Opuscula Math. 45, no. 6 (2025), 807-817
https://doi.org/10.7494/OpMath.2025.45.6.807
Opuscula Mathematica
The automorphism groups of domains and the Greene-Krantz conjecture
Abstract. We consider the subject of the automorphism groups of domains in complex space. In particular, we describe and discuss the noted Greene-Krantz conjecture.
Keywords: automorphism group, Greene-Krantz conjecture, boundary orbit accumulation point.
Mathematics Subject Classification: 30A99, 30F99, 32H02, 32H99, 32M17, 32M99.
- J. Bland, T. Duchamp, M. Kalka, A characterization of \(CP^n\) by its automorphism group, [in]: S.G. Krantz (ed.), Complex Analysis, Lecture Notes in Mathematics, vol. 1268, Springer, Berlin, Heidelberg, 1987, 60-65.
- E. Bedford, S. Pinchuk, Domains in \(\mathbb{C}^2\) with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135 (1988), 147-157 [in Russian].
- E. Bedford, S. Pinchuk, Domains in \(\mathbb{C}^{n+1}\) with noncompact automorphism group, J. Geom. Anal. 1 (1991), 165-191. https://doi.org/10.1007/bf02921302
- E. Bedford, S. Pinchuk, Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), 3-26 [in Russian], translation in Russian Acad. Sci. Sb. Math. extbf{82} (1995), 1-20. https://doi.org/10.1070/sm1995v082n01abeh003550
- E. Bedford, S. Pinchuk, Domains in \(\mathbb{C}^2\) with noncompact automorphism groups, Indiana Univ. Math. J. 47 (1998), 199-222. https://doi.org/10.1512/iumj.1998.47.1552
- D. Catlin, Subelliptic estimates for the \(\overline{\partial}\)-Neumann problem, Ann. Math. 126 (1987), 131-192. https://doi.org/10.2307/1971347
- J.P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993. https://doi.org/10.1201/9780203739785
- C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. https://doi.org/10.1007/bf01406845
- S. Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989), 109-149. https://doi.org/10.1007/bf02392734
- I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \(\mathbb{C}^n\) with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240. https://doi.org/10.1090/s0002-9947-1975-0372252-8
- R.E. Greene, S.G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), 425-446. https://doi.org/10.1007/bf01457445
- R.E. Greene, S.G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34 (1985), 865-879. https://doi.org/10.1512/iumj.1985.34.34048
- R.E. Greene, S.G. Krantz, Invariants of Bergman geometry and the automorphism groups of domains in \(\mathbb{C}^n\), [in:] Geometrical and algebraical aspects in several complex variables (Cetraro, 1989), 107-136, Sem. Conf., 8, EditEl, Rende, 1991.
- R.E. Greene, K.T. Kim, S.G. Krantz, The Geometry of Complex Domains, Progress in Mathematics, 291, Birkhäuser Boston, Ltd., Boston, MA, 2011. https://doi.org/10.1007/978-0-8176-4622-6
- R.E. Greene, K.T. Kim, S.G. Krantz, A. Seo, Semicontinuity of automorphism groups of strongly pseudoconvex domains: the low differentiability case, Pacific J. Math. 262 (2013), 365-395. https://doi.org/10.2140/pjm.2013.262.365
- A.V. Isaev, S.G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), 1-38. https://doi.org/10.1006/aima.1998.1821
- K.-T. Kim, Complete localization of domains with noncompact automorphism group, Trans. Amer. Math. Soc. 319 (1990), 139-153. https://doi.org/10.1090/s0002-9947-1990-0986028-x
- K.-T. Kim, Domains in \(\mathbb{C}^n\) with a piecewise Levi flat boundary which possess a noncompact automorphism group, Math. Ann. 292 (1992), 575-586. https://doi.org/10.1007/bf01444637
- K.-T. Kim, S.G. Krantz, Normal families of holomorphic functions and mappings on a Banach space, Expo. Math. 21 (2003), 193-218. https://doi.org/10.1016/s0723-0869(03)80001-4
- J.J. Kohn, Boundary behavior of \(\overline{\partial}\) on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. https://doi.org/10.4310/jdg/1214430641
- S.G. Krantz, Function Theory of Several Complex Variables, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2001. https://doi.org/10.1090/chel/340
- S.G. Krantz, The Greene-Krantz conjecture in dimension two, Rocky Mountain J. Math. 46 (2016), 1575-1586. https://doi.org/10.1216/rmj-2016-46-5-1575
- B. Liu, Analysis of orbit accumulation points and the Greene-Krantz conjecture, J. Geom. Anal. 27 (2017), 726-745. https://doi.org/10.1007/s12220-016-9696-9
- S. Pinchuk, The scaling method and holomorphic mappings, [in:] Several Complex Variables and Complex Geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991.
- J.-P. Rosay, Sur une caractérisation de la boule parmi les domains de \(\mathbb{C}^n\) par son groupe d'automorphismes, Ann. Inst. Four. Grenoble 29 (1979), 91-97. https://doi.org/10.5802/aif.768
- G. Tsai, A characterization of bounded convex domains in \(\mathbb{C}^n\) with non-compact automorphism group, preprint.
- N. Van Thu, Problems about the Greene-Krantz conjecture, preprint.
- B. Wong, Characterizations of the ball in \(\mathbb{C}^n\) by its automorphism group, Invent. Math. 41 (1977), 253-257. https://doi.org/10.1007/bf01403050
- Steven G. Krantz
https://orcid.org/0000-0003-0902-2014- Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri, USA 63130
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2025-10-26.
- Revised: 2025-11-14.
- Accepted: 2025-11-14.
- Published online: 2025-12-08.

