Opuscula Math. 45, no. 6 (2025), 765-783
https://doi.org/10.7494/OpMath.2025.45.6.765
Opuscula Mathematica
Anisotropic singular logistic equations
João Pablo Pinheiro Da Silva
Giuseppe Failla
Leszek Gasiński
Nikolaos S. Papageorgiou
Abstract. We consider a parametric Dirichlet problem driven by the anisotropic \((p,q)\)-Laplacian and a reaction with a singular term and a superdiffusive logistic perturbation. We prove an existence and nonexistence theorem which is global with respect to the parameter \(\lambda\gt 0\).
Keywords: anisotropic \((p,q)\)-Laplacian, superdiffusive perturbation, anisotropic regularity, Hardy's inequality, strong comparison.
Mathematics Subject Classification: 35J60, 35J75.
- L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8_3
- X.L. Fan, Global \(C^{1,\alpha}\) regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), 397-417. https://doi.org/10.1016/j.jde.2007.01.008
- X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/s0362-546x(02)00150-5
- M.E. Filippakis, N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the \(p\)-Laplacian, J. Differential Equations 245 (2008), 1883-1922. https://doi.org/10.1016/j.jde.2008.07.004
- S. Hu, N.S. Papageorgiou, Research Topics in Analysis, Vol. II. Applications, Birkhäuser/Springer, Cham, 2024. https://doi.org/10.1007/978-3-031-64189-3
- G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361. https://doi.org/10.1080/03605309108820761
- N.S. Papageorgiou, P. Winkert, Existence and nonexistence of positive solutions for singular \((p, q)\)-equations with superdiffusive perturbation, Results Math. 76 (2021), Paper no. 169. https://doi.org/10.1007/s00025-021-01484-5
- N.S. Papageorgiou, P. Winkert, Positive solutions for singular anisotropic \((p,q)\)-equations, J. Geom. Anal. 31 (2021), 11849-11877. https://doi.org/10.1007/s12220-021-00703-3
- N.S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2024. https://doi.org/10.1515/9783111286952
- N.S. Papageorgiou, V. Rădulescu, X. Tang, Anisotropic Robin problems with logistic reaction, Z. Angew. Math. Phys. 72 (2021), Paper no. 94. https://doi.org/10.1007/s00033-021-01514-w
- N.S. Papageorgiou, V. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465-4502. https://doi.org/10.3934/dcdss.2021111
- Q. Zhang, A strong maximum principle for differential equations with nonstandard \(p(x)\)-growth conditions, J. Math. Anal. Appl. 312 (2005), 24-32. https://doi.org/10.1016/j.jmaa.2005.03.013
- João Pablo Pinheiro Da Silva (corresponding author)
https://orcid.org/0000-0003-3002-8242- Universidade Federal do Pará, Departamento de Matemática, 66075-110, Belém, PA, Brazil
- Giuseppe Failla
https://orcid.org/0009-0007-7336-4410- Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166, Messina, Italy
- Leszek Gasiński
https://orcid.org/0000-0001-8692-6442- University of the National Education Commission, Department of Mathematics, Podchorazych 2, 30-084 Cracow, Poland
- Nikolaos S. Papageorgiou
https://orcid.org/0000-0003-4800-1187- National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
- Center for Applied Mathematics, Yulin Normal University, Yulin 537000, P.R. China
- University of Craiova, Department of Mathematics, 200585 Craiova, Romania
- Communicated by Marek Galewski.
- Received: 2025-06-14.
- Accepted: 2025-11-11.
- Published online: 2025-12-08.

