Opuscula Math. 45, no. 6 (2025), 739-763
https://doi.org/10.7494/OpMath.2025.45.6.739
Opuscula Mathematica
A comprehensive review on the existence of normalized solutions for four classes of nonlinear elliptic equations
Abstract. This paper provides a comprehensive review of recent results concerning the existence of normalized solutions for four classes of nonlinear elliptic equations: Schrödinger equations, Schrödinger-Poisson equations, Kirchhoff equations, and Choquard equations.
Keywords: normalized solutions, Schrödinger equations, Schrödinger-Poisson equations, Kirchhoff equations, Choquard equations.
Mathematics Subject Classification: 35J20, 35J62, 35Q55.
- W. Bao, Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet Relat Models 6 (2013), 1-135. https://doi.org/10.3934/krm.2013.6.1
- T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math. 100 (2013), 75-83. https://doi.org/10.1007/s00013-012-0468-x
- T. Bartsch, Y.Y. Liu, Z.L. Liu, Normalized solutions for a class of nonlinear Choquard equations, SN Partial Differ. Equ. Appl. 1 (2020), Article no. 34. https://doi.org/10.1007/s42985-020-00036-w
- J. Bellazzini, L. Jeanjean, T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc. 107 (2013), 303-339. https://doi.org/10.1112/plms/pds072
- J. Bellazzini, G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal. 261 (2011), 2486-2507. https://doi.org/10.1016/j.jfa.2011.06.014
- J. Bellazzini, G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys. 62 (2011), 267-280. https://doi.org/10.1007/s00033-010-0092-1
- B. Bieganowski, J. Mederski, Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth, J. Funct. Anal. 280 (2021), no. 11, Paper no. 108989. https://doi.org/10.1016/j.jfa.2021.108989
- I. Catto, P.L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part I: a necessary and sufficient condition for the stability of general molecular systems, Commun. Partial Differ. Equ. 17 (1992), 1051-1110. https://doi.org/10.1080/03605309208820878
- T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, AMS, Providence, RI, 2003. https://doi.org/10.1090/cln/010
- T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), 549-561. https://doi.org/10.1007/bf01403504
- S.T. Chen, X.H. Tang, Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth, J. Differ. Equ. 269 (2020), 9144-9174. https://doi.org/10.1016/j.jde.2020.06.043
- S.T. Chen, X.H. Tang, Normalized solutions for Schrödinger equations with mixed dispersion and critical exponential growth in \(\mathbb{R}^2\), Calc. Var. Partial Differ. Equations 62 (2023), Paper no. 261. https://doi.org/10.1007/s00526-023-02592-6
- S.T. Chen, X.H. Tang, Another look at Schrödinger equations with prescribed mass, J. Differential Equations 386 (2024), 435-479. https://doi.org/10.1016/j.jde.2023.12.026
- S.T. Chen, X.H. Tang, Normalized solutions for Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities, Math. Ann. 391 (2025), 2783-2836. https://doi.org/10.1007/s00208-024-02982-x
- S.T. Chen, V.D. Radulescu, X.H. Tang, Multiple normalized solutions for the planar Schrödinger–Poisson system with critical exponential growth, Math. Z. 306 (2024), Paper no. 50. https://doi.org/10.1007/s00209-024-03432-9
- S.T. Chen, J.P. Shi, X.H. Tang, Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity, Discrete Contin. Dyn. Syst. 39 (2019), 5867-5889. https://doi.org/10.3934/dcds.2019257
- S.T. Chen, X.H. Tang, S. Yuan, Normalized solutions for Schrödinger-Poisson equations with general nonlinearities, J. Math. Anal. Appl. 481 (2020), 123447. https://doi.org/10.1016/j.jmaa.2019.123447
- S. Cingolani, L. Jeanjean, Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal. 51 (2019), 3533-3568. https://doi.org/10.1137/19m1243907
- S. Cingolani, K. Tanaka, Ground State Solutions for the Nonlinear Choquard Equation with Prescribed Mass, Springer INdAM Ser., vol. 47, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-73363-6_2
- Q. Gao, X.M. He, Normalized solutions for the Choquard equations with critical nonlinearities, Adv. Nonlinear Anal. 13 (2024), 20240030. https://doi.org/10.1515/anona-2024-0030
- N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, vol. 107 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993. https://doi.org/10.1017/cbo9780511551703
- Q.H. He, Z.Y. Lv, Y.M. Zhang, X.X. Zhong, Existence and blow up behavior of positive normalized solution to the Kirchhoff equation with general nonlinearities: Mass super-critical case, J. Differential Equations 356 (2023), 375-406. https://doi.org/10.1016/j.jde.2023.01.039
- J. Hirata, K. Tanaka, Nonlinear scalar field equations with \(L^2\)-constraint: Mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud. 19 (2019), 263-290. https://doi.org/10.1515/ans-2018-2039
- L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), 1633-1659. https://doi.org/10.1016/s0362-546x(96)00021-1
- L. Jeanjean, T.T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann. 384 (2021), 101-134. https://doi.org/10.1007/s00208-021-02228-0
- L. Jeanjean, S.S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity 32 (2019), 4942-4966. https://doi.org/10.1088/1361-6544/ab435e
- L. Jeanjean, S.S. Lu, A mass supercritical problem revisited, Calc. Var. 59 (2020), Article no. 174. https://doi.org/10.1007/s00526-020-01828-z
- L. Jeanjean, S.S. Lu, On global minimizers for a mass constrained problem, Calc. Var. 61 (2022), Article no. 214. https://doi.org/10.1007/s00526-022-02320-6
- L. Jeanjean, T. Luo, Sharp nonexistence results of prescribed \(L^2\)-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys. 64 (2013), 937-954. https://doi.org/10.1007/s00033-012-0272-2
- L. Jeanjean, J. Jendrej, T.T. Le, N. Visciglia, Orbital stability of ground states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl. (9) 164 (2022), 158-179. https://doi.org/10.1016/j.matpur.2022.06.005
- M.K. Kwong, Uniqueness of positive solutions of \(-\Delta u + u = u^{p-1}\) in \(\mathbb{R}^n\), Arch. Rational Mech. Anal. 105 (1989), 243-266. https://doi.org/10.1007/bf00251502
- G. Li, X. Luo, T. Yang, Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent, Ann. Fenn. Math. 47 (2022), 895-925. https://doi.org/10.54330/afm.120247
- G. Li, H. Ye, The existence of positive solutions with prescribed \(L^2\)-norm for nonlinear Choquard equations, J. Math. Phys. 55 (2014), 1-19. https://doi.org/10.1063/1.4902386
- X.F. Li, Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability, Adv. Nonlinear Anal. 11 (2022), 1134-1164. https://doi.org/10.1515/anona-2022-0230
- X. Luo, Q.F. Wang, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in \(\mathbb{R}^3\), Nonlinear Anal. Real World Appl. 33 (2017), 19-32. https://doi.org/10.1016/j.nonrwa.2016.06.001
- S.J. Qi, W.M. Zou, Exact number of the positive solutions for Kirchhoff equation, SIAM J. Math. Anal. 54 (2022), 5424-5446. https://doi.org/10.1137/21m1445879
- O. Sanchez, J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Stat. Phys. 114 (2004), 179-204. https://doi.org/10.1023/b:joss.0000003109.97208.53
- M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math. 143 (2014), 221-37. https://doi.org/10.1007/s00229-013-0627-9
- N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ. 269 (2020), 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016
- N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal. 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610
- C.A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. Lond. Math. Soc. 45 (1982), 169-192. https://doi.org/10.1112/plms/s3-45.1.169
- C.A. Stuart, Bifurcation from the essential spectrum for some non‐compact non‐linearities, Math. Methods Appl. Sci. 11 (1989), 525-542. https://doi.org/10.1002/mma.1670110408
- Q. Wang, A.X. Qian, Normalized solutions to the Schrödinger-Poisson-Slater equation with general nonlinearity: mass supercritical case, Anal. Math. Phys. 13 (2023), Article no. 35. https://doi.org/10.1007/s13324-023-00788-9
- Q. Wang, A.X. Qian, Ground state normalized solutions to the Kirchhoff equation with general nonlinearities: mass supercritical case, J. Inequal. Appl. (2024), Article no. 48. https://doi.org/10.1186/s13660-024-03086-5
- J. Wei, Y. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal. 283 (2022), Paper no. 109574. https://doi.org/10.1016/j.jfa.2022.109574
- W.H. Xie, H.B. Chen, H.X. Shi, Existence and multiplicity of normalized solutions for a class of Schrödinger-Poisson equations with general nonlinearities, Math. Meth. Appl. Sci. 43 (2020), 3602-3616. https://doi.org/10.1002/mma.6140
- H. Ye, Mass minimizers and concentration for nonlinear Choquard equations in \(\mathbb{R}^N\), Topol. Methods Nonlinear Anal. 48 (2016), 393-417. https://doi.org/10.12775/tmna.2016.066
- H.Y. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci. 38 (2015), 2663-2679. https://doi.org/10.1002/mma.3247
- H.Y. Ye, The existence of normalized solutions for \(L^2\)-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 66 (2015), 1483-1497. https://doi.org/10.1007/s00033-014-0474-x
- H.Y. Ye, The mass concentration phenomenon for \(L^2\)-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 67 (2016), Article no. 29. https://doi.org/10.1007/s00033-016-0624-4
- P. Zhang, Z. Han, Normalized ground states for Kirchhoff equations in R3 with a critical nonlinearity, J. Math. Phys. 63 (2022), Paper no. 021505. https://doi.org/10.1063/5.0067520
- Y.L. Zeng, K.S. Chen, Remarks on normalized solutions for \(L^2\)-critical Kirchhoff problems, Taiwan. J. Math. 20 (2016), 617-627. https://doi.org/10.11650/tjm.20.2016.6548
- X.Y. Zeng, Y.M. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett. 74 (2017) 52-59. https://doi.org/10.1016/j.aml.2017.05.012
- Sitong Chen
https://orcid.org/0000-0002-5912-6199- HNP-LAMA, Central South University, School of Mathematics and Statistics, Changsha, Hunan 410083, P.R. China
- Xianhua Tang (corresponding author)
https://orcid.org/0000-0001-7963-0782- HNP-LAMA, Central South University, School of Mathematics and Statistics, Changsha, Hunan 410083, P.R. China
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2025-09-15.
- Revised: 2025-10-13.
- Accepted: 2025-10-14.
- Published online: 2025-12-08.

