Opuscula Math. 45, no. 6 (2025), 841-855
https://doi.org/10.7494/OpMath.2025.45.6.841
Opuscula Mathematica
A linear time algorithm to compute vertices that belong to all, some and no minimum dominating sets in a tree and its consequences
Radosław Ziemann
Paweł Żyliński
Abstract. We provide a linear time algorithm for determining the sets of vertices that belong to all, some and no minimum dominating sets of a tree, respectively, thus improving the quadratic time algorithm of Benecke and Mynhardt in 2008 [S. Benecke, C.M. Mynhardt, Trees with domination subdivision number one, Australas. J. Comb. 42 (2008), 201-209]. Some algorithmic consequences are also discussed.
Keywords: tree, domination, independence, vertex cover, dissociation, algorithm, linear time, dynamic programming.
Mathematics Subject Classification: 05C05, 05C69, 05C85.
- V.E. Alekseev, R. Boliac, D.V. Korobitsyn, V.V. Lozin, NP-hard graph problems and boundary classes of graphs, Theor. Comput. Sci. 389 (2007), 219-236. https://doi.org/10.1016/j.tcs.2007.09.013
- A. Babikir, M. Dettlaff, M.A. Henning, M. Lemańska, Independent domination subdivision in graphs, Graphs Combin. 37 (2021), 691-709. https://doi.org/10.1007/s00373-020-02269-3
- S. Benecke, C.M. Mynhardt, Trees with domination subdivision number one, Australas. J. Comb. 42 (2008), 201-209.
- C. Berge, Théorie des Graphes et ses Applications, Dunod, Paris, 1958.
- M. Blidia, R. Lounes, Vertices belonging to all or no minimum locating dominating set of trees, Opuscula Math. 29 (2009), 5-14. https://doi.org/10.7494/opmath.2009.29.1.5
- M. Blidia, M. Chellali, S. Khelifi, Vertices belonging to all or to no minimum double dominating sets in trees, AKCE Int. J. Gr. Comb. 2 (2005), 1-9.
- H.L. Bodlaender, Dynamic programming on graphs with bounded treewidth, Lect. Notes Comput. Sci. 317 (1988), 105-118. https://doi.org/10.1007/3-540-19488-6_110
- E. Boros, M.C. Golumbic, V.E. Levit, On the number of vertices belonging to all maximum stable sets of a graph, Discrete Appl. Math. 124 (2002), 17-25. https://doi.org/10.1016/s0166-218x(01)00327-4
- V. Bouquet, F. Delbot, Ch. Picouleau, On the vertices belonging to all, some, none minimum dominating set, Discrete Appl. Math. 288 (2021), 9-19. https://doi.org/10.1016/j.dam.2020.08.020
- B. Brešar, F. Kardoš, J. Katrenič, G. Semanišin, Minimum \(k\)-path vertex cover, Discrete Appl. Math. 159 (2011), 1189-1195. https://doi.org/10.1016/j.dam.2011.04.008
- T. Burton, D.P. Sumner, \(\gamma\)-excellent, critically dominated, end-dominated, and dot-critical trees are equivalent, Discrete Appl. Math. 307 (2007), 683-693. https://doi.org/10.1016/j.disc.2006.02.016
- K. Cameron, P. Hell, Independent packings in structured graphs, Math. Program. 105 (2006), 201-213. https://doi.org/10.1007/s10107-005-0649-5
- G.J. Chang, Algorithmic Aspects of Domination in Graphs, [in:] Handbook of Combinatorial Optimization, Springer, 2013, 221-282. https://doi.org/10.1007/978-1-4419-7997-1_26
- X.G. Chen, Vertices contained in all minimum paired-dominating sets of a tree, Czechoslov. Math. J. 57 (2007), 407-417. https://doi.org/10.1007/s10587-007-0069-1
- E.J. Cockayne, M.A. Henning, C.M. Mynhardt, Vertices contained in all or in no minimum total dominating set of a tree, Discrete Math. 260 (2003), 37-44. https://doi.org/10.1016/s0012-365x(02)00447-8
- B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs on bounded clique width, Theory Comput. Syst. 33 (2000), 125-150. https://doi.org/10.1007/s002249910009
- S.E. Dreyfus, A.M. Law, The Art and Theory of Dynamic Programming, Academic Press, New York, 1977.
- M. Edwards, G. MacGillivray, S. Nasserasr, Reconfiguring minimum dominating sets: The \(\gamma\)-graph of a tree, Discuss. Math. Graph Theory 38 (2018), 703-716. https://doi.org/10.7151/dmgt.2044
- O. Favaron, On a conjecture of Fink and Jacobson concerning \(k\)-domination and \(k\)-dependence, J. Comb. Theory Ser. B 39 (1985), 101-102. https://doi.org/10.1016/0095-8956(85)90040-1
- G. Fricke, T. Haynes, S. Hedetniemi, S. Hedetniemi, R. Laskar, Excellent trees, Bull. Inst. Comb. Appl. 34 (2002), 27-38.
- G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, K.R. Hutson, \(\gamma\)-Graphs of graphs, Discuss. Math. Graph Theory 31 (2011), 517-531. https://doi.org/10.7151/dmgt.1562
- P. Golovach, P. Heggernes, M.M. Kanté, D. Kratsch, Y. Villanger, Minimal dominating sets in interval graphs and trees, Discrete Appl. Math. 216 (2017), 162-170. https://doi.org/10.1016/j.dam.2016.01.038
- G.H. Gunther, B. Hartnell, L. Markus, D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994), 55-63.
- P.L. Hammer, P. Hansen, B. Simeone, Veritices belonging to all or to no maximum stable sets of a graph, SIAM J. Algebraic Discrete Methods 3 (1982), 511-522. https://doi.org/10.1137/0603052
- M.A. Henning, A.J. Marcon, Vertices contained in all or in no minimum semitotal dominating set of a tree, Discuss. Math. Graph Theory 36 (2016), 71-93. https://doi.org/10.7151/dmgt.1844
- M.A. Henning, A.J. Marcon, Vertices contained in all or in no minimum disjunctive dominating set of a tree, Util. Math. 105 (2017), 95-123.
- W.F. Klostermeyer, C.M. Mynhardt, A dynamic domination problem in trees, Trans. Comb. 4 (2015), 15-31.
- M. Krzywkowski, Trees having many minimal dominating sets, Inf. Process. Lett. 113 (2013), 276-279. https://doi.org/10.1016/j.ipl.2013.01.020
- M. Lemańska, P. Żyliński, Reconfiguring minimum dominating sets in trees, J. Graph Algorithms Appl. 24 (2020), 47-61. https://doi.org/10.7155/jgaa.00517
- V.E. Levit, E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Appl. Math. 117 (2002), 149-161. https://doi.org/10.1016/s0166-218x(01)00183-4
- V.E. Levit, E. Mandrescu, Vertices belonging to all critical sets of a graph, SIAM J. Discrete Math. 26 (2012), 399-403. https://doi.org/10.1137/110823560
- N. Meddah, M. Blidia, S. Arumugam, Vertices contained in all or in no minimum \(k\)-dominating sets of a tree, AKCE Int. J. Graphs Comb. 11 (2014), 105-113.
- C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31 (1999), 155-265. https://doi.org/10.1002/(sici)1097-0118(199907)31:3<163::aid-jgt2>3.3.co;2-k
- C.M. Mynhardt H.C. Swart, E. Ungerer, Excellent trees and secure domination, Util. Math. 67 (2005), 255-267. https://doi.org/10.7151/dmgt.1405
- O. Ore, Theory of Graphs, American Mathematical Society Colloquium Publications vol. XXXVIII, AMS, Providence, 1962. https://doi.org/10.1090/coll/038
- Y. Orlovich, A. Dolgui, G. Finke, V. Gordon, F. Werner, The complexity of dissociation set problems in graphs, Discrete Appl. Math. 159 (2011), 1352-1366. https://doi.org/10.1016/j.dam.2011.04.023
- J. Petr, J. Portier, L. Versteegen, On the number of minimum dominating sets and total dominating sets in forests, J. Graph Theory 106 (2024), 976-993. https://doi.org/10.1002/jgt.23107
- G. Rote, The maximum number of minimal dominating sets in a tree, SODA (2019), 1201-1214. https://doi.org/10.1137/1.9781611975482.73
- V. Samodivkin, The bondage number of graphs: good and bad vertices, Discuss. Math. Graph Theory 28 (2008), 453-462. https://doi.org/10.7151/dmgt.1419
- J. Tu, L. Zhang, J. Du, R. Lang, Polynomial time recognition of vertices contained in all (or no) maximum dissociation sets of a tree, AIMS math. 7 (2022), 569-578. https://doi.org/10.3934/math.2022036
- M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Comput. 10 (1981), 310-327. https://doi.org/10.1137/0210022
- https://codeforces.com/contest/1092/problem/F (accessed: 13.10.2025) https://codeforces.com/contest/1092/problem/F
- https://www.geeksforgeeks.org/competitive-programming/dp-on-trees-for-competitive-programming/ (accessed 13.10.2025) https://www.geeksforgeeks.org/competitive-programming/dp-on-trees-for-competitive-programming/
- https://usaco.guide/gold/all-roots (accessed: 13.10.2025) https://usaco.guide/gold/all-roots
- Radosław Ziemann (corresponding author)
https://orcid.org/0000-0001-9659-0911- University of Gdańsk, Department of Combinatorial Optimization, 80-308 Gdańsk, Poland
- Paweł Żyliński
https://orcid.org/0000-0001-6378-7742- University of Gdańsk, Department of Combinatorial Optimization, 80-308 Gdańsk, Poland
- Communicated by Andrzej Żak.
- Received: 2025-05-15.
- Revised: 2025-10-10.
- Accepted: 2025-11-05.
- Published online: 2025-12-08.

