ON SPECTRAL STABILITY FOR RANK ONE SINGULAR PERTURBATIONS

Mario Alberto Ruiz Caballero and Rafael del Río

Communicated by Jussi Behrndt

Abstract. We study the embedded point spectrum of rank one singular perturbations of an arbitrary self-adjoint operator A on a Hilbert space \mathcal{H} . These perturbations can be regarded as self-adjoint extensions of a densely defined closed symmetric operator B with deficiency indices (1,1). Assuming the deficiency vector of B is cyclic for its self-adjoint extensions, we prove that the spectrum of A contains a dense G_{δ} subset on which no eigenvalues occur for the rank one singular perturbations considered. We show this is equivalent to the existence of a dense G_{δ} set of rank one singular perturbations of A such that their eigenvalues are isolated. The approach presented here unifies points of view taken by different authors.

Keywords: self-adjoint extension, rank one singular perturbation, embedded point spectra, singular continuous spectrum.

Mathematics Subject Classification: 47B02, 47B25, 47A55, 47A10.

1. INTRODUCTION

A fundamental problem in spectral theory is to understand the behavior of spectra of self-adjoint operators when these operators are perturbed. One of the most natural types of perturbations are rank one regular perturbations, that is, perturbations of the form

$$A_{\alpha} = A + \alpha \langle \varphi, \cdot \rangle \varphi,$$

where φ is a cyclic vector for A and the symbol $\langle \cdot, \cdot \rangle$ denotes inner product in \mathcal{H} . In particular, it is known that if I is an interval contained in the spectrum of A, $\sigma(A)$, then it is possible for A_{α} to have dense point spectrum $\sigma_p(A_{\alpha})$ in I for a.e. $\alpha \in \mathbb{R}$ in Lebesgue sense, see [15]. However, this cannot happen for every $\alpha \in \mathbb{R}$. As shown in [6] and [9], there exists a dense G_{δ} set $\Omega \subset \mathbb{R}$ (a countable intersection of open sets) such that if $\alpha \in \Omega$, then $\sigma_p(A_{\alpha}) \cap I$ is empty and if $\alpha \in \mathbb{R} \setminus \Omega$, then there is a dense G_{δ} set $F \subset I$ such that $\sigma_p(A_{\alpha}) \cap F$ is empty. Nevertheless, in some situations the pure point spectrum is generic (see [2]). Related problems were studied in [10] for Sturm-Liouville operators with local perturbations.

A natural question is whether similar results hold for rank one singular perturbations given by the formal expression

$$A_{\alpha} = A + \alpha \langle \varphi, \cdot \rangle \varphi$$

with $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}$ where $\mathcal{H}_s \subseteq \mathcal{H} \subseteq \mathcal{H}_{-s}$, $s \geq 0$ denotes the A-scale of Hilbert spaces which will be defined in Section 2. The symbol $\langle \cdot, \cdot \rangle$ denotes the duality pairing between \mathcal{H}_{-s} and \mathcal{H}_s or simply the action of linear functionals on \mathcal{H}_s . Rank one singular perturbations are operators on the underlying Hilbert space whose domains are different from the domain of the unperturbed operator and the difference of their resolvents is a rank one bounded operator. In [12] this question was considered for the case when $\varphi \in \mathcal{H}_{-1} \setminus \mathcal{H}$, i.e. for so-called form bounded singular perturbations and A being semi-bounded.

The case addressed in this paper includes the more general situation when form unbounded singular perturbations, i.e. $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}_{-1}$ are considered. According to [1], the difference between the two cases lies in the fact that if $\varphi \in \mathcal{H}_{-1} \setminus \mathcal{H}$, the formal expression A_{α} determines a single operator, whereas if $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}_{-1}$, the operator associated with A_{α} is not uniquely determined. Specifically, in the case $\varphi \in \mathcal{H}_{-1} \setminus \mathcal{H}$, the form-sum method is used while when $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}_{-1}$ this method fails. However, rank one singular perturbations can be regarded as self-adjoint extensions of the restriction A to $Ker\varphi$, the subspace of D(A) where φ vanishes. This restriction turns out to be a densely defined closed symmetric operator with deficiency indices (1, 1). These extensions will be denoted by A^{γ} and we will consider them as the rank one singular perturbations of A. The relationship between the coupling constant α and the extension parameter γ will be explained in Section 2. Assuming that $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}$ and $(A - iI)^{-1}\varphi$ is cyclic for A, the main results in the current article are the following:

Theorem 1.1 (Forbidden Energies). The set of points in $\sigma(A)$ which are not eigenvalues for any A^{γ} , with $\gamma \in \mathbb{R}$, contains a dense G_{δ} set in $\sigma(A)$.

Theorem 1.2 (Forbidden Extension Parameters). The set

$$\{\gamma \in \mathbb{R} \mid \sigma_p(A^\gamma) \cap \sigma(A) = \varnothing\}$$

is dense G_{δ} in \mathbb{R} .

The term "forbidden" is motivated by the corresponding results for rank one regular perturbations of [6, 9, 10]. We call "energies" to the elements in $\sigma(A)$ and by "Forbidden Energies", we mean to the energies which are not eigenvalues for rank one singular perturbations A^{γ} of A. The name "Forbidden Extension Parameters" is an analogy to "Forbidden Coupling Constants" which was used in [14]. The present paper essentially unifies the methods of [6] and [9] in the framework of self-adjoint extensions. Following the approach of [9] we get Theorem 1.1. On the other hand the ideas of [6] lead to Theorem 1.2 and allow to show that actually the main theorems are equivalent.

The paper is divided as follows. In Section 2 both the von Neumann's Extensions Theory and the theoretical framework given in [1] for rank one singular perturbations are provided. In Section 3 some results of [9] originally proved for Borel-Stieltjes transforms are extended for Nevanlinna-Herglotz functions. In Section 4 in order to illustrate what happens when the spectrum of self-adjoint extensions is not simple, a version of the well-known theorem from Aronszajn-Donoghue Theory on characterization of eigenvalues by improper integrals when self-adjoint extensions are reduced to a cyclicity space is shown. Then with this result Theorem 1.1 is proven. In Section 5 a proposition on forbidden extension parameters for self-adjoint extensions of a densely defined closed symmetric operator with deficiency indices (1,1), denoted by T_{θ} , is obtained and Theorem 1.2 is deduced by transforming the rank one singular perturbations A^{γ} in terms of T_{θ} through a homeomorphism. From this theorem, we concluded both the aforementioned equivalence and a result on forbidden energies in the essential spectrum which cannot be eigenvalues of A. Other consequences of these results are that for a dense G_{δ} set either of rank one singular perturbations of A or self-adjoint extensions of a symmetric operator, their eigenvalues are isolated and if we assume absolutely continuous spectrum is empty, there is pure singular continuous spectrum for this dense G_{δ} family of operators.

2. PRELIMINARIES

2.1. SELF-ADJOINT EXTENSIONS

We recall the von Neumann Extension Theorem for symmetric operators. For this, the following definition is given.

Definition 2.1 ([11, Definition 2.2], [13, Equation 7.1.44]). Let B denote a densely defined closed symmetric operator on a Hilbert space \mathcal{H} . We call deficiency spaces of B to the sets

$$K_{\pm}(B) := \operatorname{Ran}(B \pm iI)^{\perp} = \operatorname{Ker}(B^* \mp iI),$$

where \perp denotes orthogonal complement in \mathcal{H} and B^* is the adjoint operator to B. Also, we call deficiency indices of B to the pair $(d_+(B), d_-(B))$, where

$$d_{\pm}(B) := \dim K_{\pm}(B).$$

Let $\mathcal{B}(B)$ denote the set of closed symmetric extensions of B and $\mathcal{V}(B)$ the set of partial isometries from $K_{+}(B)$ to $K_{-}(B)$. We state the next theorem.

Theorem 2.2 ([11, Theorem 13.9], [13, Theorem 7.4.1]). Let B denote a densely defined closed symmetric operator on \mathcal{H} . There exists a bijective mapping from $\mathcal{V}(B)$ to $\mathcal{B}(B)$ given by

$$V \mapsto T_V := B^* \upharpoonright_{D(T_V)},$$

where

$$D(T_V) = D(B) \dotplus (I+V)D(V).$$

Furthermore, T_V is self-adjoint if and only if V is unitary from $K_+(B)$ to $K_-(B)$.

Suppose that B in the above theorem has deficiency indices (1,1) and $u_{\pm} \in K_{\pm}(B)$ is a generating vector with norm equal to 1. The vector u_{\pm} is called deficiency vector. For each $\theta \in [0,\pi)$ one defines the operator

$$V_{\theta}: K_{+}(B) \longrightarrow K_{-}(B), \text{ where } V_{\theta}(u_{+}) := e^{-2i\theta}u_{-}.$$
 (2.1)

Denote the self-adjoint extensions of B given by Theorem 2.2 as T_{θ} , with $\theta \in [0, \pi)$, where

$$D(T_{\theta}) = D(B) + \operatorname{span} \left\{ u_{+} + e^{-2i\theta} u_{-} \right\}$$
 (2.2)

and

$$T_{\theta}(\eta + au_+ + ae^{-2i\theta}u_-) = B\eta + aiu_+ - aie^{-2i\theta}u_-, \quad \eta \in D(B), a \in \mathbb{C}.$$

Denote by \mathcal{M} the cyclicity space of u_+ for any T_θ which by definition is

$$\mathcal{M} := \overline{\operatorname{span}\left\{ (T_{\theta} - zI)^{-1} u_{+} : z \in \mathbb{C} \setminus \mathbb{R} \right\}}. \tag{2.3}$$

Remark 2.3. We know that \mathcal{M} does not depend on θ and is a reducing subspace for T_{θ} , for all $\theta \in [0, \pi)$ (see [3, Section 2], [5, Lemma 4.5]). Therefore, one has the restrictions $T_{\theta} \upharpoonright_{\mathcal{M}}$ acting on the Hilbert space \mathcal{M} with domain

$$D(T_{\theta} \upharpoonright_{\mathcal{M}}) := D(T_{\theta}) \cap \mathcal{M}$$

which are self-adjoint operators and have simple spectrum since by definition u_+ is cyclic for $T_{\theta} \upharpoonright_{\mathcal{M}}$.

2.2. RANK ONE SINGULAR PERTURBATIONS

Let A be a self-adjoint operator on a Hilbert space \mathcal{H} . Consider the A-scale of Hilbert spaces

$$\mathcal{H}_s \subseteq \mathcal{H} \subseteq \mathcal{H}_{-s}$$
,

where $\mathcal{H}_s := \left(D(|A|^{\frac{s}{2}}), \|\cdot\|_s\right)$ with $\|\eta\|_s := \|(|A|+I)^{\frac{s}{2}}\eta\|$ for all $s \geqslant 0$ and \mathcal{H}_{-s} is the completion of \mathcal{H} with respect to the norm $\|\cdot\|_{-s}$, i.e. the space of linear functionals with its usual norm $(\mathcal{H}_s^*, \|\cdot\|_{\mathcal{H}_s^*})$. Given $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}$ and $\alpha \in \mathbb{R}$, rank one singular perturbations of A are defined by the formal expression

$$A_{\alpha} = A + \alpha \langle \varphi, \cdot \rangle \varphi, \tag{2.4}$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between \mathcal{H}_{-2} and \mathcal{H}_2 or simply the action of linear functionals. We obtain self-adjoint realizations on \mathcal{H} of the expression A_{α} , which are self-adjoint extensions of a densely defined closed symmetric operator with deficiency indices (1,1). The following result is the key.

Lemma 2.4 ([1, Lemma 1.2.3]). Let A be a self-adjoint operator on \mathcal{H} and $\varphi \in \mathcal{H}_{-2} \backslash \mathcal{H}$. Then

$$\dot{A}:=A\restriction_{D(\dot{A})},\ where\ D(\dot{A}):=\{\eta\in D(A):\langle\varphi,\eta\rangle=0\}$$

is a densely defined closed symmetric operator with deficiency indices (1,1).

We now briefly recall the approach of [1]. Consider the operator

$$(A \pm iI)^{-1}: \mathcal{H}_{s-2} \longrightarrow \mathcal{H}_s, \ s = 0, 1$$
 (2.5)

in the generalized sense, i.e. for $\phi \in \mathcal{H}_{s-2}$ and $\eta \in \mathcal{H}_s$

$$\langle \phi, (A \mp iI)^{-1} \eta \rangle = \langle (A \pm iI)^{-1} \phi, \eta \rangle.$$

By the above lemma and using the first formula of von Neumann (see [16, Theorem 8.11] and [13, Theorem 7.1.11]), it turns out that

$$D(\dot{A}^*) = D(\dot{A}) + \text{span}\{g_i, g_{-i}\},$$
 (2.6)

where

$$g_{\pm i} := (A \mp iI)^{-1} \varphi$$

are the deficiency vectors for \dot{A} . We get the family of self-adjoint extensions of \dot{A} given by Theorem 2.2 as A(v), where $v \in \mathbb{S}^1$, the set of unimodular complex numbers, such that

$$D(A(v)) = \left\{ \eta + a_+ g_i + a_- g_{-i} \in D(\dot{A}^*) : a_- = -\overline{v}a_+ \right\}. \tag{2.7}$$

One has that

$$A(A^2 + I)^{-1}\varphi = \frac{1}{2} [(A - iI)^{-1}\varphi + (A + iI)^{-1}\varphi] \in \mathcal{H}.$$

So we can write (2.6) of the next form

$$D(\dot{A}^*) = D(A) + \operatorname{span} \{ A(A^2 + I)^{-1} \varphi \}.$$
 (2.8)

This makes another parametrization for the self-adjoint extensions of \dot{A} , denoted by A^{γ} with $\gamma \in \mathbb{R} \cup \{\infty\}$, where

$$D(A^{\gamma}) = \left\{ \eta + bA(A^2 + I)^{-1} \varphi \in D(\dot{A}^*) : \langle \varphi, \eta \rangle = \gamma b \right\}. \tag{2.9}$$

The extension parameters v and γ are related by the formula

$$v = \frac{\gamma + i}{\gamma - i}. (2.10)$$

In order to define rank one singular perturbations of A as self-adjoint restrictions of \dot{A}^* , we need to extend the linear functional φ to $D(\dot{A}^*)$. For this purpose, we make the following remarks:

- (i) If $\varphi \in \mathcal{H}_{-1} \setminus \mathcal{H}$, $\langle \varphi, (A-zI)^{-1} \varphi \rangle$ exists because $(A-zI)^{-1} \varphi \in \mathcal{H}_1$. (ii) If $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}_{-1}$, $\langle \varphi, (A-zI)^{-1} \varphi \rangle$ is not well-defined since $(A-zI)^{-1} \varphi \in \mathcal{H}$ but in general $(A-zI)^{-1} \varphi \notin \mathcal{H}_2$.

In case (ii) the linear functional φ cannot be extended to the space $D(\dot{A}^*)$ given by (2.8). So we must renormalize the expression

$$c = \langle \varphi, A(A^2 + I)^{-1} \varphi \rangle$$

and by [1, Lemma 1.3.1], the only extensions φ_c of φ to $D(\dot{A}^*)$ are given by

$$\langle \varphi_c, \eta + bA(A^2 + I)^{-1} \varphi \rangle := \langle \varphi, \eta \rangle + bc, \quad \eta \in D(A), b \in \mathbb{C}, c \in \mathbb{R}.$$

Then to relate the coupling constant α with the extension parameter γ , we must involve a real constant. This leads to the following theorem.

Theorem 2.5 ([1, Theorems 1.3.1 and 1.3.2]). Let $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}$. Then $A_{\alpha} = A^{\gamma}$, where

$$\gamma = -\left(\frac{1}{\alpha} + c\right), \quad c \in \mathbb{R}.$$
(2.11)

If $\varphi \in \mathcal{H}_{-1} \setminus \mathcal{H}$, $c = \langle \varphi, A(A^2 + I)^{-1} \varphi \rangle$.

From now on, we will denote as A^{γ} to the rank one singular perturbations of A. We conclude this section showing the relationship between the extension parameters θ of (2.2) and γ of (2.9). Consider that arg function is valued in $[0, 2\pi)$.

Proposition 2.6. Let $\varphi \in \mathcal{H}_{-2} \setminus \mathcal{H}$. Consider \dot{A} as in Lemma 2.4 and T_{θ} given by (2.2) with B = A. Then $A^{\gamma} = T_{\theta}$, where

$$\theta = \frac{1}{2} \arg \left(-\frac{\gamma + i}{\gamma - i} \right). \tag{2.12}$$

If $\varphi \in \mathcal{H}_{-1} \setminus \mathcal{H}$,

$$\theta = \frac{1}{2} \arg \left[-\frac{1 + \alpha(\langle \varphi, A(A^2 + I)^{-1}\varphi \rangle - i)}{1 + \alpha(\langle \varphi, A(A^2 + I)^{-1}\varphi \rangle + i)} \right].$$

Proof. Given $\theta \in [0, \pi)$ and $v \in \mathbb{S}^1$, $T_{\theta} = A(v)$ if and only if

$$\theta = \frac{1}{2}\arg(-v).$$

Substituting formula (2.10) in the last expression, one obtains (2.12). For the case $\varphi \in \mathcal{H}_{-1} \setminus \mathcal{H}$ we substitute (2.11) in (2.12) with

$$c = \langle \varphi, A(A^2 + I)^{-1} \varphi \rangle.$$

Remark 2.7.

- (i) $A = T_{\frac{\pi}{2}} = A(1) = A^{\infty}$.
- (ii) We will also denote by \mathcal{M} the cyclicity space of $(A-iI)^{-1}\varphi$ for the rank one singular perturbations A^{γ} as in (2.3) by taking A^{γ} and $(A-iI)^{-1}\varphi$ instead of T_{θ} and u_+ . In the same way, \mathcal{M} does not depend on γ and is a reducing subspace for A^{γ} . We then have the restrictions $A^{\gamma} \upharpoonright_{\mathcal{M}}$ acting on the Hilbert space \mathcal{M} with domain

$$D(A^{\gamma} \upharpoonright_{\mathcal{M}}) := D(A^{\gamma}) \cap \mathcal{M}$$

which are self-adjoint operators and have simple spectrum since by definition $(A-iI)^{-1}\varphi$ is cyclic for $A^{\gamma}\upharpoonright_{\mathcal{M}}$.

3. SCALAR NEVANLINNA-HERGLOTZ FUNCTIONS

We begin by showing some properties of Nevanlinna–Herglotz functions. For positive Borel measures μ such that

$$\int_{\mathbb{R}} \frac{d\mu(x)}{1+x^2} < \infty \tag{3.1}$$

we define the function $F_{\mu}: \mathbb{C}^+ \longrightarrow \mathbb{C}^+$, where \mathbb{C}^+ is the complex upper half-plane, given by

$$F_{\mu}(z) := \int\limits_{\mathbb{D}} \left(\frac{1}{x-z} - \frac{x}{1+x^2} \right) d\mu(x).$$

By Canonical Integral Representation of Nevanlinna–Herglotz functions (see [4, Theorem 2.2(iii)], [11, Theorem F.1]), F_{μ} is a Nevanlinna–Herglotz function. We next establish some properties of these functions. The following proposition is an extension of [12, Theorem 1.2(iii)]. Although this is a well-known fact, we include a proof for the reader's convenience.

Proposition 3.1. Let μ be a positive Borel measure satisfying (3.1). Suppose $w \in \mathbb{R}$ holds

$$\int\limits_{\mathbb{R}} \frac{d\mu(x)}{(x-w)^2} < \infty.$$

Then

$$F_{\mu}(w+i0) := \lim_{\varepsilon \to 0} F_{\mu}(w+i\varepsilon)$$

exists and is real.

Proof. Let $d\rho(x) := \frac{d\mu(x)}{1+x^2}$ be a finite measure. Therefore, there exists the function

$$J(z):=\int\limits_{\mathbf{m}}\frac{1}{x-z}d\rho(x).$$

Then

$$F_{\mu}(z) = \int_{\mathbb{R}} \frac{1+zx}{x-z} d\rho(x)$$

$$= \int_{\mathbb{R}} \frac{zx-z^2}{x-z} d\rho(x) + \int_{\mathbb{R}} \frac{1+z^2}{x-z} d\rho(x)$$

$$= z\rho(\mathbb{R}) + (1+z^2)J(z).$$

Furthermore,

$$\int\limits_{\mathbb{R}} \frac{d\rho(x)}{(x-w)^2} \leqslant \int\limits_{\mathbb{R}} \frac{(1+x^2)d\rho(x)}{(x-w)^2} = \int\limits_{\mathbb{R}} \frac{d\mu(x)}{(x-w)^2} < \infty. \tag{3.2}$$

By [12, Theorem 1.2(iii)],

$$J(w+i0) := \lim_{\varepsilon \to 0} J(w+i\varepsilon)$$

exists and is real. Thus, we have concluded.

The next lemma appears in the proof of [9, Theorem 2.1] for the case of Borel–Stieltjes transforms.

Lemma 3.2. Let μ be a positive Borel measure satisfying (3.1). Given $w \in \mathbb{R}$, the functions

$$G_n(w) := \int_{\mathbb{R}} \frac{d\mu(x)}{(x-w)^2 + \frac{1}{n^2}}$$

are continuous and

$$\int_{\mathbb{R}} \frac{d\mu(x)}{(x-w)^2} = \lim_{n \to \infty} G_n(\lambda).$$

Proof. By doing some calculations we have

$$G_n(w) = nImF_{\mu}\left(w + i\frac{1}{n}\right).$$

Since the function on the right hand side is continuous with n fixed, so is G_n for all $n \in \mathbb{N}$. By Monotonous Convergence Theorem, the second holds.

We provide the following definitions.

Definition 3.3.

- (i) Let \mathcal{X} be a metric space. A subset $U \subseteq \mathcal{X}$ is G_{δ} in \mathcal{X} if there is a countable family $\{U_i\}_{i\in\mathbb{N}}$ of open sets in \mathcal{X} such that $U = \bigcap_{i\in\mathbb{N}} U_i$.
- (ii) A subset $S \subseteq \mathbb{R}$ is called a support of a Borel measure μ if $\mu(\mathbb{R} \setminus S) = 0$.
- (iii) The smallest closed support of μ is called the topological support of μ and denoted by $\operatorname{supp}(\mu)$.

Due to the previous results, a generalization of [9, Theorem 2.1] for a larger class of measures is proven.

Proposition 3.4. Let μ such that (3.1) holds. Then

$$\left\{ w \in \operatorname{supp}(\mu) : \int_{\mathbb{R}} \frac{d\mu(x)}{(x-w)^2} = \infty \right\}$$
 (3.3)

is dense G_{δ} in supp (μ) .

Proof. Let $d\rho(x) := \frac{d\mu(x)}{1+x^2}$ be a finite measure and

$$\Phi := \left\{ w \in \mathbb{R} : \int_{\mathbb{D}} \frac{d\rho(x)}{(x-w)^2} = \infty \right\}.$$

By (3.2),

$$\Phi \subseteq \left\{ w \in \mathbb{R} : \int_{\mathbb{D}} \frac{d\mu(x)}{(x-w)^2} = \infty \right\}.$$

Due to that ρ and μ are equivalent we have

$$\Phi \cap \operatorname{supp}(\rho) \subseteq \operatorname{supp}(\mu) \cap \left\{ w \in \mathbb{R} : \int_{\mathbb{R}} \frac{d\mu(x)}{(x-w)^2} = \infty \right\}.$$

By [9, Theorem 2.1], Φ is dense in $\operatorname{supp}(\rho)$ and hence the set (3.3) is dense in $\operatorname{supp}(\mu)$. By continuity of G_n according to Lemma 3.2 and since (3.3) turns out to be

$$\bigcap_{m\in\mathbb{N}}\bigcup_{n\in\mathbb{N}}\left\{w\in\operatorname{supp}(\mu):\int\limits_{\mathbb{R}}\frac{d\mu(x)}{(x-w)^2+\frac{1}{n^2}}>m\right\}.$$

It follows that (3.3) is G_{δ} in supp(μ).

We conclude with the following corollary.

Corollary 3.5. Let μ such that (3.1) holds. Then

$$\operatorname{supp}(\mu) \cap \left\{ w \in \mathbb{R} : \int_{\mathbb{R}} \frac{d\mu(x)}{(x-w)^2} < \infty \right\}$$

is a countable union of closed nowhere dense sets in $supp(\mu)$.

Our goal in the following sections will be to obtain results on forbidden energies and forbidden extension parameters for self-adjoint extensions $T_{\theta} \upharpoonright_{\mathcal{M}}$ and after for rank one singular perturbations A^{γ} .

4. FORBIDDEN ENERGIES

We extend [3, Theorem 4], classical in the Aronszajn–Donoghue Theory, for the case when u_+ is not cyclic. Let $\theta_0 \in [0, \pi)$ fixed and \mathcal{E}^0 be the spectral family of $T_{\theta_0} \upharpoonright_{\mathcal{M}}$. Define the measure μ^0 such that

$$d\mu^{0}(x) := (1 + x^{2})d\langle u_{+}, \mathcal{E}^{0}(x)u_{+}\rangle.$$

We denote by σ_p the set of eigenvalues.

Proposition 4.1. For each $\theta \neq \theta_0$,

$$\sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) = \left\{ \lambda \in \mathbb{R} : \int_{\mathbb{R}} \frac{d\mu^0(x)}{(x-\lambda)^2} < \infty, F_{\mu^0}(\lambda + i0) = \cot(\theta - \theta_0) \right\}.$$

Proof. From [4, Section 4] one has that $B \upharpoonright_{\mathcal{M}}$ is a densely defined closed symmetric operator with deficiency indices (1,1) on \mathcal{M} . Let R_{θ} be its self-adjoint extensions. By definition, u_+ is cyclic for every R_{θ} . Let \mathcal{E}' be the spectral family of R_{θ_0} and $d\mu'(x) := (1+x^2)d\langle u_+, \mathcal{E}'(x)u_+ \rangle$. By [3, Theorem 4],

$$\sigma_p(R_{\theta}) = \left\{ \lambda \in \mathbb{R} : \int_{\mathbb{R}} \frac{d\mu'(x)}{(x-\lambda)^2} < \infty, F_{\mu'}(\lambda + i0) = \cot(\theta - \theta_0) \right\}.$$

We assert $R_{\theta} = T_{\theta} \upharpoonright_{\mathcal{M}}$. Let us first note that

$$K_{+}(B) = \operatorname{Ran}(B \pm iI)^{\perp} \subseteq \operatorname{Ran}(B \upharpoonright_{\mathcal{M}} \pm iI)^{\perp} = K_{+}(B \upharpoonright_{\mathcal{M}}).$$

Both B and $B \upharpoonright_{\mathcal{M}}$ have deficiency indices (1,1), therefore $K_{\pm}(B) = K_{\pm}(B \upharpoonright_{\mathcal{M}})$. Let us show that $D(B^* \upharpoonright_{\mathcal{M}}) = D[(B \upharpoonright_{\mathcal{M}})^*]$.

If $\eta \in D(B^* \upharpoonright_{\mathcal{M}})$, then $\eta = f + p_+ + p_- \in \mathcal{M}$ with $f \in D(B)$ and $p_{\pm} \in K_{\pm}(B)$. By the above, $p_{\pm} \in K_{\pm}(B \upharpoonright_{\mathcal{M}})$ and since $K_{\pm}(B \upharpoonright_{\mathcal{M}}) \subseteq \mathcal{M}$ one has $f \in D(B) \cap \mathcal{M}$. So, $\eta \in D \lceil (B \upharpoonright_{\mathcal{M}})^* \rceil$.

If $\eta \in D[(B \upharpoonright_{\mathcal{M}})^*]$, then $\eta = g + q_+ + q_-$ with $g \in D(B \upharpoonright_{\mathcal{M}}) = D(B) \cap \mathcal{M}$ and $q_{\pm} \in K_{\pm}(B \upharpoonright_{\mathcal{M}}) \subseteq \mathcal{M}$. We conclude $\eta \in D(B^* \upharpoonright_{\mathcal{M}})$ and hence $B^* \upharpoonright_{\mathcal{M}} = (B \upharpoonright_{\mathcal{M}})^*$.

Consider the unitary operators given by (2.1). We have

$$D(R_{\theta}) = D(B \upharpoonright_{\mathcal{M}}) \dotplus K_{+}(B \upharpoonright_{\mathcal{M}}) \dotplus V_{\theta} [K_{+}(B \upharpoonright_{\mathcal{M}})]$$

= $[D(B) \dotplus K_{+}(B) \dotplus V_{\theta} (K_{+}(B))] \cap \mathcal{M}$
= $D(T_{\theta} \upharpoonright_{\mathcal{M}}).$

Since in particular $R_{\theta_0} = T_{\theta_0} \upharpoonright_{\mathcal{M}}$, we have that $\mathcal{E}' = \mathcal{E}^0$. Therefore, $\mu' = \mu^0$ and $F_{\mu'} = F_{\mu^0}$.

We obtain this corollary.

Corollary 4.2. Consider μ^0 as above. Then

$$\bigcup_{\theta \in [0,\pi) \setminus \{\theta_0\}} \sigma_p(T_\theta \restriction_{\mathcal{M}}) = \left\{ \lambda \in \mathbb{R} : \int_{\mathbb{R}} \frac{d\mu^0(x)}{(x-\lambda)^2} < \infty \right\}.$$

Proof. By the previous proposition, if $\lambda \in \sigma_p(T_\theta \upharpoonright_\mathcal{M})$ for some $\theta \in [0,\pi) \setminus \{\theta_0\}$, then $\int_{\mathbb{R}} \frac{d\mu^0(x)}{(x-\lambda)^2} < \infty$. On the other hand, suppose $\int_{\mathbb{R}} \frac{d\mu^0(x)}{(x-\lambda)^2} < \infty$. By Proposition 3.1, $F_{\mu^0}(\lambda + i0) \in \mathbb{R}$. Furthermore,

$$h: [0,\pi) \setminus \{\theta_0\} \longrightarrow \mathbb{R}, \text{ where } h(\theta) := \cot(\theta - \theta_0)$$

is a bijection. Thus, there exists $\theta \in [0, \pi) \setminus \{\theta_0\}$ such that $F_{\mu^0}(\lambda + i0) = h(\theta)$. By Proposition 4.1, $\lambda \in \sigma_p(T_\theta \upharpoonright_{\mathcal{M}})$.

We immediately show the following proposition.

Proposition 4.3. Let θ_0 fixed. Then the set of points in $\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$ which are not eigenvalues for any $T_{\theta} \upharpoonright_{\mathcal{M}}$ with $\theta \neq \theta_0$ is dense G_{δ} in $\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$.

Proof. Since supp $(\mu^0) = \sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$, by Corollary 3.5 and Corollary 4.2 the set

$$\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}}) \cap \bigcup_{\theta \in [0,\pi) \setminus \{\theta_0\}} \sigma_p(T_{\theta} \upharpoonright_{\mathcal{M}}) \tag{4.1}$$

is a countable union of closed nowhere dense sets in $\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$.

We conclude by the fact that the set of points in $\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$ which are not eigenvalues for any $T_{\theta} \upharpoonright_{\mathcal{M}}$ with $\theta \neq \theta_0$, is the complement in $\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$ of (4.1).

This result leads to the proof of the first main theorem, which in fact holds in a more general setting .

Proof of Theorem 1.1. Consider the following set

$$\{\lambda \in \sigma(A \upharpoonright_{\mathcal{M}}) : \lambda \notin \sigma_{p}(A^{\gamma} \upharpoonright_{\mathcal{M}}), \text{ for any } \gamma \in \mathbb{R}\}$$

$$(4.2)$$

By Proposition 2.6 it turns out that

$$(4.2) = \left\{ \lambda \in \sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}) : \lambda \notin \sigma_p(T_{\theta} \upharpoonright_{\mathcal{M}}), \text{ for any } \gamma \in \mathbb{R}, \text{ where } \theta = f(\gamma) \right\}$$
$$= \left\{ \lambda \in \sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}) : \lambda \notin \sigma_p(T_{\theta} \upharpoonright_{\mathcal{M}}), \text{ for any } \theta \in [0, \pi) \setminus \left\{ \frac{\pi}{2} \right\} \right\},$$

where

$$f(\gamma) := \frac{1}{2} \arg \left(-\frac{\gamma + i}{\gamma - i} \right).$$

By Proposition 4.3 when $\theta_0 = \frac{\pi}{2}$, the set (4.2) is dense G_δ in $\sigma(A \upharpoonright_{\mathcal{M}})$. If $(A - iI)^{-1}\varphi$ is cyclic for A, that is $\mathcal{H} = \mathcal{M}$, the result follows.

5. FORBIDDEN EXTENSION PARAMETERS

Let us start proving the next lemma.

Lemma 5.1. Let $\theta \in [0,\pi)$ and $E \in \mathbb{R}$. If $y \in [Ker(T_{\theta} - EI) \setminus \{0\}] \cap \mathcal{M}$, then $\langle y, u_{+} \rangle \neq 0$.

Proof. Suppose there is $y \in [\text{Ker}(T_{\theta} - EI) \setminus \{0\}] \cap \mathcal{M}$ such that $\langle y, u_{+} \rangle = 0$. Given $z \in \mathbb{C} \setminus \mathbb{R}$

$$(T_{\theta} - \overline{z}I)^{-1}y = (E - \overline{z})^{-1}y.$$

Then

$$\langle y, (T_{\theta} - zI)^{-1}u_{+} \rangle = \langle (T_{\theta} - \overline{z}I)^{-1}y, u_{+} \rangle = \langle (E - \overline{z})^{-1}y, u_{+} \rangle = 0.$$

Since u_+ is cyclic for $T_{\theta} \upharpoonright_{\mathcal{M}}$ when θ is fixed, one concludes y = 0.

Definition 5.2. Let X be a Banach space and X^* be its dual space. The weak topology is the weakest topology in X such that each functional in X^* is continuous. The weak*-topology is the weakest topology in X^* such that each functional in X^{**} is continuous.

Remark 5.3. If X is a Hilbert space the weak topology and weak*-topology coincide. Therefore, by Banach-Alaoglu-Bourbaki Theorem the closed balls in a Hilbert space are compact with respect to the weak topology.

Let $\tau := [0, \pi] \times \mathbb{R} \times \mathcal{M}$, where the Hilbert space \mathcal{M} is endowed with the weak topology. By the last lemma, we can define the following sets:

$$\tau_M := [0, \pi] \times \mathbb{R} \times B_M \cap \mathcal{M},$$

where B_M is the closed ball in \mathcal{H} with center at 0 and radius M,

$$Q_M := \{(\theta, E, y) \in \tau_M : y \in \text{Ker}(T_\theta - EI) \text{ such that } \langle y, u_+ \rangle = 1\}.$$

Remark 5.4. The topological space τ_M is metrizable because $B_M \cap \mathcal{M}$ is too. It is due to the separability of \mathcal{M} . Further $B_M \cap \mathcal{M}$ is a convex set in \mathcal{M} so that is strongly, weakly and weakly sequentially closed in \mathcal{M} . Therefore, τ_M is a closed subspace of τ .

We propose the next definition.

Definition 5.5. Let $A: \mathcal{H} \longrightarrow \mathcal{H}$ be an operator. It is said to be weakly closed in \mathcal{H} if given $(\eta_n)_{n\in\mathbb{N}}\subseteq D(A)$ such that

$$\eta_n \longrightarrow^w \eta \in \mathcal{H}$$
 and $A\eta_n \longrightarrow^w y \in \mathcal{H}$,

then $\eta \in D(A)$ and $A\eta = y$.

The proof of the following proposition follows the classical argument. It only relies on the continuity of the inner product with respect to weak limits.

Proposition 5.6. Let $A: \mathcal{H} \longrightarrow \mathcal{H}$ be a densely defined operator. Then A^* is weakly closed on \mathcal{H} .

We prove the following lemma.

Lemma 5.7. The set Q_M is closed in τ_M .

Proof. Let $(\theta_n, E_n, y_n) \in Q_M$ be a sequence such that it converges to $(\theta, E, y) \in \tau_M$. We assert $(\theta, E, y) \in Q_M$. By definition for every $n \in \mathbb{N}$, $y_n \in \text{Ker}(T_{\theta_n} - E_n I) \cap \mathcal{M}$ such that $\langle y_n, u_+ \rangle = 1$. Since $y_n \longrightarrow^w y$ one has $\langle y, u_+ \rangle = 1$ and hence $y \neq 0$. Moreover,

$$B^*y_n = T_{\theta_n}y_n = E_ny_n \longrightarrow^w Ey.$$

By Proposition 5.6, $y \in D(B^*)$ and $B^*y = Ey$. That is, there exist $\eta \in D(B)$ and $a, b \in \mathbb{C}$ such that $y = \eta + au_+ + bu_-$. Then, for each $n \in \mathbb{N}$ there exist $\eta_n \in D(B)$ and $a_n \in \mathbb{C}$ such that

$$y_n = \eta_n + a_n u_+ + a_n e^{-2i\theta_n} u_- \longrightarrow^w y = \eta + au_+ + bu_-.$$

On the other hand, by using the inner product of the graph of B^*

$$\begin{split} \langle y_n, u_+ \rangle_{B^*} &:= \langle y_n, u_+ \rangle + \langle B^* y_n, B^* u_+ \rangle = \langle y_n, u_+ \rangle + \langle E_n y_n, i u_+ \rangle \\ &= \langle y_n, u_+ \rangle + i E_n \langle y_n, u_+ \rangle \\ &\longrightarrow^w \langle y, u_+ \rangle + i E \langle y, u_+ \rangle \\ &= \langle y, u_+ \rangle_{B^*}. \end{split}$$

Moreover,

$$\langle y_n, u_+ \rangle_{B^*} = \langle \eta_n, u_+ \rangle_{B^*} + \langle a_n u_+, u_+ \rangle_{B^*} + \langle a_n e^{-2i\theta_n} u_-, u_+ \rangle_{B^*} = 2a_n$$

 $\langle y, u_+ \rangle_{B^*} = \langle \eta, u_+ \rangle_{B^*} + \langle au_+, u_+ \rangle_{B^*} + \langle bu_-, u_+ \rangle_{B^*} = 2a.$

Therefore, $a_n \longrightarrow a$. Then

$$\eta_n + a_n u_+ + a_n e^{-2i\theta_n} u_- \longrightarrow^w \eta + a u_+ + a e^{-2i\theta} u_-.$$

By uniqueness of limits $y = \eta + au_+ + ae^{-2i\theta}u_-$. Hence, $y \in \text{Ker}(T_\theta - EI) \setminus \{0\}$. Finally, Q_M is closed.

We obtain the following identity.

Lemma 5.8. Let $y_j = \eta_j + a_j e^{i\theta_j} u_+ + a_j e^{-i\theta_j} u_- \in \text{Ker}(T_{\theta_j} - E_j I)$ with j = 1, 2.

$$-4a_1\overline{a_2}\operatorname{sen}(\theta_1 - \theta_2) = (E_1 - E_2)\langle y_1, y_2 \rangle.$$

The following result is formulated like in [6].

Lemma 5.9. Let $F \subseteq Q_M$ be a compact set. The function $W_F : F \times F \longrightarrow \mathbb{C}$ such that

$$W_F((\theta_1, E_1, y_1), (\theta_2, E_2, y_2)) := \langle y_1, y_2 \rangle$$

is continuous at least at a pair $(\varepsilon_0, \varepsilon_0) \in F \times F$.

Proof. Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of \mathcal{M} . We define $J_m, J_F : F \longrightarrow \mathbb{R}$ with $m \in \mathbb{N}$ and $\varepsilon = (\theta, E, y)$ by

$$J_m(\varepsilon) := \sum_{n=1}^m |\langle y, e_n \rangle|^2$$

and

$$J_F(\varepsilon) := ||y||^2.$$

Due to Parseval's identity, it turns out that for each $\varepsilon \in F$

$$J_F(\varepsilon) = \sum_{n=1}^{\infty} |\langle y, e_n \rangle|^2 = \lim_{m \to \infty} J_m(\varepsilon).$$

Let $\varepsilon_k = (\theta_k, E_k, y_k) \in F$ be a sequence that converges to $\varepsilon \in F$. Then, $y_k \longrightarrow^w y$. Hence,

$$\lim_{k \to \infty} J_m(\varepsilon_k) = \sum_{n=1}^m |\langle y, e_n \rangle|^2 = J_m(\varepsilon).$$

Therefore, J_F is pointwise limit of continuous functions. By [8, Theorem 7.3], there exists $\varepsilon_0 \in F$ such that J_F is continuous at $\varepsilon_0 := (\theta_0, E_0, y_0)$.

We assert that W_F is continuous at $(\varepsilon_0, \varepsilon_0)$. If $\varepsilon_n = (\theta_n, E_n, y_n) \longrightarrow \varepsilon_0$ and $\varepsilon'_n = (\theta'_n, E'_n, y'_n) \longrightarrow \varepsilon_0$, then

$$y_n, y'_n \longrightarrow^w y_0$$

and by continuity of J_F at ε_0 ,

$$||y_n||, ||y_n'|| \longrightarrow ||y_0||.$$

So, $y_n, y'_n \longrightarrow y_0$. Thus,

$$W_F(\varepsilon_n, \varepsilon_n') = \langle y_n, y_n' \rangle \longrightarrow \langle y_0, y_0 \rangle = W_F(\varepsilon_0, \varepsilon_0).$$

Finally, W_F is continuous at $(\varepsilon_0, \varepsilon_0)$.

Let $\mathcal{P}: \tau \longrightarrow \mathbb{R}$, $\Pi: \tau \longrightarrow [0, \pi]$, $\mathcal{R}: \tau \longrightarrow [0, \pi] \times \mathbb{R}$, $p: [0, \pi] \times \mathbb{R} \longrightarrow \mathbb{R}$ and $q: [0, \pi] \times \mathbb{R} \longrightarrow [0, \pi]$ be projections. We follow the same procedure used in the proof of [6, Proposition 2*] and [7, Proposition 2].

Proposition 5.10. Let $F \subseteq Q_M$ be a compact set. Then $\mathcal{P}(F)$ is nowhere dense in \mathbb{R} if and only if $\Pi(F)$ is nowhere dense in $[0,\pi]$.

Proof. Suppose that there is a compact subset $F \subseteq Q_M$ such that $\mathcal{P}(F)$ is nowhere dense and $\Pi(F)$ contains a non-empty open set of $[0,\pi]$ which one denotes as \mathcal{I} . Consider the partially ordered set given by the collection

$$\{F' \subseteq F : F' \text{ is compact set in } Q_M \text{ and } \Pi(F') \supset \mathcal{I}\}.$$
 (5.1)

We assert that (5.1) has a minimal element. Let $\{F_{\alpha}\}_{{\alpha}\in\Delta}$ be a chain in (5.1), where Δ is an arbitrary set of indices. It turns out that $\bigcap_{{\alpha}\in\Delta}F_{\alpha}$ is a compact subset of F

in Q_M . We assert $\Pi\left(\bigcap_{\alpha\in\Delta}F_{\alpha}\right)\supset\mathcal{I}$. For all $\alpha\in\Delta$, there exists $G_{\alpha}\subseteq\mathbb{R}\times\mathcal{M}$ such that $F_{\alpha}=\Pi(F_{\alpha})\times G_{\alpha}$. It follows by

$$\bigcap_{\alpha \in \Delta} F_{\alpha} \supseteq \bigcap_{\alpha \in \Delta} \Pi(F_{\alpha}) \times \bigcap_{\alpha \in \Delta} G_{\alpha}.$$

Therefore, $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is a lower bound of $\{F_{\alpha}\}_{\alpha \in \Delta}$. We conclude by Zorn's lemma. Denote the minimal set by \widehat{F} .

We now prove that there exists a subset of \widehat{F} whose projections under \mathcal{P} and Π are homeomorphic. By Lemma 5.9, there exists $\delta > 0$ such that for all $\varepsilon, \varepsilon' \in \widehat{F}$

$$d_{\widehat{F}\times\widehat{F}}\left((\varepsilon,\varepsilon'),(\varepsilon_0,\varepsilon_0)\right) < \delta \Rightarrow \left|W_{\widehat{F}}(\varepsilon,\varepsilon') - W_{\widehat{F}}(\varepsilon_0,\varepsilon_0)\right| < \frac{\|y_0\|^2}{2},\tag{5.2}$$

where $d_{\widehat{F} \times \widehat{F}}$ is the metric of $\widehat{F} \times \widehat{F}$.

Let \mathcal{U} be the ball in τ_M defined as

$$\mathcal{U} := \left\{ \varepsilon \in \tau_M : d_M \left(\varepsilon, \varepsilon_0 \right) < \frac{\delta}{3} \right\},\,$$

where d_M denotes the metric on τ_M . We show $p|_{\mathcal{R}(\widehat{F}\cap\overline{\mathcal{U}})}$ and $q|_{\mathcal{R}(\widehat{F}\cap\overline{\mathcal{U}})}$ are injective, where $\overline{\mathcal{U}}$ denotes closure in τ_M . That is, for all $\varepsilon_1 = (\theta_1, E_1, y_1)$, $\varepsilon_2 = (\theta_2, E_2, y_2) \in \widehat{F} \cap \overline{\mathcal{U}}$, it suffices to prove $\theta_1 = \theta_2$ if and only if $E_1 = E_2$.

 (\Rightarrow) Suppose $\theta_1 = \theta_2$. By Lemma 5.8

$$(E_1 - E_2)\langle y_1, y_2 \rangle = 0.$$
 (5.3)

Since $\varepsilon_1, \varepsilon_2 \in \overline{\mathcal{U}}$,

$$d_{\widehat{F}_{N},\widehat{F}}\left((\varepsilon_{1},\varepsilon_{2}),(\varepsilon_{0},\varepsilon_{0})\right)=d_{M}\left(\varepsilon_{1},\varepsilon_{0}\right)+d_{M}\left(\varepsilon_{2},\varepsilon_{0}\right)<\delta.$$

By (5.2),

$$\left| \langle y_1, y_2 \rangle - \|y_0\|^2 \right| = \left| W_{\widehat{F}}(\varepsilon_1, \varepsilon_2) - W_{\widehat{F}}(\varepsilon_0, \varepsilon_0) \right| < \frac{\|y_0\|^2}{2}.$$

Thus, $\langle y_1, y_2 \rangle \neq 0$ implies $E_1 = E_2$.

(\Leftarrow) Suppose $E_1 = E_2$. If $\theta_1 \neq \theta_2$, then the operators $T_{\theta_1} \upharpoonright_{\mathcal{M}}$ and $T_{\theta_2} \upharpoonright_{\mathcal{M}}$ have an eigenvalue in common, but that contradicts to Proposition 4.1.

Next, $p|_{\mathcal{R}(\widehat{F} \cap \overline{\mathcal{U}})}$ and $q|_{\mathcal{R}(\widehat{F} \cap \overline{\mathcal{U}})}$ are homeomorphisms. Then

$$\mathcal{P}(\widehat{F}\cap\overline{\mathcal{U}})=p\left[\mathcal{R}(\widehat{F}\cap\overline{\mathcal{U}})\right] \text{ and } \Pi(\widehat{F}\cap\overline{\mathcal{U}})=q\left[\mathcal{R}(\widehat{F}\cap\overline{\mathcal{U}})\right]$$

are homeomorphic to $\mathcal{R}(\widehat{F} \cap \overline{\mathcal{U}})$ and hence between them.

On the other hand, $\Pi(\widehat{F}) = \Pi(\widehat{F} \cap \mathcal{U}) \cup \Pi(\widehat{F} \setminus \mathcal{U})$, where $\Pi(\widehat{F})$ contains to \mathcal{I} . Since $\mathcal{P}(\widehat{F} \cap \overline{\mathcal{U}}) \subseteq \mathcal{P}(\widehat{F})$, by hypothesis it is nowhere dense in \mathbb{R} . But $\Pi(\widehat{F} \cap \overline{\mathcal{U}})$ is nowhere dense in $[0, \pi]$ and $\Pi(\widehat{F} \cap \mathcal{U})$ inherits that property. Then \mathcal{I} is not contained in $\Pi(\widehat{F} \cap \mathcal{U})$. Hence, $\mathcal{I} \subseteq \Pi(\widehat{F} \setminus \mathcal{U})$. Moreover, $\widehat{F} \setminus \mathcal{U}$ is properly contained in \widehat{F} and is compact in Q_M . But this contradicts the minimality of \widehat{F} . Consequently, $\Pi(F)$ is nowhere dense in $[0, \pi]$. The other direction is analogous.

Finally, we arrive at the following proposition.

Proposition 5.11. Let Y be a countable union of closed nowhere dense sets in \mathbb{R} . Then

$$\{\theta \in [0,\pi) \mid \sigma_n(T_\theta \upharpoonright_{\mathcal{M}}) \cap Y \neq \emptyset\}$$

is a countable union of closed nowhere dense sets in $[0, \pi]$.

Proof. It turns out that

$$\{\theta \in [0,\pi) \mid \sigma_n(T_\theta \upharpoonright_{\mathcal{M}}) \cap Y \neq \varnothing\} = \Pi(Q \cap \mathcal{P}^{-1}(Y)),$$

where $Q := \{(\theta, E, y) \in \tau : y \in \text{Ker}(T_{\theta} - EI) \text{ and } \langle y, u_{+} \rangle = 1\}.$

By hypothesis, there is a sequence $\{Y_n\}_{n\in\mathbb{N}}$ of closed nowhere dense sets in \mathbb{R} such that $Y=\bigcup_{n\in\mathbb{N}}Y_n$. For all $M\in\mathbb{N}$ we define

$$Q^{(M)} := Q_M \cap ([-M, M] \times [-M, M] \times B_M \cap \mathcal{M})$$

which is closed in τ_M by Lemma 5.7. Further, due to Tychonoff Theorem and Banach–Alaoglu–Bourbaki Theorem, $Q^{(M)}$ is compact in τ_M . It is true that $Q = \bigcup_{M \in \mathbb{N}} Q^{(M)}$. Then,

$$\Pi(Q \cap \mathcal{P}^{-1}(Y)) = \bigcup_{M,n \in \mathbb{N}} \Pi\left(Q^{(M)} \cap \mathcal{P}^{-1}(Y_n)\right). \tag{5.4}$$

Since $Q^{(M)} \cap \mathcal{P}^{-1}(Y_n)$ is closed and contained in a compact, it inherits compactness. Furthermore, $\mathcal{P}\left(Q^{(M)} \cap \mathcal{P}^{-1}(Y_n)\right) = \mathcal{P}\left(Q^{(M)}\right) \cap Y_n$ is contained in a nowhere dense set, thus, it inherits that property. According to the last proposition, $\Pi\left(Q^{(M)} \cap \mathcal{P}^{-1}(Y_n)\right)$ is nowhere dense. In addition, it is compact by continuity of Π . But compact implies closed in \mathbb{R}^2 .

We shall use the following lemma.

Lemma 5.12. Let X be a topological space and $D, Y \subseteq X$ closed subspaces of X such that $D \subseteq Y$. If D is nowhere dense in Y, then it is too in X.

Proof. Suppose there exist $a \in D$ and $U \subseteq X$ open in X such that $a \in U \subseteq D$. Then $a \in U \cap Y$ and $U \cap Y \subseteq D \cap Y = D$. Hence, D contains a non-empty open subset in Y which is a contradiction.

With the above we can prove the following result.

Proposition 5.13. Let θ_0 fixed. Then

$$\{\theta \in [0, \pi] \mid \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) \cap \sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}}) = \varnothing\}$$
 (5.5)

is dense G_{δ} in $[0,\pi]$.

Proof. Consider the set

$$Y := \sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}}) \cap \bigcup_{\theta \in [0,\pi) \setminus \{\theta_0\}} \sigma_p(T_{\theta} \upharpoonright_{\mathcal{M}}).$$

By Proposition 4.3 and Lemma 5.12, Y is a countable union of closed nowhere dense sets in \mathbb{R} and by Proposition 5.11 one has that

$$\{\theta \in [0,\pi] \mid \sigma_n(T_\theta \upharpoonright_{\mathcal{M}}) \cap Y \neq \emptyset\}$$

is a countable union of closed nowhere dense sets in $[0, \pi]$. Thus,

$$N := \{ \theta \in [0, \pi] \mid \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) \cap Y = \emptyset \}$$

is dense G_{δ} in $[0, \pi]$. Furthermore,

$$\sigma_p(T_\theta\restriction_{\mathcal{M}})\cap Y = \begin{cases} \sigma_p(T_\theta\restriction_{\mathcal{M}})\cap\sigma(T_{\theta_0}\restriction_{\mathcal{M}}) & \text{if} \quad \theta\neq\theta_0,\\ \varnothing & \text{if} \quad \theta=\theta_0. \end{cases}$$

Therefore, $\theta_0 \in N$. However,

 θ_0 belongs to the set (5.5) if and only if $\sigma_p(T_{\theta_0} \upharpoonright_{\mathcal{M}}) = \varnothing$.

Then

$$N = \{ \theta \in [0, \pi] \mid \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) \cap \sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}}) = \emptyset \} \cup \{ \theta_0 \}.$$

Case 1. If $\sigma_p(T_{\theta_0} \upharpoonright_{\mathcal{M}}) = \emptyset$, then N is equal to the set (5.5).

Case 2. Suppose $\sigma_p(T_{\theta_0} \upharpoonright_{\mathcal{M}}) \neq \emptyset$. We have

$$N \setminus \{\theta_0\} = \{\theta \in [0, \pi] \mid \sigma_n(T_\theta \upharpoonright_{\mathcal{M}}) \cap \sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}}) = \varnothing \}.$$

Since N is dense in $[0, \pi]$, $N \setminus \{\theta_0\}$ is too. Moreover, if $\{F_n\}_{n \in \mathbb{N}}$ is the sequence of open sets in $[0, \pi]$ such that $N = \bigcap_{n \in \mathbb{N}} F_n$, then $N \setminus \{\theta_0\} = \bigcap_{n \in \mathbb{N}} (F_n \setminus \{\theta_0\})$ and each $F_n \setminus \{\theta_0\}$ is open in $[0, \pi]$.

In conclusion,

$$\{\theta \in [0,\pi] \mid \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) \cap \sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}}) = \varnothing\}$$

is dense G_{δ} in $[0, \pi]$.

Denote by σ_{ac} and σ_{sc} the absolutely continuous and singular continuous spectrum respectively. We mean by int to interior in \mathbb{R} of a set. Remind that σ_p denotes the set of eigenvalues. We get the following corollaries.

Corollary 5.14. Let θ_0 fixed and suppose $\sigma_{ac}(T_{\theta_0} \upharpoonright_{\mathcal{M}}) = \emptyset$. Then

$$\{\theta \in [0,\pi] \mid \sigma(T_{\theta} \upharpoonright_{\mathcal{M}}) \cap \text{int } \sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}}) \subseteq \sigma_{sc}(T_{\theta} \upharpoonright_{\mathcal{M}})\}$$

is dense G_{δ} in $[0,\pi]$.

Proof. Follows by the invariance of absolutely continuous spectrum for self-adjoint extensions and Proposition 5.13.

Corollary 5.15. For a dense G_{δ} set of self-adjoint extensions of a densely defined closed symmetric operator with deficiency indices (1,1), their eigenvalues are isolated.

Proof. We make use of the invariance of essential spectrum for self-adjoint extensions and Proposition 5.13.

Finally, we can prove the second main theorem.

Proof of Theorem 1.2. Taking $\theta_0 = \frac{\pi}{2}$ and $B = \dot{A}$ in Proposition 5.13, one has

$$\Theta := \left\{ \theta \in [0, \pi] \mid \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) \cap \sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}) = \varnothing \right\}$$

is dense G_{δ} in $[0, \pi]$.

Consider the function $\Psi: \mathbb{R} \longrightarrow [0,\pi) \setminus \left\{\frac{\pi}{2}\right\}$ defined as

$$\Psi(\gamma) := \frac{1}{2} \arg \left(-\frac{\gamma + i}{\gamma - i} \right)$$

which is a homeomorphism. Setting

$$\Gamma := \{ \gamma \in \mathbb{R} \mid \sigma_p(A^\gamma \upharpoonright_{\mathcal{M}}) \cap \sigma(A \upharpoonright_{\mathcal{M}}) = \varnothing \}, \tag{5.6}$$

applying Proposition 2.6 and making $\theta := \Psi(\gamma)$,

$$\begin{split} \Psi(\Gamma) &= \left\{ \Psi(\gamma) : \sigma_p(A^{\gamma} \upharpoonright_{\mathcal{M}}) \cap \sigma(A \upharpoonright_{\mathcal{M}}) = \varnothing \right\} \\ &= \left\{ \theta \in [0, \pi) \setminus \left\{ \frac{\pi}{2} \right\} : \sigma_p\left(T_{\theta} \upharpoonright_{\mathcal{M}}\right) \cap \sigma\left(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}\right) = \varnothing \right\} \\ &= \Theta \setminus \left\{ \frac{\pi}{2} \right\}. \end{split}$$

Then Γ and $\Theta \setminus \left\{ \frac{\pi}{2} \right\}$ are homeomorphic. We conclude that Γ is dense G_{δ} in \mathbb{R} . Finally, the theorem follows by assuming that $\mathcal{M} = \mathcal{H}$.

Denote by σ_{ess} the essential spectrum of $A \upharpoonright_{\mathcal{M}}$. We now consider

$$\tau^{ess} := [0, \pi] \times \sigma_{ess} \times \mathcal{M},$$

where \mathcal{M} is endowed with the weak topology and by Lemma 5.1 can define the following sets:

$$\tau_M^{ess} := [0, \pi] \times \sigma_{ess} \times B_M \cap \mathcal{M},$$

where B_M is the closed ball in \mathcal{H} with center at 0 and radius M,

$$Q_M^{ess} := \{ (\theta, E, y) \in \tau_M^{ess} : y \in \text{Ker}(T_\theta - EI) \text{ such that } \langle y, u_+ \rangle = 1 \},$$

$$Q^{ess} := \{ (\theta, E, y) \in \tau^{ess} : y \in \text{Ker}(T_{\theta} - EI) \text{ such that } \langle y, u_{+} \rangle = 1 \}.$$

The results previous to Proposition 5.11 hold if we take the sets τ^{ess} , τ_M^{ess} , Q_M^{ess} and Q^{ess} instead of τ , τ_M , Q_M and Q. Therefore, we can conclude the following proposition.

Proposition 5.16. If Z is a countable union of closed nowhere dense sets in $[0, \pi]$, then

$$\sigma_{ess} \cap \bigcup_{\theta \in Z} \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) \tag{5.7}$$

is a countable union of closed nowhere dense sets in σ_{ess} (and therefore in $\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$ for some θ_0 fixed).

Proof. By hypothesis, there is a sequence $\{Z_n\}_{n\in\mathbb{N}}$ of closed nowhere dense sets in $[0,\pi]$ such that $Z=\bigcup_{n\in\mathbb{N}}Z_n$. We define

$$Q_{(M)}^{ess} := Q_M^{ess} \cap ([-M, M] \times [-M, M] \times B_M \cap \mathcal{M}).$$

Following the same argument as in the proof of Proposition 5.11, taking

$$\mathcal{P}(Q^{ess}\cap\Pi^{-1}(Z))=\bigcup_{M,n\in\mathbb{N}}\mathcal{P}\left(Q_{(M)}^{ess}\cap\Pi^{-1}\left(Z_{n}\right)\right)$$

instead of (5.4), we conclude that (5.7) is a countable union of closed nowhere dense sets in σ_{ess} and by Lemma 5.12, (5.7) is a countable union of closed nowhere dense sets in $\sigma(T_{\theta_0} \upharpoonright_{\mathcal{M}})$.

From this result we have another proof of Theorem 1.1. Denote by σ_{dis} the discrete spectrum.

Second Proof of Theorem 1.1. By Theorem 1.2, (5.6) is dense G_{δ} in \mathbb{R} . Then

$$Z := \left\{ \theta \in [0, \pi] \mid \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}) \cap \sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}) \neq \varnothing \right\} \cup \left\{ \frac{\pi}{2} \right\}$$
 (5.8)

is a countable union of closed nowhere dense sets in $[0, \pi]$. Replacing Z in Proposition 5.16, we have

$$\sigma_{ess} \cap \bigcup_{\theta \in Z} \sigma_p(T_\theta \restriction_{\mathcal{M}})$$

is a countable union of closed nowhere dense sets in $\sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}})$ and hence its complement in $\sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}})$, namely

$$\sigma_{dis}(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}) \cup \left\{ \lambda \in \sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}) : \lambda \notin \sigma_p(T_{\theta} \upharpoonright_{\mathcal{M}}), \text{ for any } \theta \in [0, \pi) \right\}, \tag{5.9}$$

is dense G_{δ} in $\sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}})$. Then

$$(5.9) \subseteq \left\{ \lambda \in \sigma(T_{\frac{\pi}{2}} \upharpoonright_{\mathcal{M}}) : \lambda \not\in \sigma_p(T_{\theta} \upharpoonright_{\mathcal{M}}), \text{ for any } \theta \in [0, \pi) \setminus \left\{ \frac{\pi}{2} \right\} \right\}$$
$$= \left\{ \lambda \in \sigma(A \upharpoonright_{\mathcal{M}}) : \lambda \not\in \sigma_p(A^{\gamma} \upharpoonright_{\mathcal{M}}), \text{ for any } \gamma \in \mathbb{R} \right\}.$$

It follows by assuming $\mathcal{M} = \mathcal{H}$

Remark 5.17. Theorem 1.1 if and only if Theorem 1.2. For the first direction, since Theorem 1.1 is a particular case of Proposition 4.3 with $\theta_0 = \frac{\pi}{2}$ and $B = \dot{A}$, we repeat the proof of Theorem 1.2. The converse is just the second proof of Theorem 1.1.

We conclude the following corollaries.

Corollary 5.18. The set of points in σ_{ess} which are not eigenvalues for any $A^{\gamma} \upharpoonright_{\mathcal{M}}$, with $\gamma \in \mathbb{R} \cup \{\infty\}$, is dense G_{δ} in σ_{ess} .

Proof. Replacing (5.8) in Proposition 5.16,

$$\{\lambda \in \sigma_{ess} : \lambda \notin \sigma_p(T_\theta \upharpoonright_{\mathcal{M}}), \text{ for any } \theta \in [0, \pi)\}$$
 (5.10)

is dense G_{δ} in σ_{ess} .

Remark 5.19. Note if $\sigma_p(A \upharpoonright_{\mathcal{M}}) = \emptyset$, Corollary 5.18 is equal to Theorem 1.1 since

$$(5.10) = (4.2) \setminus \sigma_p(A \upharpoonright_{\mathcal{M}}).$$

Corollary 5.20. The set

$$\{\gamma \in \mathbb{R} \mid \sigma_p(A^{\gamma} \upharpoonright_{\mathcal{M}}) = \sigma_{dis}(A^{\gamma} \upharpoonright_{\mathcal{M}})\}$$

is dense G_{δ} in \mathbb{R} . Also, if $\sigma_{ac}(A \upharpoonright_{\mathcal{M}}) = \emptyset$

$$\{\gamma \in \mathbb{R} \mid \sigma(A^{\gamma} \upharpoonright_{\mathcal{M}}) \cap \operatorname{int} \sigma(A \upharpoonright_{\mathcal{M}}) \subseteq \sigma_{sc}(A^{\gamma} \upharpoonright_{\mathcal{M}})\}$$

is dense G_{δ} in \mathbb{R} .

Proof. The proof follows similar lines to Corollary 5.14 and 5.15.

Remark 5.21. We conclude that just as in the case of rank one regular perturbations the absence of absolutely continuous spectrum implies the existence of singular continuous spectrum for a dense G_{δ} family of rank one singular perturbations.

6. FINAL REMARKS

In the unified approach presented here we used properties of spectral measures following [9] and Aronszajn–Donoghue Theory to show that there is a forbidden set of energies for rank one singular perturbations. By adapting the Gordon's methods of [6], we related this set to the extension parameters for such perturbations. We found that the existence of a subset of the spectrum of an unperturbed operator, which cannot contain eigenvalues of the perturbations, is equivalent to the existence of a large family of perturbations without embedded point spectrum. In future work, the unified approach presented here will be applied to the analysis of singular finite rank and supersingular perturbations.

Acknowledgements

The first author was supported by CONACYT Grant No. 805144. The authors thank Prof. Luis Silva for helpful comments. We are grateful to the anonymous reviewer for useful observations.

REFERENCES

- [1] S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators, Cambridge University Press, Cambridge, 2000.
- [2] A. Avila, D. Damanik, Pure point spectrum is generic, preprint.
- [3] W.F. Donoghue Jr., On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559–579.
- [4] F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61–138.
- [5] F. Gesztesy, N.J. Kalton, K.A. Makarov, E. Tsekanovskii, Some applications of operator-valued Herglotz functions, [in:] D. Alpay, V. Vinnikov (eds.), Operator Theory, System Theory and Related Topics, Birkhäuser Verlag, Basel, 2001, 271–321.
- [6] A.Y. Gordon, Pure point spectrum under 1-parameter perturbations and instability of Anderson localization, Comm. Math. Phys. 164 (1994), 489–505.
- [7] A.Y. Gordon, Instability of dense point spectrum under finite rank perturbations, Comm. Math. Phys. 187 (1997), 583-595.
- [8] J.C. Oxtoby, Measure and Category. A Survey of the Analogies between Topological and Measure Spaces, Springer-Verlag, New York-Berlin, 1971.
- [9] R. del Río, N. Makarov, B. Simon, Operators with singular continuous spectrum. II. Rank one operators, Comm. Math. Phys. 165 (1994), 59-67.
- [10] R.R. del Río Castillo, A forbidden set for embedded eigenvalues, Proc. Amer. Math. Soc. 121 (1994), 77–82.
- [11] K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht, 2012.
- [12] B. Simon, Spectral analysis of rank one perturbations and applications, [in:] J. Feldman, R. Froese, L.M. Rosen (eds.), Mathematical Quantum Theory. II. Schrödinger Operators, American Mathematical Society, Providence, RI, 1995, 109–149.
- [13] B. Simon, Operator Theory: A Comprehensive Course in Analysis, Part 4, American Mathematical Society, United States of America, 2015.
- [14] B. Simon, Twelve tales in mathematical physics: an expanded Heineman Prize lecture, J. Math. Phys. 63 (2022), 1–93.
- [15] B. Simon, T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Comm. Pure Appl. Math. 39 (1986), 75–90.
- [16] J. Weidmann, Linear Operators in Hilbert Spaces, Translated from the German by Joseph Szücs, Springer-Verlag, New York-Berlin, 1980.

Mario Alberto Ruiz Caballero (corresponding author) marioruiz@comunidad.unam.mx

https://orcid.org/0009-0009-0837-2996

Universidad Nacional Autónoma de México Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Departamento de Física Matemática Ciudad de México, C.P. 04510

Rafael del Río delrio@iimas.unam.mx
• https://orcid.org/0000-0002-9842-6952

Universidad Nacional Autónoma de México Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Departamento de Física Matemática Ciudad de México, C.P. 04510

Received: June 26, 2025. Revised: November 19, 2025. Accepted: November 20, 2025.