuscula Mathematica - cover

Cite this article as:
Kazuki Ishibashi, Wintner-type asymptotic behavior of linear differential systems with a proportional derivative controller, Opuscula Math. 46, no. 1 (2026), 41-54, https://doi.org/10.7494/OpMath.202512101

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.