Opuscula Math. 45, no. 6 (2025), 819-840
https://doi.org/10.7494/OpMath.2025.45.6.819
Opuscula Mathematica
On spectral stability for rank one singular perturbations
Mario Alberto Ruiz Caballero
Rafael del Río
Abstract. We study the embedded point spectrum of rank one singular perturbations of an arbitrary self-adjoint operator \(A\) on a Hilbert space \(\mathcal{H}\). These perturbations can be regarded as self-adjoint extensions of a densely defined closed symmetric operator \(B\) with deficiency indices \((1,1)\). Assuming the deficiency vector of \(B\) is cyclic for its self-adjoint extensions, we prove that the spectrum of \(A\) contains a dense \(G_{\delta}\) subset on which no eigenvalues occur for the rank one singular perturbations considered. We show this is equivalent to the existence of a dense \(G_{\delta}\) set of rank one singular perturbations of \(A\) such that their eigenvalues are isolated. The approach presented here unifies points of view taken by different authors.
Keywords: self-adjoint extension, rank one singular perturbation, embedded point spectra, singular continuous spectrum.
Mathematics Subject Classification: 47B02, 47B25, 47A55, 47A10.
- S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators, Cambridge University Press, Cambridge, 2000. https://doi.org/10.1017/cbo9780511758904
- A. Avila, D. Damanik, Pure point spectrum is generic, preprint.
- W.F. Donoghue Jr., On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559-579. https://doi.org/10.1002/cpa.3160180402
- F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61-138. https://doi.org/10.1002/1522-2616(200010)218:1<61::aid-mana61>3.3.co;2-4
- F. Gesztesy, N.J. Kalton, K.A. Makarov, E. Tsekanovskii, Some applications of operator-valued Herglotz functions, [in:] D. Alpay, V. Vinnikov (eds.), Operator Theory, System Theory and Related Topics, Birkhäuser Verlag, Basel, 2001, 271-321. https://doi.org/10.1007/978-3-0348-8247-7_13
- A.Y. Gordon, Pure point spectrum under 1-parameter perturbations and instability of Anderson localization, Comm. Math. Phys. 164 (1994), 489-505. https://doi.org/10.1007/bf02101488
- A.Y. Gordon, Instability of dense point spectrum under finite rank perturbations, Comm. Math. Phys. 187 (1997), 583-595. https://doi.org/10.1007/s002200050150
- J.C. Oxtoby, Measure and Category. A Survey of the Analogies between Topological and Measure Spaces, Springer-Verlag, New York-Berlin, 1971.
- R. del Río, N. Makarov, B. Simon, Operators with singular continuous spectrum. II. Rank one operators, Comm. Math. Phys. 165 (1994), 59-67. https://doi.org/10.1007/bf02099737
- R.R. del Río Castillo, A forbidden set for embedded eigenvalues, Proc. Amer. Math. Soc. 121 (1994), 77-82. https://doi.org/10.1090/s0002-9939-1994-1191867-8
- K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht, 2012.
- B. Simon, Spectral analysis of rank one perturbations and applications, [in:] J. Feldman, R. Froese, L.M. Rosen (eds.), Mathematical Quantum Theory. II. Schrödinger Operators, American Mathematical Society, Providence, RI, 1995, 109-149. https://doi.org/10.1090/crmp/008/04
- B. Simon, Operator Theory: A Comprehensive Course in Analysis, Part 4, American Mathematical Society, United States of America, 2015.
- B. Simon, Twelve tales in mathematical physics: an expanded Heineman Prize lecture, J. Math. Phys. 63 (2022), 1-93. https://doi.org/10.1063/5.0056008
- B. Simon, T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Comm. Pure Appl. Math. 39 (1986), 75-90. https://doi.org/10.1002/cpa.3160390105
- J. Weidmann, Linear Operators in Hilbert Spaces, Translated from the German by Joseph Szücs, Springer-Verlag, New York-Berlin, 1980.
- Mario Alberto Ruiz Caballero (corresponding author)
https://orcid.org/0009-0009-0837-2996- Universidad Nacional Autónoma de México, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Departamento de Física Matemática, Ciudad de México, C.P. 04510
- Rafael del Río
https://orcid.org/0000-0002-9842-6952- Universidad Nacional Autónoma de México, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Departamento de Física Matemática, Ciudad de México, C.P. 04510
- Communicated by Jussi Behrndt.
- Received: 2025-06-26.
- Revised: 2025-11-19.
- Accepted: 2025-11-20.
- Published online: 2025-12-08.

