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Abstract. This study investigated the asymptotic behavior of linear differential
systems incorporating a proportional derivative-type (PD) differential operator. Build-
ing on the classical asymptotic convergence property of Wintner, a generalized
Wintner-type asymptotic result was established for such systems. The proposed
framework encompasses a wide class of time-varying coefficient matrices and extends
classical asymptotic theory to equations governed by PD operators. An illustra-
tive example is presented to demonstrate the applicability of the proposed theorem.
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1. INTRODUCTION

In this study, we investigate the asymptotic behavior of solutions to linear differential
systems that involve a derivative operator based on proportional-derivative (PD)
control, as defined by Anderson and Ulness [7] below.

Definition 1.1. Let α be a fixed real number in the interval [0, 1]. Let two continuous
functions κ0 : [0, 1] × R → [0, ∞) and κ1 : [0, 1] × R → [0, ∞) satisfy

{
κ0(0, t) = 0, κ0(1, t) = 1,

κ1(0, t) = 1, κ1(1, t) = 0
and

{
κ0(α, t) ̸= 0, α ∈ (0, 1],
κ1(α, t) ̸= 0, α ∈ [0, 1).

(1.1)

Then, the differential operator Dα is defined as follows:

Dαf(t) = κ1(α, t)f(t) + κ0(α, t) d

dt
f(t), (1.2)

where κ0 and κ1 satisfy (1.1).
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For further details on the properties of the PD-type derivative operator Dα,
see [4, 5, 7]. The condition (1.1) for the PD-type derivative operator Dα defined by
Anderson and Ulness [7] is originally expressed in terms of limits. However, since the
functions κ0 and κ1 are assumed to be continuous on [0, 1] × R, the corresponding
values in (1.1) can be used directly, without expressing them as limits. The PD-type
derivative operator Dα possesses linearity, and a symbolic and algebraic framework
of calculus generalizing ordinary differential and integral calculus has already been
established by Anderson and Ulness [7]. The fundamental properties of this calculus
based on Dα are presented in Section 5 for reference. In addition, some remarks
concerning the PD-type derivative operator Dα are provided below.
Remark 1.2. From condition (1.1), we have

D0f(t) = f(t) and D1f(t) = f ′(t).

Furthermore, for arbitrary α ∈ [0, 1] and β ∈ [0, 1], DαDβ ̸= DβDα in general. How-
ever, if the two continuous functions, κ0 and κ1, are constant, then DαDβ = DβDα.
Remark 1.3. Notably, the domain and range of the PD-type derivative operator Dα

may differ from those of the classical derivative. For instance, even when the classical
derivative f ′(t) does not exist over the entire domain, the operator Dαf(t) can remain
well-defined for all t ≥ 0. As an illustrative example, consider

f(t) = tα + tr, 0 < α ≤ r < 1.

In this case, the ordinary derivative f ′(t) = αtα−1 + rtr−1 is not defined at t = 0 when
0 < α ≤ r < 1, whereas the PD-type derivative Dαf(t) remains finite and continuous
on [0, ∞). For instance, by setting

κ1(α, t) = (1 − α)tα, κ0(α, t) = αt1−α,

and using the linearity of Dα (see Section 5), the following equation is obtained:

Dαf(t) = (Dαtα) + (Dαtr) = (1 − α)(t2α + tα+r) + α2 + αrtr−α,

which shows that Dαf(t) is well-defined at t = 0 even when f ′(t) is not. The analysis
of such singular cases is beyond the scope of this study and requires further research.

Numerous studies discuss Definition 1.1 in connection with newly introduced
differential operators, such as fractional and conformable derivatives (see, e.g., [11]).
Fractional derivatives, dating back to Newton and Leibniz, are widely used in engi-
neering, physics, economics, and other sciences [24]. Traditional definitions, such as
those of Riemann–Liouville and Caputo derivatives, do not fully satisfy the properties
of ordinary derivatives [22, 26], motivating the development of new definitions that
preserve classical differential laws. Among these, the conformable derivative introduced
by Khalil et al. [22] defines

T αf(t) = lim
ε→0

f(t + εt1−α) − f(t)
ε

, t > 0, α ∈ (0, 1],

T αf(0) = lim
t→0+

T αf(t),
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and retains many properties of ordinary derivatives. Subsequent studies [1, 2, 15, 21, 32]
have extended, compared, and unified various conformable derivatives, showing that
they can often be reduced to Khalil et al.’s form via appropriate transformations.
Research on differential equations using the conformable derivative introduced by
Khalil et al. has also been actively conducted (see [8, 19, 25, 28]). If f is differentiable,
T αf(t) = t1−αf ′(t) holds. Numerous researchers have proposed various extensions to
Khalil et al.’s definition (see [9, Section 6, p. 150]). However, Khalil et al.’s definition
does not reduce to the identity operator as α → 0. To address this limitation, Anderson
and Ulness [7] introduced Definition 1.1. In fact, Definition 1.1 can partially encompass
Khalil et al.’s definition; refer to the introduction of [20] for further details. In addition,
Gao and Chi [15] conducted comparative numerical experiments with fractional
differential equations and confirmed that, by adjusting the parameter α in the present
operator, the weights of the proportional and derivative terms can be controlled, thereby
partially reproducing the approximate behavior of fractional differential operators.
In their study, they specifically set κ1(α, t) = 1 − α and κ0(α, t) = αt1−α.

Recent research in fractional calculus [23, 29] has focused on the analysis of
boundary value problems for mixed ordinary-fractional differential equations with
non-autonomous variable order, as well as hybrid differential equations (HDEs) using
the conformable fractal-fractional derivative (CFFD). These studies establish the
existence of solutions via Krasnoselskii’s fixed-point theorem and assess stability using
Ulam–Hyers and U-H Rassias approaches, providing a solid theoretical framework.
Numerical and concrete examples are also employed to validate and illustrate the
practical relevance of the theoretical results. Such research outcomes suggest poten-
tial applications in engineering and applied sciences, particularly in PD-operator
controlled systems like robotics (see [3, 13]). However, the qualitative analysis of
differential equations involving the operator defined in Definition 1.1 remains at an
early stage of development.

This study focuses on the asymptotic behavior of solutions to the system

Dαx = A(t)x, t ≥ t0 ≥ 0, (1.3)

where α ∈ (0, 1], x(t) is a two-dimensional vector-valued function and A(t) is a 2 × 2
matrix-valued function whose components are continuous on [t0, ∞). For notational
convenience, we define

x(t) =
(

x(t)
y(t)

)
, Dαx(t) =

(
Dαx(t)
Dαy(t)

)
, A(t) =

(
α(t) β(t)
γ(t) δ(t)

)
.

The uniqueness of solutions to the initial value problem associated with Sys-
tem (1.3) has already been established (see, e.g., [6, p. 118]). Particularly, when
α = 1, System (1.3) reduces to the classical two-dimensional linear differential system

x′ = A(t)x. (1.4)
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Moreover, if α(t) ≡ δ(t) ≡ 0 and β(t) > 0, then System (1.3) yields a Sturm–
–Liouville-type equation:

Dα

[
1

β(t)Dαx

]
− γ(t)x = 0. (1.5)

Recent studies have addressed the qualitative theory behind Equation (1.5)
(e.g., [5, 6, 12, 17, 18, 20]). The relationship between (1.3) and the definition proposed
by Khalil et al. is summarized below as a remark.

Remark 1.4. When κ0(α, t) = αt1−α, System (1.3) can be transformed into the
following form:

D̂αy(s) = Ã(s)y(s), s ≥ s0 = α−1/αt0, (1.6)

where D̂αy is defined by

D̂αy(s) := κ1
(
α, α1/αs

)
y(s) + s1−α dy

ds
, y(s) =

(
u(s)
v(s)

)
,

with the derivative taken componentwise, and the transformed matrix Ã(s) is given by

Ã(s) = A(α1/αs).

Indeed, letting x be a solution of (1.3) and setting

s = α−1/αt, y(s) = x(t),

we obtain
D̂αy(s) = κ1(α, t)x(t) + s1−αx′(t)ds

dt
= Dαx(t),

so that the transformed system satisfies the form shown in (1.6). In particular, for
α ∈ (0, 1), if the nonzero condition on κ1 in condition (1.1) of Definition 1.1 is relaxed,
that is, if κ1(α, t) ≡ 0 is assumed, then System (1.6) reduces to a system corresponding
to a unique case of the definition provided by Khalil et al. In this case,

D̂αy(s) = s1−α dy
ds

,

which corresponds to a special case of the PD-type operator. Therefore, investigating
the properties of solutions to (1.3) with κ0(α, t) = αt1−α also provides insights into the
properties of solutions for linear systems defined via the PD-type differential operator.

To describe the asymptotic behavior of System (1.4), a classical convergence result
obtained by Wintner was employed (see [30, 31]). Although originally established
for nonlinear systems, it has been widely applied to linear systems and serves as
a fundamental tool in the study of global asymptotic and oscillatory behavior of
solutions (see, e.g., [10, 14, 16, 27]).
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For clarity, the result of Wintner [30, 31] is restated in the context of linear systems
as follows:

Theorem 1.5 ([30, 31]). Let h be a continuous function that satisfies the following
conditions for any t ≥ t0:

(i) h(t) ≥ 0 for t ≥ t0,
(ii) |A(t)x(t)| ≤ h(t)|x(t)| for any solution x of (1.4),

(iii) lim
t→∞

t∫

t0

h(s)ds exists as a finite number.

Then, for any solution x of System (1.4) defined on [t0, ∞), there exist constants
c1 and c2 such that

lim
t→∞

x(t) =
(

c1
c2

)
.

The significance of Theorem 1.5 is as follows: Under the assumptions of Theorem 1.5,
the matrix function A(t) approaches the zero matrix as t becomes sufficiently large.
Consequently, from System (1.4), the derivative x′ approaches the zero vector, and
the solution x approaches a constant vector.

This study aims to extend and adapt the classical result, Theorem 1.5, to make
it applicable to System (1.3), which involves a PD control-type differential operator.
In particular, by comparing the asymptotic behavior of the global solutions to Systems
(1.3) and (1.4), which share the same coefficient matrix A(t), we examine how the PD
control-type differential operator affects the global asymptotic behavior.

The remainder of the study is organized as follows:
Section 2 presents Theorem 1.5, adapted for System (1.3). The proof of the main

result demonstrates that, under certain integrability and boundedness conditions
on the coefficient matrix, the global solution of System (1.3) ultimately converges.
Section 3 presents an example illustrating the main theorem. Section 4 summarizes
the results of this study, and Section 5 presents the basic differential properties of the
operator Dα to facilitate understanding of the computations.

2. MAIN THEOREM AND ITS PROOF

The following lemma is used to prove the main result:

Lemma 2.1. The following equalities and inequalities hold:

(i) x(t) · y(t) ≤ |x(t) · y(t)| ≤ |x(t)||y(t)|,
(ii) Dα|x(t)|2 = 2x(t) · (Dαx(t)) − κ1(α, t)|x(t)|2.
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Proof. The proof of (i) is straightforward. Here, we only prove (ii). By Theorems 1.5
(i) and (iii),

Dα|x(t)|2 = Dα(x2(t) + y2(t))
= Dαx2(t) + Dαy2(t)
= 2x(t)(Dαx(t)) − κ1(α, t)x2(t) + 2y(t)Dαy2(t) − κ1(α, t)y2(t)

= 2
(

x(t)
y(t)

)
·
(

Dαx(t)
Dαy(t)

)
− κ1(α, t)(x2(t) + y2(t))

= 2x(t) · (Dαx(t)) − κ1(α, t)|x(t)|2.

The main result of this study is as follows:

Theorem 2.2. Let h be a continuous function defined for all t ≥ t0 that satisfies
the following conditions:

(i) 2h(t) − κ1(α, t) ≥ 0 for t ≥ t0,
(ii) |A(t)x(t)| ≤ h(t)|x(t)| for any solution x of (1.3),

(iii) lim
t→∞

t∫

t0

(2h(s) − κ1(α, s))dαs exists as a finite number,

(iv) lim
t→∞

t∫

t0

h(s)e0(t, s)dαs exists as a finite number.

Then, for every solution x of System (1.3) defined on [t0, ∞), there exist constants
c1 and c2 such that

lim
t→∞

x(t) =
(

c1
c2

)
.

Here, e0(t, s) = e
−
∫ t

s
κ1(α,τ)dατ , where dαs = ds/κ0(α, s) (for details, see Section 5).

Theorem 2.2 shows that every solution of the system converges to a finite constant
vector as t → ∞. The key steps include:

1. Construct an energy function: Define

H(t) = e2h(t, t0) = exp




t∫

t0

(2h(s) − κ1(α, s)) dαs


 ,

which is positive and bounded.
2. Monotonicity: The quantity |x|2/H(t) is α-decreasing, ensuring that x remains

bounded.
3. PD-type integral transformation: The weighted integral with e0(t, s) applied to the

derivative converges.
4. Convergence: As the integral converges, each component of x has a finite limit.
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The key idea is that, by interpreting H(t) as an energy function, its decrease over
time guarantees the boundedness and convergence of all solutions. The detailed proof
of Theorem 2.2 is presented below.

Proof. From Lemma 2.1(i) and Assumption (ii) of Theorem 2.2, we obtain

x(t) · (Dαx(t)) ≤ |x(t)||Dαx(t)| = |x(t)||A(t)x(t)| ≤ h(t)|x(t)|2. (2.1)

We define function H(t) as

H(t) := e2h(t, t0) = exp




t∫

t0

(2h(s) − κ1(α, s))dαs




= exp




t∫

t0

2h(s) − κ1(α, s)
κ0(α, s) ds


 .

For any t ≥ t0, Assumptions (i) and (iii) of Theorem 2.2 yield

0 < H(t) ≤ exp




∞∫

t0

(2h(t) − κ1(α, t))dαt


 = L (2.2)

for some constant L > 0. Because

DαH(t) = 2h(t)H(t),

we apply Theorem 5.3(iv), Lemma 2.1(ii), and (2.1) to compute

Dα

( |x(t)|2
H(t)

)
= H(t)(Dα|x(t)|2) − |x(t)|2(DαH(t))

H2(t) + |x(t)|2
H(t) κ1(α, t)

= 2x(t) · (Dαx(t)) − κ1(α, t)|x(t)|2 − 2|x(t)|2h(t)H(t)
H2(t)

+ |x(t)|2
H(t) κ1(α, t)

= 2
H(t) (x(t) · (Dαx(t)) − h(t)|x(t)|2) ≤ 0.

Thus, |x|2/H(t) is α-decreasing (Definition 5.4 and Theorem 5.5). Using the inequality

0 < e0(t, t0) = e
−
∫ t

t0

κ1(α,s)
κ0(α,s) ds ≤ 1,

we obtain
|x(t)|2
H(t) ≤ |x(t0)|2

H(t0) e0(t, t0) ≤ |x(t0)|2.
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Hence, from (2.2), it follows that

|x(t)|2 ≤ |x(t0)|2H(t) ≤ |x(t0)|2L = M,

for some constant M > 0. Therefore,

|Dαx(t)| = |A(t)x(t)| ≤ h(t)|x(t)| ≤
√

Mh(t).

However, noting that

|Dαx(t)| =
√

(Dαx(t))2 + (Dαy(t))2 ≥
√

(Dαx(t))2 = |Dαx(t)|,
we obtain

|Dαx(t)| ≤
√

Mh(t). (2.3)
Multiplying both sides of (2.3) by e0(τ, t) and integrating from t0 to t based on the
α-integral yields

t∫

t0

|Dαx(s)|e0(t, s)dαs ≤
√

M

t∫

t0

h(s)e0(t, s)dαs. (2.4)

By letting t → ∞ in (2.4), Assumption (iv) of Theorem 2.2 ensures that

lim
t→∞

t∫

t0

|Dαx(s)|e0(t, s)dαs = lim
t→∞

t∫

t0

∣∣∣∣
(Dαx(s))e0(t, s)

κ0(α, s)

∣∣∣∣ ds

converges. Therefore, by using absolute integrability and Theorem 5.3(vi), we have

lim
t→∞

t∫

t0

(Dαx(s))e0(t, s)dαs = lim
t→∞

x(t) − lim
t→∞

x(t0)e0(t, t0),

and the integral converges. Hence, the limit

lim
t→∞

x(t) = lim
t→∞

t∫

t0

(Dαx(s))e0(t, s)dαs + lim
t→∞

x(t0)e0(t, t0)

exists. Similarly, using the inequality

|Dαx(t)| =
√

(Dαx(t))2 + (Dαy(t))2 ≥
√

(Dαy(t))2 = |Dαy(t)|,
we show that limt→∞ y(t) also exists. This completes the proof of Theorem 2.2.

Remark 2.3. Consider Theorem 2.2 with α = 1. From (1.1), Condition (i) of
Theorem 2.2 is reduced to Condition (i) of Theorem 1.5. Moreover, noting from (1.1)
that dαs = ds/κ0(α, s) = ds and e0(t, s) = 1, Condition (iii) of Theorem 2.2 becomes

lim
t→∞

t∫

t0

2h(s)ds exists as a finite number,
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whereas Condition (iv) becomes

lim
t→∞

t∫

t0

h(s)ds exists as a finite number.

Thus, Theorem 2.2 includes Theorem 1.5 as a special case.
Remark 2.4. The meaning of Theorem 2.2 is as follows: If A(t) satisfies the conditions
of Theorem 2.2, then for sufficiently large t, A(t) is sufficiently close to the zero matrix.
Consequently, from System (1.3), x′ becomes sufficiently close to 0, and x approaches
a constant vector. The details of each condition are as follows: Conditions (i) and (iii)
are required to ensure the boundedness of the energy function H(t), while condition
(iv) is used to guarantee that x converges to a constant vector. Condition (ii) is
identical to condition (ii) in Theorem 1.5.

3. ILLUSTRATIVE EXAMPLE AND NUMERICAL SIMULATION

Consider the following system:

Dαx = A(t)x, t ≥ t0 > 0,

A(t) =
(

elt elt

−elt elt

)
,

(3.1)

where l is a real number, κ0(α, t) = α, and κ1(α, t) = 1 − α. When α = 1, if l < 0,
then every solution x of System (3.1) converges to a certain constant vector as t → ∞.
To verify this, we define a function h(t) =

√
2elt to show that the conditions of

Theorem 1.5 are satisfied. We consider System (3.1) with 1 > α > 0. In this case, if
l < 0 and l ̸= −(1 − α)/α, then any solution x of System (3.1) converges to a constant
vector. This can be verified by applying Theorem 2.2 and setting

h(t) =
√

2elt + (1 − α)/2.

Then, function h satisfies Condition (i) of Theorem 2.2. Furthermore, as

|A(t)x(t)| =
√

2el
√

x2 + y2 ≤
(√

2elt + 1 − α

2

)
x(t),

Condition (ii) is also satisfied. Moreover, when l < 0,

lim
t→∞

t∫

t0

(2h(s) − κ1(α, s))dαs = lim
t→∞

2
√

2
α

t∫

0

elsds = −2
√

2
αl

,

which implies that Condition (iii) is satisfied. Furthermore, based on the definitions of
κ0 and κ1, we obtain

e0(t, s) = e
1−α

α s

e
1−α

α t
,
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such that

lim
t→∞

t∫

t0

h(s)e0(t, s)dαs

= lim
t→∞

1
αe

1−α
α t

t∫

0

(√
2e(l+ 1−α

α )s + 1 − α

2 e
1−α

α s

)
ds

= lim
t→∞

( √
2

α
(
l + 1−α

α

)elt −
√

2
α
(
l + 1−α

α

)
e

1−α
α t

+ 1
2 − 1

2e
1−α

α t

)
= 1

2 ,

which verifies Condition (iv).
Remark 3.1. The solution trajectories of System (3.1) with a PD-type derivative
operator are compared with those of a system with a classical derivative operator.
Figure 1 shows two sets of solution trajectories for System (3.1) with different values
of α: α = 1 and α = 0.5, both with l = −0.4. In both cases, the trajectories begin
from the same four initial points: (2, 1), (2, −1), (−2, 1), and (−2, −1). When α = 1,
the trajectories do not converge to the origin but instead approach certain constant
vectors away from the origin. Conversely, when α = 0.5, corresponding to the system
with the PD control-type differential operator, the trajectories clearly converge to
the origin. This illustrates that the presence of the PD control operator significantly
changes the asymptotic behavior of the solutions.

4. CONCLUSION AND FUTURE WORK

This study extends Theorem 1.5 to System (1.3), which involves a PD-type differential
operator (1.1), and establishes sufficient conditions for solutions to converge to constant
vectors. Through an illustrative example, convergence to stable steady states under

a)
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Fig. 1. The solution of System (3.1) with l = −0.4: a) α = 1; b) α = 0.5
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certain parameter conditions was confirmed. It is conjectured that for 1 > α > 0,
l < 0, and l ̸= −(1 − α)/α, any solution x of System (3.1) converges to the origin.

The following issues are highlighted as important directions for future research:

1. Investigation of whether the present methods and results can be extended to
nonlinear systems or to time-varying coefficient systems beyond those considered
in this study.

2. Examination of the stability and robustness properties of PD-controlled systems
beyond asymptotic convergence.

3. Identification of practical systems or control applications where the PD-type
differential operator framework has been, or could be, implemented effectively.

5. APPENDIX: BASIC PROPERTIES OF CALCULUS FOR Dα

The calculus background for the PD-type operator (1.2) is outlined in [5, 7].

Theorem 5.1 ([5, 7]). Let α ∈ (0, 1], point s, t ∈ R with s ≤ t, and the function
ϕ : [s, t] → R be continuous. Furthermore, let κ0, κ1 : [0, 1] × R → [0, ∞) be continu-
ous and satisfy (1.1), with ϕ/κ0 and κ1/κ0 being Riemann-integrable on [s, t]. Next,
the exponential function regarding Dα in (1.2) is defined as

eϕ(t, s) := e

∫ t

s

ϕ(τ)−κ1(α,τ)
κ0(α,τ) dτ

, e0(t, s) = e
−
∫ t

s

κ1(α,τ)
κ0(α,τ) dτ

, (5.1)

and

Dαeϕ(t, s) = ϕ(t)eϕ(t, s), Dαe0(t, s) = 0.

Definition 5.2 ([5, 7]). Let α ∈ (0, 1] and t0 ∈ R. The antiderivative is defined as

∫
Dαf(t)dαt = f(t) + ce0(t, t0), c ∈ R.

Similarly, the integral of f over [a, b] is defined as

t∫

a

f(s)e0(t, s)dαs :=
t∫

a

f(s)e0(t, s)
κ0(α, s) ds, dαs := 1

κ0(α, s)ds.
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Theorem 5.3 ([5, 7]). Let the differential operator Dα be expressed as (1.2) with
α ∈ [0, 1]. Let function ϕ : [s, t] → R be continuous. Let κ0, κ1 : [0, 1] × R → [0, ∞)
be continuous and satisfy (1.1). Assume that functions f and g are differentiable as
needed. Then,

(i) Dα[kf(t) + lg(t)] = k(Dαf(t)) + l(Dαg(t)) for all k, l ∈ R,
(ii) Dαk = kκ1(α, t) for all k ∈ R,
(iii) Dα[f(t)g(t)] = g(t)(Dαf(t)) + f(t)(Dαg(t)) − f(t)g(t)κ1(α, t),

(iv) Dα[f(t)/g(t)] = g(t)(Dαf(t)) − f(t)(Dαg(t))
g2(t) + f(t)

g(t) κ1(α, t),

(v) for α ∈ (0, 1] and exponential function e0 given in (5.1), we have

Dα




t∫

a

f(s)e0(t, s)dαs


 = f(t),

(vi)

t∫

a

(Dαg(s))e0(t, s)dαs = g(s)e0(t, s)
∣∣∣
t

s=a
= g(t) − g(a)e0(t, a).

Definition 5.4 ([5]). Let α ∈ [0, 1] and I ⊆ R. A function f is α-increasing on
interval I if e0(t1, t2)f(t2) ≥ f(t1), whenever t2 > t1, t1, t2 ∈ I, and it is strictly
α-increasing if e0(t1, t2)f(t2) > f(t1), whenever t2 > t1, t1, t2 ∈ I. A function f
is α-decreasing on interval I if f(t2) ≤ e0(t2, t1)f(t1), whenever t2 > t1, t1, t2 ∈ I, and
it is strictly α-decreasing if f(t2) < e0(t2, t1)f(t1), whenever t2 > t1, t1, t2 ∈ I.

Theorem 5.5 ([5]). Let α ∈ [0, 1] and I ⊆ R. Suppose that Dαf exists on some
interval I. If Dαf(t) ≥ 0 for all t ∈ I, then f is α-increasing on I. If Dαf(t) ≤ 0 for
all t ∈ I, then f is α-decreasing on I.
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