Opuscula Math. 45, no. 6 (2025), 739-763
https://doi.org/10.7494/OpMath.2025.45.6.739

 
Opuscula Mathematica

A comprehensive review on the existence of normalized solutions for four classes of nonlinear elliptic equations

Sitong Chen
Xianhua Tang

Abstract. This paper provides a comprehensive review of recent results concerning the existence of normalized solutions for four classes of nonlinear elliptic equations: Schrödinger equations, Schrödinger-Poisson equations, Kirchhoff equations, and Choquard equations.

Keywords: normalized solutions, Schrödinger equations, Schrödinger-Poisson equations, Kirchhoff equations, Choquard equations.

Mathematics Subject Classification: 35J20, 35J62, 35Q55.

Full text (pdf)

  1. W. Bao, Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet Relat Models 6 (2013), 1-135. https://doi.org/10.3934/krm.2013.6.1
  2. T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math. 100 (2013), 75-83. https://doi.org/10.1007/s00013-012-0468-x
  3. T. Bartsch, Y.Y. Liu, Z.L. Liu, Normalized solutions for a class of nonlinear Choquard equations, SN Partial Differ. Equ. Appl. 1 (2020), Article no. 34. https://doi.org/10.1007/s42985-020-00036-w
  4. J. Bellazzini, L. Jeanjean, T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc. 107 (2013), 303-339. https://doi.org/10.1112/plms/pds072
  5. J. Bellazzini, G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal. 261 (2011), 2486-2507. https://doi.org/10.1016/j.jfa.2011.06.014
  6. J. Bellazzini, G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys. 62 (2011), 267-280. https://doi.org/10.1007/s00033-010-0092-1
  7. B. Bieganowski, J. Mederski, Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth, J. Funct. Anal. 280 (2021), no. 11, Paper no. 108989. https://doi.org/10.1016/j.jfa.2021.108989
  8. I. Catto, P.L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part I: a necessary and sufficient condition for the stability of general molecular systems, Commun. Partial Differ. Equ. 17 (1992), 1051-1110. https://doi.org/10.1080/03605309208820878
  9. T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, AMS, Providence, RI, 2003. https://doi.org/10.1090/cln/010
  10. T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), 549-561. https://doi.org/10.1007/bf01403504
  11. S.T. Chen, X.H. Tang, Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth, J. Differ. Equ. 269 (2020), 9144-9174. https://doi.org/10.1016/j.jde.2020.06.043
  12. S.T. Chen, X.H. Tang, Normalized solutions for Schrödinger equations with mixed dispersion and critical exponential growth in \(\mathbb{R}^2\), Calc. Var. Partial Differ. Equations 62 (2023), Paper no. 261. https://doi.org/10.1007/s00526-023-02592-6
  13. S.T. Chen, X.H. Tang, Another look at Schrödinger equations with prescribed mass, J. Differential Equations 386 (2024), 435-479. https://doi.org/10.1016/j.jde.2023.12.026
  14. S.T. Chen, X.H. Tang, Normalized solutions for Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities, Math. Ann. 391 (2025), 2783-2836. https://doi.org/10.1007/s00208-024-02982-x
  15. S.T. Chen, V.D. Radulescu, X.H. Tang, Multiple normalized solutions for the planar Schrödinger–Poisson system with critical exponential growth, Math. Z. 306 (2024), Paper no. 50. https://doi.org/10.1007/s00209-024-03432-9
  16. S.T. Chen, J.P. Shi, X.H. Tang, Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity, Discrete Contin. Dyn. Syst. 39 (2019), 5867-5889. https://doi.org/10.3934/dcds.2019257
  17. S.T. Chen, X.H. Tang, S. Yuan, Normalized solutions for Schrödinger-Poisson equations with general nonlinearities, J. Math. Anal. Appl. 481 (2020), 123447. https://doi.org/10.1016/j.jmaa.2019.123447
  18. S. Cingolani, L. Jeanjean, Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal. 51 (2019), 3533-3568. https://doi.org/10.1137/19m1243907
  19. S. Cingolani, K. Tanaka, Ground State Solutions for the Nonlinear Choquard Equation with Prescribed Mass, Springer INdAM Ser., vol. 47, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-73363-6_2
  20. Q. Gao, X.M. He, Normalized solutions for the Choquard equations with critical nonlinearities, Adv. Nonlinear Anal. 13 (2024), 20240030. https://doi.org/10.1515/anona-2024-0030
  21. N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, vol. 107 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993. https://doi.org/10.1017/cbo9780511551703
  22. Q.H. He, Z.Y. Lv, Y.M. Zhang, X.X. Zhong, Existence and blow up behavior of positive normalized solution to the Kirchhoff equation with general nonlinearities: Mass super-critical case, J. Differential Equations 356 (2023), 375-406. https://doi.org/10.1016/j.jde.2023.01.039
  23. J. Hirata, K. Tanaka, Nonlinear scalar field equations with \(L^2\)-constraint: Mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud. 19 (2019), 263-290. https://doi.org/10.1515/ans-2018-2039
  24. L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), 1633-1659. https://doi.org/10.1016/s0362-546x(96)00021-1
  25. L. Jeanjean, T.T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann. 384 (2021), 101-134. https://doi.org/10.1007/s00208-021-02228-0
  26. L. Jeanjean, S.S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity 32 (2019), 4942-4966. https://doi.org/10.1088/1361-6544/ab435e
  27. L. Jeanjean, S.S. Lu, A mass supercritical problem revisited, Calc. Var. 59 (2020), Article no. 174. https://doi.org/10.1007/s00526-020-01828-z
  28. L. Jeanjean, S.S. Lu, On global minimizers for a mass constrained problem, Calc. Var. 61 (2022), Article no. 214. https://doi.org/10.1007/s00526-022-02320-6
  29. L. Jeanjean, T. Luo, Sharp nonexistence results of prescribed \(L^2\)-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys. 64 (2013), 937-954. https://doi.org/10.1007/s00033-012-0272-2
  30. L. Jeanjean, J. Jendrej, T.T. Le, N. Visciglia, Orbital stability of ground states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl. (9) 164 (2022), 158-179. https://doi.org/10.1016/j.matpur.2022.06.005
  31. M.K. Kwong, Uniqueness of positive solutions of \(-\Delta u + u = u^{p-1}\) in \(\mathbb{R}^n\), Arch. Rational Mech. Anal. 105 (1989), 243-266. https://doi.org/10.1007/bf00251502
  32. G. Li, X. Luo, T. Yang, Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent, Ann. Fenn. Math. 47 (2022), 895-925. https://doi.org/10.54330/afm.120247
  33. G. Li, H. Ye, The existence of positive solutions with prescribed \(L^2\)-norm for nonlinear Choquard equations, J. Math. Phys. 55 (2014), 1-19. https://doi.org/10.1063/1.4902386
  34. X.F. Li, Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability, Adv. Nonlinear Anal. 11 (2022), 1134-1164. https://doi.org/10.1515/anona-2022-0230
  35. X. Luo, Q.F. Wang, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in \(\mathbb{R}^3\), Nonlinear Anal. Real World Appl. 33 (2017), 19-32. https://doi.org/10.1016/j.nonrwa.2016.06.001
  36. S.J. Qi, W.M. Zou, Exact number of the positive solutions for Kirchhoff equation, SIAM J. Math. Anal. 54 (2022), 5424-5446. https://doi.org/10.1137/21m1445879
  37. O. Sanchez, J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Stat. Phys. 114 (2004), 179-204. https://doi.org/10.1023/b:joss.0000003109.97208.53
  38. M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math. 143 (2014), 221-37. https://doi.org/10.1007/s00229-013-0627-9
  39. N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ. 269 (2020), 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016
  40. N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal. 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610
  41. C.A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. Lond. Math. Soc. 45 (1982), 169-192. https://doi.org/10.1112/plms/s3-45.1.169
  42. C.A. Stuart, Bifurcation from the essential spectrum for some non‐compact non‐linearities, Math. Methods Appl. Sci. 11 (1989), 525-542. https://doi.org/10.1002/mma.1670110408
  43. Q. Wang, A.X. Qian, Normalized solutions to the Schrödinger-Poisson-Slater equation with general nonlinearity: mass supercritical case, Anal. Math. Phys. 13 (2023), Article no. 35. https://doi.org/10.1007/s13324-023-00788-9
  44. Q. Wang, A.X. Qian, Ground state normalized solutions to the Kirchhoff equation with general nonlinearities: mass supercritical case, J. Inequal. Appl. (2024), Article no. 48. https://doi.org/10.1186/s13660-024-03086-5
  45. J. Wei, Y. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal. 283 (2022), Paper no. 109574. https://doi.org/10.1016/j.jfa.2022.109574
  46. W.H. Xie, H.B. Chen, H.X. Shi, Existence and multiplicity of normalized solutions for a class of Schrödinger-Poisson equations with general nonlinearities, Math. Meth. Appl. Sci. 43 (2020), 3602-3616. https://doi.org/10.1002/mma.6140
  47. H. Ye, Mass minimizers and concentration for nonlinear Choquard equations in \(\mathbb{R}^N\), Topol. Methods Nonlinear Anal. 48 (2016), 393-417. https://doi.org/10.12775/tmna.2016.066
  48. H.Y. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci. 38 (2015), 2663-2679. https://doi.org/10.1002/mma.3247
  49. H.Y. Ye, The existence of normalized solutions for \(L^2\)-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 66 (2015), 1483-1497. https://doi.org/10.1007/s00033-014-0474-x
  50. H.Y. Ye, The mass concentration phenomenon for \(L^2\)-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 67 (2016), Article no. 29. https://doi.org/10.1007/s00033-016-0624-4
  51. P. Zhang, Z. Han, Normalized ground states for Kirchhoff equations in R3 with a critical nonlinearity, J. Math. Phys. 63 (2022), Paper no. 021505. https://doi.org/10.1063/5.0067520
  52. Y.L. Zeng, K.S. Chen, Remarks on normalized solutions for \(L^2\)-critical Kirchhoff problems, Taiwan. J. Math. 20 (2016), 617-627. https://doi.org/10.11650/tjm.20.2016.6548
  53. X.Y. Zeng, Y.M. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett. 74 (2017) 52-59. https://doi.org/10.1016/j.aml.2017.05.012
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2025-09-15.
  • Revised: 2025-10-13.
  • Accepted: 2025-10-14.
  • Published online: 2025-12-08.
Opuscula Mathematica - cover

Cite this article as:
Sitong Chen, Xianhua Tang, A comprehensive review on the existence of normalized solutions for four classes of nonlinear elliptic equations, Opuscula Math. 45, no. 6 (2025), 739-763, https://doi.org/10.7494/OpMath.2025.45.6.739

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.