Opuscula Math. 45, no. 5 (2025), 685-716
https://doi.org/10.7494/OpMath.2025.45.5.685
Opuscula Mathematica
Normalized solutions for critical Schrödinger equations involving (2,q)-Laplacian
Abstract. In this paper, we consider the following critical Schrödinger equation involving \((2,q)\)-Laplacian: \[\begin{cases} -\Delta u-\Delta_{q} u=\lambda u+\mu |u|^{\gamma-2}u+|u|^{2^*-2}u \quad\text{in }\mathbb{R}^N, \\ \int_{\mathbb{R}^N} |u|^{2}dx=a^2,\end{cases}\] where \(\Delta_q u =\operatorname{div} (|\nabla u|^{q-2}\nabla u)\) is the \(q\)-Laplacian operator, \(\mu, a\gt 0,\) \(\lambda\in\mathbb{R}\), \(\gamma\in(2,2^*)\), \(q\in(\frac{2N}{N+2},2)\) and \(N\geq3\). The meaningful and interesting phenomenon is the simultaneous occurrence of \((2,q)\)-Laplacian and critical nonlinearity in the above equation. In order to obtain existence of multiple normalized solutions for such equation, we need to make a detailed estimate. More precisely, for the \(L^2\)-subcritical case, we use the truncation technique, concentration-compactness principle and the genus theory to get the existence of multiple normalized solutions. For the \(L^2\)-supercritical case, we obtain a couple of normalized solution for the above equation by a fiber map and concentration-compactness principle.
Keywords: Schrödinger equation, \((2,q)\)-Laplacian, variational methods, critical growth, normalized solutions.
Mathematics Subject Classification: 35J20, 35R03, 46E35.
- C.O. Alves, C. Ji, O.H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in \(\mathbb{R}^N\), Calc. Var. Partial Differential Equations 61 (2022), Article no. 18. https://doi.org/10.1007/s00526-021-02123-1
- V. Ambrosio, Multiple concentrating solutions for a fractional \((p,q)\)-Choquard equation, Adv. Nonlinear Stud. 24 (2024), 510-541. https://doi.org/10.1515/ans-2023-0125
- V. Ambrosio, V.D. Rădulescu, Multiplicity of concentrating solutions for \((p,q)\)-Schrödinger equations with lack of compactness, Israel J. Math. 262 (2024), 399-447. https://doi.org/10.1007/s11856-024-2619-8
- V. Ambrosio, D. Repovš, Multiplicity and concentration results for a \((p,q)\)-Laplacian problem in \(\mathbb{R}^{N}\), Z. Angew. Math. Phys. 72 (2021), 33. https://doi.org/10.1007/s00033-020-01466-7
- L. Baldelli, Y. Brizi, R. Filippucci, Multiplicity results for \((p,q)\)-Laplacian equations with critical exponent in \(\mathbb{R}^N\) and negative energy, Calc. Var. Partial Differential Equations 60 (2021), 8. https://doi.org/10.1007/s00526-020-01867-6
- L. Cai, V.D. Rădulescu, Normalized solutions for \((p,q)\)-Laplacian equations with mass supercritical growth, J. Differential Equations, 391 (2024), 57-104. https://doi.org/10.1016/j.jde.2024.01.041
- T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), 549-561. https://doi.org/10.1007/bf01403504
- J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), 493-512. https://doi.org/10.1007/bf01187898
- R. Chen, L. Wang, X. Song, Multiple normalized solutions for \((2,q)\)-Laplacian equation problems in whole \(\mathbb{R}^{N}\), Electron. J. Qual. Theory Differ. Equ. 48 (2024), 1-19. https://doi.org/10.14232/ejqtde.2024.1.48
- S. Chen, X. Tang, S. Yuan, Normalized solutions for Schrödinger-Poisson equations with general nonlinearities, J. Math. Anal. Appl. 481 (2020), 123447. https://doi.org/10.1016/j.jmaa.2019.123447
- S. Chen, D. Qin, V.D. Rădulescu, X. Tang, Ground states for quasilinear equations of N-Laplacian type with critical exponential growth and lack of compactness, Sci. China Math. 68 (2025), no. 6, 1323-1354. https://doi.org/10.1007/s11425-023-2298-1
- X. Cheng, C. Miao, L. Zhao, Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case, J. Differential Equations 261 (2016), 2881-2934. https://doi.org/10.1016/j.jde.2016.04.031
- M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443-496. https://doi.org/10.1007/s00205-014-0785-2
- X. Cui, Y. Yang, Existence of solutions for fractional \((p,q)\)-Laplacian problems involving critical Hardy-Sobolev nonlinearities, Taiwanese J. Math. 28 (2024), 947-967. https://doi.org/10.11650/tjm/240402
- Y. Du, J. Su, C. Wang, On the critical Schrödinger-Poisson system with \(p\)-Laplacian, Comm. Pure Appl. Math. 21 (2022), 1329-1342. https://doi.org/10.3934/cpaa.2022020
- Y. Duan, Y. Wei, Properties of the positive solutions of fractional \(p\&q\)-Laplace equations with a sign-changing potential, Acta Math. Sci. Ser. B (Engl. Ed.) 44 (2024), 2422-2442. https://doi.org/10.1007/s10473-024-0620-2
- X. Han, Z. Naghizadeh, B. Zhang, Nonexistence and multiplicity results for a fractional weighted \((p,q)\)-Kirchhoff system, Complex Var. Elliptic Equ. 70 (2025), 512-524. https://doi.org/10.1080/17476933.2024.2316645
- L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), 1633-1659. https://doi.org/10.1016/s0362-546x(96)00021-1
- L. Jeanjean, T.T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann. 384 (2022), 101-134. https://doi.org/10.1007/s00208-021-02228-0
- L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity 32 (2019), 4942-4966. https://doi.org/10.1088/1361-6544/ab435e
- L. Jeanjean, T. Luo, Sharp nonexistence results of prescribed \(L^2\)-norm solutions for class of Schrödinger-Poisson and quasilinear equations, Z. Angew. Math. Phys. 64 (2013), 937-954. https://doi.org/10.1007/s00033-012-0272-2
- J. Jiang, Y. Yang, Existence of solutions for the \((p,N)\)-Laplacian equation with logarithmic and critical exponential nonlinearities, Topol. Methods Nonlinear Anal. 64 (2024), 243-256. https://doi.org/10.12775/tmna.2023.054
- O. Kavian, Introduction á la théorie des points critiques et applications aux problèmes elliptiques, Springer, Berlin, 1993.
- X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math. 22 (2020), 1950023. https://doi.org/10.1142/s0219199719500238
- X. Li, C. Song, Q. Xie, Multiplicity of normalized solutions for Schrödinger equation with mixed nonlinearity, Taiwanese J. Math. 28 (2024), 589-609. https://doi.org/10.11650/tjm/240202
- Q. Li, W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases, Adv. Nonlinear Anal. 11 (2022), 1531-1551. https://doi.org/10.1515/anona-2022-0252
- S. Liang, S. Liang, S. Shi, T. Van Nguyen, On multiplicity and concentration of solutions for fractional \(p\)-Laplace Choquard-Kirchhoff equations, Adv. Differential Equations 30 (2025), 35-68. https://doi.org/10.57262/ade030-0102-35
- S. Liang, J. Ma, S. Shi, Y. Song, Multiple normalized solutions for Choquard equation involving the biharmonic operator and competing potentials in \(\mathbb{R}^{N}\), Bull. Math. Sci. (2025), 2450017. https://doi.org/10.1142/s1664360724500176
- S. Liang, S. Shi, T. Van Nguyen, Multiplicity and concentration properties for fractional Choquard equations with exponential growth, J. Geom. Anal. 34 (2024), 367.
- S. Liang, Y. Song, S. Shi, Concentrating solutions for double critical fractional Schrödinger-Poisson system with \(p\)-Laplacian in \(\mathbb{R}^{3}\), Adv. Nonlinear Anal. 14 (2025), 20240063. https://doi.org/10.1515/anona-2024-0063
- S. Liang, M. Sun, S. Shi, S. Liang, On multi-bump solutions for the Choquard-Kirchhoff equations in \(\mathbb{R}^{N}\), Discrete Contin. Dyn. Syst. Ser. S 16 (2023), 3163-3193. https://doi.org/10.3934/dcdss.2023012
- E. Lieb, M. Loss, Analysis, Grad. Stud. Math., 2001. https://doi.org/10.1090/gsm/014
- P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, Part 2, Ann. Inst. Poincare Anal. Nonlin. 1 (1984), 109-145, 223-283. https://doi.org/10.1016/s0294-1449(16)30422-x
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam. 1 (1985), 145-201. https://doi.org/10.4171/rmi/6
- P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267-284. https://doi.org/10.1007/bf00251503
- P. Marcellini, Regularity and existence of solutions of elliptic equations with \((p,q)\)-growth conditions, J. Differential Equations 90 (1991), 1-30. https://doi.org/10.1016/0022-0396(91)90158-6
- P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296-333. https://doi.org/10.1006/jdeq.1993.1091
- N. Mastorakis, H. Fathabadi, On the solution of \(p\)-Laplacian for non-Newtonian fluid flow, WSEAS Trans. Math. 8 (2009), 238-45.
- C. Miao, G.X. Xu, L.F. Zhao, The dynamics of the 3D radial NLS with the combined terms, Comm. Math. Phys. 318 (2013), 767-808. https://doi.org/10.1007/s00220-013-1677-2
- A. Razani, F. Safari, G.M. Figueiredo, Existence and multiplicity of solutions for a weighted \((p,q)\)-Laplacian problem on the Heisenberg Lie groups, Bull. Belg. Math. Soc. Simon Stevin 30 (2023), 281-296. https://doi.org/10.36045/j.bbms.220219
- S. Ren, H. Zhang, Z. Cheng, Y. Gao, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system with \(p\)-Laplacian, (2022), arXiv:2212.03138. https://doi.org/10.21203/rs.3.rs-2114666/v1
- A. Sanhaji, A. Dakkak, M. Moussaoui, The first eigencurve for a Neumann boundary problem involving \(p\)-Laplacian with essentially bounded weights, Opuscula Math. 43 (2023), no. 4, 559-574. https://doi.org/10.7494/opmath.2023.43.4.559
- F. Sk, Remarks on the fractional Moser-Trudinger inequality, J. Anal. Math. 148 (2022), 447-470. https://doi.org/10.1007/s11854-022-0234-3
- N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential. Equations 269 (2020), 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016
- M. Willem, Minimax Theorems, Birkhäuser, Boston, (1996). https://doi.org/10.1007/978-1-4612-4146-1
- M. Xiang, Y. Ma, M. Yang, Normalized homoclinic solutions of discrete non local double phase problems, Bull. Math. Sci. 14 (2024), no. 2, Paper No. 2450003, 18 pp. https://doi.org/10.1142/s1664360724500036
- D. Xiao, V.N. Thin, S. Liang, Normalized solutions for critical Schrödinger-Poisson system involving \(p\)-Laplacian in \(\mathbb{R}^3\), Z. Angew. Math. Phys. 76 (2025), Paper no. 10. https://doi.org/10.1007/s00033-024-02408-3
- J. Yang, J. Zhang, W. Li, G. Tian, Existence of multiple positive solutions for a class of quasilinear Schrödinger-Poisson systems with \(p\)-Laplacian and singular nonlinearity terms in \(\mathbb{R}^{N}\), Ric. Mat. 74 (2023), 933-947. https://doi.org/10.1007/s11587-022-00758-6
- X. Zhang, V.N. Thin, S. Liang, On multi-bump solutions for a class of \((N,q)\)-Laplacian equation with critical exponential growth in \(\mathbb{R}^N\), J. Math. Anal. Appl. 543 (2025), Paper no. 128941, 33 pp. https://doi.org/10.1016/j.jmaa.2024.128941
- M. Zhen, B. Zhang, Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut. 35 (2022), 89-132. https://doi.org/10.1007/s13163-021-00388-w
- V.V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys. 3 (1995), 249-269.
- V.V. Zhikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994. https://doi.org/10.1007/978-3-642-84659-5
- V.V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.) 173 (2011), 463-570. https://doi.org/10.1007/s10958-011-0260-7
- Lulu Wei
https://orcid.org/0009-0008-8100-2425- Changchun Normal University, College of Mathematics, Changchun, 130032, P.R. China
- Yueqiang Song (corresponding author)
https://orcid.org/0000-0003-3570-3956- Changchun Normal University, College of Mathematics, Changchun, 130032, P.R. China
- Communicated by Patrizia Pucci.
- Received: 2025-05-25.
- Revised: 2025-08-12.
- Accepted: 2025-08-21.
- Published online: 2025-09-13.

