Opuscula Math. 45, no. 6 (2025), 765-783
https://doi.org/10.7494/OpMath.2025.45.6.765

 
Opuscula Mathematica

Anisotropic singular logistic equations

João Pablo Pinheiro Da Silva
Giuseppe Failla
Leszek Gasiński
Nikolaos S. Papageorgiou

Abstract. We consider a parametric Dirichlet problem driven by the anisotropic \((p,q)\)-Laplacian and a reaction with a singular term and a superdiffusive logistic perturbation. We prove an existence and nonexistence theorem which is global with respect to the parameter \(\lambda\gt 0\).

Keywords: anisotropic \((p,q)\)-Laplacian, superdiffusive perturbation, anisotropic regularity, Hardy's inequality, strong comparison.

Mathematics Subject Classification: 35J60, 35J75.

Full text (pdf)

  1. L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8_3
  2. X.L. Fan, Global \(C^{1,\alpha}\) regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), 397-417. https://doi.org/10.1016/j.jde.2007.01.008
  3. X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/s0362-546x(02)00150-5
  4. M.E. Filippakis, N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the \(p\)-Laplacian, J. Differential Equations 245 (2008), 1883-1922. https://doi.org/10.1016/j.jde.2008.07.004
  5. S. Hu, N.S. Papageorgiou, Research Topics in Analysis, Vol. II. Applications, Birkhäuser/Springer, Cham, 2024. https://doi.org/10.1007/978-3-031-64189-3
  6. G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361. https://doi.org/10.1080/03605309108820761
  7. N.S. Papageorgiou, P. Winkert, Existence and nonexistence of positive solutions for singular \((p, q)\)-equations with superdiffusive perturbation, Results Math. 76 (2021), Paper no. 169. https://doi.org/10.1007/s00025-021-01484-5
  8. N.S. Papageorgiou, P. Winkert, Positive solutions for singular anisotropic \((p,q)\)-equations, J. Geom. Anal. 31 (2021), 11849-11877. https://doi.org/10.1007/s12220-021-00703-3
  9. N.S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2024. https://doi.org/10.1515/9783111286952
  10. N.S. Papageorgiou, V. Rădulescu, X. Tang, Anisotropic Robin problems with logistic reaction, Z. Angew. Math. Phys. 72 (2021), Paper no. 94. https://doi.org/10.1007/s00033-021-01514-w
  11. N.S. Papageorgiou, V. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465-4502. https://doi.org/10.3934/dcdss.2021111
  12. Q. Zhang, A strong maximum principle for differential equations with nonstandard \(p(x)\)-growth conditions, J. Math. Anal. Appl. 312 (2005), 24-32. https://doi.org/10.1016/j.jmaa.2005.03.013
  • Giuseppe Failla
  • ORCID iD https://orcid.org/0009-0007-7336-4410
  • Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166, Messina, Italy
  • Nikolaos S. Papageorgiou
  • ORCID iD https://orcid.org/0000-0003-4800-1187
  • National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
  • Center for Applied Mathematics, Yulin Normal University, Yulin 537000, P.R. China
  • University of Craiova, Department of Mathematics, 200585 Craiova, Romania
  • Communicated by Marek Galewski.
  • Received: 2025-06-14.
  • Accepted: 2025-11-11.
  • Published online: 2025-12-08.
Opuscula Mathematica - cover

Cite this article as:
João Pablo Pinheiro Da Silva, Giuseppe Failla, Leszek Gasiński, Nikolaos S. Papageorgiou, Anisotropic singular logistic equations, Opuscula Math. 45, no. 6 (2025), 765-783, https://doi.org/10.7494/OpMath.2025.45.6.765

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.