Opuscula Math. 45, no. 6 (2025), 807-817
https://doi.org/10.7494/OpMath.2025.45.6.807

 
Opuscula Mathematica

The automorphism groups of domains and the Greene-Krantz conjecture

Steven G. Krantz

Abstract. We consider the subject of the automorphism groups of domains in complex space. In particular, we describe and discuss the noted Greene-Krantz conjecture.

Keywords: automorphism group, Greene-Krantz conjecture, boundary orbit accumulation point.

Mathematics Subject Classification: 30A99, 30F99, 32H02, 32H99, 32M17, 32M99.

Full text (pdf)

  1. J. Bland, T. Duchamp, M. Kalka, A characterization of \(CP^n\) by its automorphism group, [in]: S.G. Krantz (ed.), Complex Analysis, Lecture Notes in Mathematics, vol. 1268, Springer, Berlin, Heidelberg, 1987, 60-65.
  2. E. Bedford, S. Pinchuk, Domains in \(\mathbb{C}^2\) with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135 (1988), 147-157 [in Russian].
  3. E. Bedford, S. Pinchuk, Domains in \(\mathbb{C}^{n+1}\) with noncompact automorphism group, J. Geom. Anal. 1 (1991), 165-191. https://doi.org/10.1007/bf02921302
  4. E. Bedford, S. Pinchuk, Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), 3-26 [in Russian], translation in Russian Acad. Sci. Sb. Math. extbf{82} (1995), 1-20. https://doi.org/10.1070/sm1995v082n01abeh003550
  5. E. Bedford, S. Pinchuk, Domains in \(\mathbb{C}^2\) with noncompact automorphism groups, Indiana Univ. Math. J. 47 (1998), 199-222. https://doi.org/10.1512/iumj.1998.47.1552
  6. D. Catlin, Subelliptic estimates for the \(\overline{\partial}\)-Neumann problem, Ann. Math. 126 (1987), 131-192. https://doi.org/10.2307/1971347
  7. J.P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993. https://doi.org/10.1201/9780203739785
  8. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. https://doi.org/10.1007/bf01406845
  9. S. Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989), 109-149. https://doi.org/10.1007/bf02392734
  10. I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \(\mathbb{C}^n\) with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240. https://doi.org/10.1090/s0002-9947-1975-0372252-8
  11. R.E. Greene, S.G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), 425-446. https://doi.org/10.1007/bf01457445
  12. R.E. Greene, S.G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34 (1985), 865-879. https://doi.org/10.1512/iumj.1985.34.34048
  13. R.E. Greene, S.G. Krantz, Invariants of Bergman geometry and the automorphism groups of domains in \(\mathbb{C}^n\), [in:] Geometrical and algebraical aspects in several complex variables (Cetraro, 1989), 107-136, Sem. Conf., 8, EditEl, Rende, 1991.
  14. R.E. Greene, K.T. Kim, S.G. Krantz, The Geometry of Complex Domains, Progress in Mathematics, 291, Birkhäuser Boston, Ltd., Boston, MA, 2011. https://doi.org/10.1007/978-0-8176-4622-6
  15. R.E. Greene, K.T. Kim, S.G. Krantz, A. Seo, Semicontinuity of automorphism groups of strongly pseudoconvex domains: the low differentiability case, Pacific J. Math. 262 (2013), 365-395. https://doi.org/10.2140/pjm.2013.262.365
  16. A.V. Isaev, S.G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), 1-38. https://doi.org/10.1006/aima.1998.1821
  17. K.-T. Kim, Complete localization of domains with noncompact automorphism group, Trans. Amer. Math. Soc. 319 (1990), 139-153. https://doi.org/10.1090/s0002-9947-1990-0986028-x
  18. K.-T. Kim, Domains in \(\mathbb{C}^n\) with a piecewise Levi flat boundary which possess a noncompact automorphism group, Math. Ann. 292 (1992), 575-586. https://doi.org/10.1007/bf01444637
  19. K.-T. Kim, S.G. Krantz, Normal families of holomorphic functions and mappings on a Banach space, Expo. Math. 21 (2003), 193-218. https://doi.org/10.1016/s0723-0869(03)80001-4
  20. J.J. Kohn, Boundary behavior of \(\overline{\partial}\) on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. https://doi.org/10.4310/jdg/1214430641
  21. S.G. Krantz, Function Theory of Several Complex Variables, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2001. https://doi.org/10.1090/chel/340
  22. S.G. Krantz, The Greene-Krantz conjecture in dimension two, Rocky Mountain J. Math. 46 (2016), 1575-1586. https://doi.org/10.1216/rmj-2016-46-5-1575
  23. B. Liu, Analysis of orbit accumulation points and the Greene-Krantz conjecture, J. Geom. Anal. 27 (2017), 726-745. https://doi.org/10.1007/s12220-016-9696-9
  24. S. Pinchuk, The scaling method and holomorphic mappings, [in:] Several Complex Variables and Complex Geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991.
  25. J.-P. Rosay, Sur une caractérisation de la boule parmi les domains de \(\mathbb{C}^n\) par son groupe d'automorphismes, Ann. Inst. Four. Grenoble 29 (1979), 91-97. https://doi.org/10.5802/aif.768
  26. G. Tsai, A characterization of bounded convex domains in \(\mathbb{C}^n\) with non-compact automorphism group, preprint.
  27. N. Van Thu, Problems about the Greene-Krantz conjecture, preprint.
  28. B. Wong, Characterizations of the ball in \(\mathbb{C}^n\) by its automorphism group, Invent. Math. 41 (1977), 253-257. https://doi.org/10.1007/bf01403050
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2025-10-26.
  • Revised: 2025-11-14.
  • Accepted: 2025-11-14.
  • Published online: 2025-12-08.
Opuscula Mathematica - cover

Cite this article as:
Steven G. Krantz, The automorphism groups of domains and the Greene-Krantz conjecture, Opuscula Math. 45, no. 6 (2025), 807-817, https://doi.org/10.7494/OpMath.2025.45.6.807

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.