Opuscula Math. 45, no. 5 (2025), 685-716
https://doi.org/10.7494/OpMath.2025.45.5.685

 
Opuscula Mathematica

Normalized solutions for critical Schrödinger equations involving (2,q)-Laplacian

Lulu Wei
Yueqiang Song

Abstract. In this paper, we consider the following critical Schrödinger equation involving \((2,q)\)-Laplacian: \[\begin{cases} -\Delta u-\Delta_{q} u=\lambda u+\mu |u|^{\gamma-2}u+|u|^{2^*-2}u \quad\text{in }\mathbb{R}^N, \\ \int_{\mathbb{R}^N} |u|^{2}dx=a^2,\end{cases}\] where \(\Delta_q u =\operatorname{div} (|\nabla u|^{q-2}\nabla u)\) is the \(q\)-Laplacian operator, \(\mu, a\gt 0,\) \(\lambda\in\mathbb{R}\), \(\gamma\in(2,2^*)\), \(q\in(\frac{2N}{N+2},2)\) and \(N\geq3\). The meaningful and interesting phenomenon is the simultaneous occurrence of \((2,q)\)-Laplacian and critical nonlinearity in the above equation. In order to obtain existence of multiple normalized solutions for such equation, we need to make a detailed estimate. More precisely, for the \(L^2\)-subcritical case, we use the truncation technique, concentration-compactness principle and the genus theory to get the existence of multiple normalized solutions. For the \(L^2\)-supercritical case, we obtain a couple of normalized solution for the above equation by a fiber map and concentration-compactness principle.

Keywords: Schrödinger equation, \((2,q)\)-Laplacian, variational methods, critical growth, normalized solutions.

Mathematics Subject Classification: 35J20, 35R03, 46E35.

Full text (pdf)

  1. C.O. Alves, C. Ji, O.H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in \(\mathbb{R}^N\), Calc. Var. Partial Differential Equations 61 (2022), Article no. 18. https://doi.org/10.1007/s00526-021-02123-1
  2. V. Ambrosio, Multiple concentrating solutions for a fractional \((p,q)\)-Choquard equation, Adv. Nonlinear Stud. 24 (2024), 510-541. https://doi.org/10.1515/ans-2023-0125
  3. V. Ambrosio, V.D. Rădulescu, Multiplicity of concentrating solutions for \((p,q)\)-Schrödinger equations with lack of compactness, Israel J. Math. 262 (2024), 399-447. https://doi.org/10.1007/s11856-024-2619-8
  4. V. Ambrosio, D. Repovš, Multiplicity and concentration results for a \((p,q)\)-Laplacian problem in \(\mathbb{R}^{N}\), Z. Angew. Math. Phys. 72 (2021), 33. https://doi.org/10.1007/s00033-020-01466-7
  5. L. Baldelli, Y. Brizi, R. Filippucci, Multiplicity results for \((p,q)\)-Laplacian equations with critical exponent in \(\mathbb{R}^N\) and negative energy, Calc. Var. Partial Differential Equations 60 (2021), 8. https://doi.org/10.1007/s00526-020-01867-6
  6. L. Cai, V.D. Rădulescu, Normalized solutions for \((p,q)\)-Laplacian equations with mass supercritical growth, J. Differential Equations, 391 (2024), 57-104. https://doi.org/10.1016/j.jde.2024.01.041
  7. T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), 549-561. https://doi.org/10.1007/bf01403504
  8. J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), 493-512. https://doi.org/10.1007/bf01187898
  9. R. Chen, L. Wang, X. Song, Multiple normalized solutions for \((2,q)\)-Laplacian equation problems in whole \(\mathbb{R}^{N}\), Electron. J. Qual. Theory Differ. Equ. 48 (2024), 1-19. https://doi.org/10.14232/ejqtde.2024.1.48
  10. S. Chen, X. Tang, S. Yuan, Normalized solutions for Schrödinger-Poisson equations with general nonlinearities, J. Math. Anal. Appl. 481 (2020), 123447. https://doi.org/10.1016/j.jmaa.2019.123447
  11. S. Chen, D. Qin, V.D. Rădulescu, X. Tang, Ground states for quasilinear equations of N-Laplacian type with critical exponential growth and lack of compactness, Sci. China Math. 68 (2025), no. 6, 1323-1354. https://doi.org/10.1007/s11425-023-2298-1
  12. X. Cheng, C. Miao, L. Zhao, Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case, J. Differential Equations 261 (2016), 2881-2934. https://doi.org/10.1016/j.jde.2016.04.031
  13. M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443-496. https://doi.org/10.1007/s00205-014-0785-2
  14. X. Cui, Y. Yang, Existence of solutions for fractional \((p,q)\)-Laplacian problems involving critical Hardy-Sobolev nonlinearities, Taiwanese J. Math. 28 (2024), 947-967. https://doi.org/10.11650/tjm/240402
  15. Y. Du, J. Su, C. Wang, On the critical Schrödinger-Poisson system with \(p\)-Laplacian, Comm. Pure Appl. Math. 21 (2022), 1329-1342. https://doi.org/10.3934/cpaa.2022020
  16. Y. Duan, Y. Wei, Properties of the positive solutions of fractional \(p\&q\)-Laplace equations with a sign-changing potential, Acta Math. Sci. Ser. B (Engl. Ed.) 44 (2024), 2422-2442. https://doi.org/10.1007/s10473-024-0620-2
  17. X. Han, Z. Naghizadeh, B. Zhang, Nonexistence and multiplicity results for a fractional weighted \((p,q)\)-Kirchhoff system, Complex Var. Elliptic Equ. 70 (2025), 512-524. https://doi.org/10.1080/17476933.2024.2316645
  18. L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), 1633-1659. https://doi.org/10.1016/s0362-546x(96)00021-1
  19. L. Jeanjean, T.T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann. 384 (2022), 101-134. https://doi.org/10.1007/s00208-021-02228-0
  20. L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity 32 (2019), 4942-4966. https://doi.org/10.1088/1361-6544/ab435e
  21. L. Jeanjean, T. Luo, Sharp nonexistence results of prescribed \(L^2\)-norm solutions for class of Schrödinger-Poisson and quasilinear equations, Z. Angew. Math. Phys. 64 (2013), 937-954. https://doi.org/10.1007/s00033-012-0272-2
  22. J. Jiang, Y. Yang, Existence of solutions for the \((p,N)\)-Laplacian equation with logarithmic and critical exponential nonlinearities, Topol. Methods Nonlinear Anal. 64 (2024), 243-256. https://doi.org/10.12775/tmna.2023.054
  23. O. Kavian, Introduction á la théorie des points critiques et applications aux problèmes elliptiques, Springer, Berlin, 1993.
  24. X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math. 22 (2020), 1950023. https://doi.org/10.1142/s0219199719500238
  25. X. Li, C. Song, Q. Xie, Multiplicity of normalized solutions for Schrödinger equation with mixed nonlinearity, Taiwanese J. Math. 28 (2024), 589-609. https://doi.org/10.11650/tjm/240202
  26. Q. Li, W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases, Adv. Nonlinear Anal. 11 (2022), 1531-1551. https://doi.org/10.1515/anona-2022-0252
  27. S. Liang, S. Liang, S. Shi, T. Van Nguyen, On multiplicity and concentration of solutions for fractional \(p\)-Laplace Choquard-Kirchhoff equations, Adv. Differential Equations 30 (2025), 35-68. https://doi.org/10.57262/ade030-0102-35
  28. S. Liang, J. Ma, S. Shi, Y. Song, Multiple normalized solutions for Choquard equation involving the biharmonic operator and competing potentials in \(\mathbb{R}^{N}\), Bull. Math. Sci. (2025), 2450017. https://doi.org/10.1142/s1664360724500176
  29. S. Liang, S. Shi, T. Van Nguyen, Multiplicity and concentration properties for fractional Choquard equations with exponential growth, J. Geom. Anal. 34 (2024), 367.
  30. S. Liang, Y. Song, S. Shi, Concentrating solutions for double critical fractional Schrödinger-Poisson system with \(p\)-Laplacian in \(\mathbb{R}^{3}\), Adv. Nonlinear Anal. 14 (2025), 20240063. https://doi.org/10.1515/anona-2024-0063
  31. S. Liang, M. Sun, S. Shi, S. Liang, On multi-bump solutions for the Choquard-Kirchhoff equations in \(\mathbb{R}^{N}\), Discrete Contin. Dyn. Syst. Ser. S 16 (2023), 3163-3193. https://doi.org/10.3934/dcdss.2023012
  32. E. Lieb, M. Loss, Analysis, Grad. Stud. Math., 2001. https://doi.org/10.1090/gsm/014
  33. P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, Part 2, Ann. Inst. Poincare Anal. Nonlin. 1 (1984), 109-145, 223-283. https://doi.org/10.1016/s0294-1449(16)30422-x
  34. P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam. 1 (1985), 145-201. https://doi.org/10.4171/rmi/6
  35. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267-284. https://doi.org/10.1007/bf00251503
  36. P. Marcellini, Regularity and existence of solutions of elliptic equations with \((p,q)\)-growth conditions, J. Differential Equations 90 (1991), 1-30. https://doi.org/10.1016/0022-0396(91)90158-6
  37. P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296-333. https://doi.org/10.1006/jdeq.1993.1091
  38. N. Mastorakis, H. Fathabadi, On the solution of \(p\)-Laplacian for non-Newtonian fluid flow, WSEAS Trans. Math. 8 (2009), 238-45.
  39. C. Miao, G.X. Xu, L.F. Zhao, The dynamics of the 3D radial NLS with the combined terms, Comm. Math. Phys. 318 (2013), 767-808. https://doi.org/10.1007/s00220-013-1677-2
  40. A. Razani, F. Safari, G.M. Figueiredo, Existence and multiplicity of solutions for a weighted \((p,q)\)-Laplacian problem on the Heisenberg Lie groups, Bull. Belg. Math. Soc. Simon Stevin 30 (2023), 281-296. https://doi.org/10.36045/j.bbms.220219
  41. S. Ren, H. Zhang, Z. Cheng, Y. Gao, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system with \(p\)-Laplacian, (2022), arXiv:2212.03138. https://doi.org/10.21203/rs.3.rs-2114666/v1
  42. A. Sanhaji, A. Dakkak, M. Moussaoui, The first eigencurve for a Neumann boundary problem involving \(p\)-Laplacian with essentially bounded weights, Opuscula Math. 43 (2023), no. 4, 559-574. https://doi.org/10.7494/opmath.2023.43.4.559
  43. F. Sk, Remarks on the fractional Moser-Trudinger inequality, J. Anal. Math. 148 (2022), 447-470. https://doi.org/10.1007/s11854-022-0234-3
  44. N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential. Equations 269 (2020), 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016
  45. M. Willem, Minimax Theorems, Birkhäuser, Boston, (1996). https://doi.org/10.1007/978-1-4612-4146-1
  46. M. Xiang, Y. Ma, M. Yang, Normalized homoclinic solutions of discrete non local double phase problems, Bull. Math. Sci. 14 (2024), no. 2, Paper No. 2450003, 18 pp. https://doi.org/10.1142/s1664360724500036
  47. D. Xiao, V.N. Thin, S. Liang, Normalized solutions for critical Schrödinger-Poisson system involving \(p\)-Laplacian in \(\mathbb{R}^3\), Z. Angew. Math. Phys. 76 (2025), Paper no. 10. https://doi.org/10.1007/s00033-024-02408-3
  48. J. Yang, J. Zhang, W. Li, G. Tian, Existence of multiple positive solutions for a class of quasilinear Schrödinger-Poisson systems with \(p\)-Laplacian and singular nonlinearity terms in \(\mathbb{R}^{N}\), Ric. Mat. 74 (2023), 933-947. https://doi.org/10.1007/s11587-022-00758-6
  49. X. Zhang, V.N. Thin, S. Liang, On multi-bump solutions for a class of \((N,q)\)-Laplacian equation with critical exponential growth in \(\mathbb{R}^N\), J. Math. Anal. Appl. 543 (2025), Paper no. 128941, 33 pp. https://doi.org/10.1016/j.jmaa.2024.128941
  50. M. Zhen, B. Zhang, Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut. 35 (2022), 89-132. https://doi.org/10.1007/s13163-021-00388-w
  51. V.V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys. 3 (1995), 249-269.
  52. V.V. Zhikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994. https://doi.org/10.1007/978-3-642-84659-5
  53. V.V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.) 173 (2011), 463-570. https://doi.org/10.1007/s10958-011-0260-7
  • Communicated by Patrizia Pucci.
  • Received: 2025-05-25.
  • Revised: 2025-08-12.
  • Accepted: 2025-08-21.
  • Published online: 2025-09-13.
Opuscula Mathematica - cover

Cite this article as:
Lulu Wei, Yueqiang Song, Normalized solutions for critical Schrödinger equations involving (2,q)-Laplacian, Opuscula Math. 45, no. 5 (2025), 685-716, https://doi.org/10.7494/OpMath.2025.45.5.685

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.