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INVOLVING (2, q)-LAPLACIAN

Lulu Wei and Yueqiang Song

Communicated by Patrizia Pucci

Abstract. In this paper, we consider the following critical Schrödinger equation
involving (2, q)-Laplacian:

{
−∆u− ∆qu = λu+ µ|u|γ−2u+ |u|2∗−2u in RN ,∫
RN |u|2dx = a2,

where ∆qu = div(|∇u|q−2∇u) is the q-Laplacian operator, µ, a > 0, λ ∈ R,
γ ∈ (2, 2∗), q ∈ ( 2N

N+2 , 2) and N ≥ 3. The meaningful and interesting phenomenon is
the simultaneous occurrence of (2, q)-Laplacian and critical nonlinearity in the above
equation. In order to obtain existence of multiple normalized solutions for such equation,
we need to make a detailed estimate. More precisely, for the L2-subcritical case, we use
the truncation technique, concentration-compactness principle and the genus theory
to get the existence of multiple normalized solutions. For the L2-supercritical case,
we obtain a couple of normalized solution for the above equation by a fiber map and
concentration-compactness principle.
Keywords: Schrödinger equation, (2, q)-Laplacian, variational methods, critical
growth, normalized solutions.
Mathematics Subject Classification: 35J20, 35R03, 46E35.

1. INTRODUCTION AND MAIN RESULT

In this paper, we are interested in the following critical Schrödinger equations involving
(2, q)-Laplacian:

{
−∆u− ∆qu = λu+ µ|u|γ−2u+ |u|2∗−2u in RN ,∫
RN |u|2dx = a2,

(1.1)

where ∆qu = div(|∇u|q−2∇u) is q-Laplacian with q ∈ ( 2N
N+2 , 2), λ ∈ R, µ, a > 0,

γ ∈ (2, 2∗), N ≥ 3.
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At the beginning of this paper, we first give the features and novelties of equa-
tion (1.1) as follows:
(a) The appearance of two differential operators with different growth, which makes

a double phase associated energy occur.
(b) Equation (1.1) combines the effects generated by general nonlinearity, critical

nonlinearity and (2, q)-Laplacian.
(c) Since the presence of critical nonlinearity and the unboundedness of the domain,

the loss of compactness for the Palais–Smale sequences shall occur, which makes the
research of such equation (1.1) more meaningful and interesting.
It is well known that equation (1.1) is derived from the general reaction-diffusion

system
∂tu− ∆pu− ∆qu = f(x, u), (1.2)

where the function u can be used to describe a concentration, (p, q)-Laplacian cor-
responds to the diffusion asdiv[(|∇u|p−2 + |∇u|q−2)∇u] = ∆pu + ∆qu, whereas the
nonlinearity f(x, u) is the reaction and relates to sources and loss processes. Such
system also motivated by numerous models arising in physics and related sciences,
such as biophysics, chemical reaction an exhibits the Lavrentiev gap phenomenon,
which arises in the context of variational problems characterized by non-standard (p, q)
growth behavior, please refer to [13, 53] and reference. That is the reason why a great
number of scholars focus on the study of this topic.

The study of such operators was initially proposed by Zhikov [51], who introduced
these classes to model strongly anisotropic materials [52]. Please see the outstanding
work initiated by Marcellini [35–37], where the regularity and existence of solutions
to elliptic equations with non-uniform growth conditions were extensively analyzed.
These representative achievements have brought about a lot of inspirations and ideas
to the scholars who are engaged in the research of this topic. In general, there are two
methods to dealing with equation (1.1), depending on the properties of the frequency
parameter λ. One common method treats λ as a fixed constant and research for
nontrivial solutions by analyzing the associated energy functional Iλ : Xrad(RN ) → R
defined as follows:

Iλ(u) = 1
2

∫

RN

|∇u|2dx+ 1
q

∫

RN

|∇u|qdx−
∫

RN

λ|u|2dx

− µ

γ

∫

RN

|u|γdx− 1
2∗

∫

RN

|u|2∗
dx.

In this case, there are some interesting results, but we merely present some results
regarding this topic. For example, Ambrosio and Repovš [4] considered the following
Schrödinger equations involving (p, q)-Laplacian and the nonnegative potential:

−∆pu− ∆qu+ V (εx)(|u|p−2u+ |u|q−2u) = f(u) in RN , (1.3)

where ε > 0 is small, 1 < p < q < N, the potential V ∈ C(RN ,R) satisfies the
global Rabinowitz condition and the nonlinearity f satisfies Sobolev subcritical growth.
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By the Ljusternik–Schnirelmann category theory, the authors obtained the existence,
multiplicity and concentration of solutions for equation (1.3). After that, Ambrosio [2]
extended the results of [4] to fractional Choquard equations. For the critcal case,
Ambrosio and Rădulescu [3] considered the following critical Schrödinger equations
involving (p, q)-Laplacian:

{
−∆pu− ∆qu+ V (εx)(up−1 + uq−1) = f(u) + γuq∗−1 in RN ,

u ∈ W 1,p(RN ) ∩W 1,q(RN ), u > 0 in RN ,
(1.4)

where the parameter ε > 0 is small, q∗ = Nq
N−q is the critical Sobolev exponent,

V (x) is the continuous potential and the continuous nonlinearity f satisfies Sobolev
subcritical growth. With the aid of minimax theorems, penalization technique and
Ljusternik–Schnirelmann category theory, the authors obtained the multiplicity of
concentrating solutions for equation (1.4). In addition, the multiplicity of solutions
for a supercritical version of equation (1.4) is obtained by a truncation argument
with a Moser-type iteration. By asymptotic estimates and the Mountain Pass Theorem,
Cui and Yang in [14] explored the existence of solutions for fractional (p, q)-Laplacian
equations involving critical Hardy potentials in the bounded domain. Very recently,
Zhang et al. [49] considered the existence and multiplicity of multi-bump solutions
for (N, q)-Lapalcian equations with exponential critical growth by the variational
methods and Morse iteration technique. For more interesting results, please refer
to [16, 17, 27, 29–31, 40]. Xiang, Ma and Yang in [46] studied the existence of
normalized solutions to the following nonlocal double phase problems driving by the
discrete fractional (p, q)-Laplacian:





(−∆D)α
pu(k) + µ(−∆D)βqu(k) + ω(k)|u(k)|p−2u(k)

= λ|u(k)|q−2u(k) + h(k)|u(k)|r−2u(k) for |k| ∈ Z,∑
k∈Z |u(k)|q = ρq > 0,

u(k) → 0 as |k| → ∞,

(1.5)

where α, β ∈ (0, 1), ω : Z → (0,∞), 1 < p ≤ q < ∞, λ, µ ∈ R, h ∈ ℓ
q

q−r (Z) if
1 < r < q, h ∈ ℓ∞(Z) if r > q and (−∆D)s

k (s = α or β, κ = p or q) is the discrete
fractional κ-Laplacian. They used variational techniques to investigate the existence
of non-negative normalized homoclinic solutions when the nonlinear term is subject to
sublinear or superlinear growth conditions. Notably, they established the compactness
of the relevant energy functional of the problem in the absence of weights. In [42],
Sanhaji, Dakkak and Moussaoui demonstrated the existence and uniqueness of the first
eigencurve for a homogeneous Neumann problem with singular weights corresponding
to the equation

{
−∆pu = αm1(x)|u|p−2u+ βm2(x)|u|p−2u in Ω,
∂u
∂ν = 0 on ∂Ω,

(1.6)

in a bounded domain Ω ⊂ RN . Subsequently, they established numerous properties of
this eigencurve, including continuity, variational characterization, asymptotic behavior,
concavity, and differentiability.
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The other one is to regard the frequency λ as an unknown quantity to eqaution (1.1).
In this situation, it is natural to prescribe the value of the mass so that λ can be
interpreted as a Lagrange multiplier. From a physical perspective, the scholars focus
on the solutions satisfying

∫

RN

|u|2dx = a2 for a > 0

for a priori given a. Such solutions can reveal more clearly the dynamical properties,
such as orbital stability or instability, and can describe attractive Bose–Einstein
condensates. In addition, this type of solution is usually called prescribed L2-norm
solutions or normalized solutions in mathematics.

In recent years, there are some scholars exploring equation (1.1), about the existence,
multiplicity, and asymptotic characteristics of normalized solutions under various
conditions through a range of methodologies. For example, as q = 2, Jeanjean [18] first
considered the following nonlinear elliptic equations:





−∆u = λu+ f(u) in RN ,∫

RN

|u|2dx = a2. (1.7)

By a minimax procedure, the author showed that for each a > 0, the existence of
multiple normalized solutions for equation (1.7). Cazenave and Lions [7] demonstrated
the orbital stability of certain standing wave solutions within nonlinear Schrödinger
equations, including those derived from models such as laser beams, time-dependent
Hartree equations and Pekar–Choquard time-dependent equations. Soave [44] studied
critical Schrödinger equations as follows:





−∆u = λu+ µ|u|q−2u+ |u|2∗−2u in RN ,∫

RN

|u|2dx = a2, (1.8)

where N ≥ 3 and |u|q−2u satisfies L2-mass supercritical growth. They proposed new
criteria for the existence of global solutions and finite time blow-up in the associated
dispersive equation to obtain the existence and properties of solutions for equation (1.8).
Jeanjean and Le [19] studied Schrödinger equations, and proved the existence of stand-
ing waves solutions that are not ground states but lie at a mountain-passlevel of the
energy functional. Moreover, these solutions are unstable in the sense that they blow
up in finite time. For further related results, refer [12, 28, 39].
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For q ≠ 2, Baldelli et al. [5] explored the following critical (p, q)-Laplacian equation:

−∆pu− ∆qu = λV (x)|u|k−2u+ f(u) +K(x)|u|p∗−2u in RN . (1.9)

Using the variational methods and concentration compactness principle [33], they
obtained the existence of multiple solutions in the whole space. In particular, under
suitable conditions on f , they proved existence of infinitely many weak solutions with
negative energy when λ belongs to a certain interval. Recently, Chen et al. [9] used
Ekeland’s variational principle to study the existence of multiple normalized solutions
for the following (2, q)-Laplacian equation:

{
−∆u− ∆qu = λu+ h(εx)f(u) in RN ,∫
RN |u|2dx = a2 in RN ,

(1.10)

where 2 < q < N, ε > 0, a > 0. The parameter λ ∈ R serves as an unknown
Lagrange multiplier, h is a continuous positive function and f is also continuous and
satisfies L2 -subcritical growth. They divided the problem into autonomous case
and nonautonomous case, then they found that when ε is sufficiently small, the
number of normalized solutions is at least the number of global maximum points of
h. In [11], Chen and Qin studied the existence of ground state and mountain-pass
solutions for the quasilinear equation:

−∆Nu+ V (x)|u|N−2u = f(u) in RN , N ≥ 2, (1.11)

they used variational methods to establish unified results for periodic, radial and
asymptotically constant potentials V (x), with f(u) having critical exponential growth.
They obtained new compactness lemmas in W 1,N (RN ) generalizing radial case results
and a path construction controlling mountain-pass levels to restore compactness.

When focusing on the study of normalized solutions for the critical Schrödinger
equation involving (2, q)-Laplacian in RN , we note that the existing results on this
problem remain relatively limited. Motivated by previous results, we proves the
existence of multiple normalized solutions for equation (1.1) in this paper. To some
extent, we generalize and supplement some previous results.

Now, we present the main results of this paper. For the L2-subcritical case, we es-
tablish the existence of multiple normalized solutions to equation (1.1).

Theorem 1.1. Assume that q ∈ ( 2N
N+2 , 2) and γ ∈ (2, 2 + 4

N ). Then, for k ∈ N, there
exists a constant α > 0 independent of k and µk := µ(k) such that equation (1.1)
possesses at least k couples (ui, λi) ∈ X × R of distinct weak solutions for µ ≥ µk and

0 < a < min
{(

α

µK

) 2
2N−γ(N−2)

,

(
γ

2µK

) 2
2γ−Nγ+2N

θ1
4−Nγ+2N

2γ−Nγ+2N

}

with
∫
RN |ui|2 dx = a2, λi < 0 for all i = 1, . . . , k. Here, the Sobolev space X is given

in Section 2, and the constant K is given in (3.1) of Section 3.
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Remark 1.2. In L2-subcritical case, as γ ∈ (2 + 4
N , q + 2q

N ), the energy functional is
unbound from below on S(a) which leads to the non-existence of the (PS)c sequence.
Therefore, the range 2 < γ ∈ (2, 2 + 4

N ) is suitable.

For the L2-supercritical case, we establish the existence and multiplicity of normal-
ized solution for equation (1.1).

Theorem 1.3. Assume that q ∈ ( 2N
N+2 , 2) and γ ∈ (q + 2q

N , 2∗). Then there exists
µ∗ = µ∗(a) > 0 such that equation (1.1) admits a couple (uα, λα) ∈ X × R of weak
radical solution with

∫
R3 |u|p = ap and λa < 0.

Remark 1.4. The proofs of Theorems 1.1 and 1.3 are derived through the application
of appropriate variational methods. It is evident that we shall encounter the following
difficulties.

(i) We use a truncation methord for the L2-subcritical case to guarantee that
the truncated energy functional is bounded from below and coercive. For the
L2-supercritical case, due to the functional I exhibits the mountain-pass struc-
ture on S(a), it ensures the existence of a Palais–Smale sequence. However, the
functional I corresponding to equation (1.1) is unbounded below on

S(a) = {u ∈ Xrad(RN ) : |u|2 = a} (1.12)

which leads the Palais–Smale sequence is also unbounded. To address this chal-
lenge, we inspired by Jeanjean in [18], and introduce the auxiliary energy functional
defined by

Ĩ : S(a) × R → R, (u, ϑ) 7→ I(φ(u, ϑ)),

where φ(u, ϑ)(x) = e
Nϑ

2 u
(
eϑx
)
. Both I and Ĩ satisfies the mountain pass geom-

etry on the manifold S(a). Their mountain pass levels are equivalent.
(ii) Compared with Jeanjean [18], it is more difficult to prove compactness in the

entire space when the critical nonlinearity in equation (1.1) appears. To address
this issue, we employ the concentration-compactness principles from [8, 34].
Furthermore, the occurrence of a non-local term requires the development of new
methods to deal with.

(iii) The solution space is no more a Hilbert space since the (2, q)-Laplacian operator
is non-linear and different from the classical Laplacian −∆. Consequently, the
standard tools relying on Hilbert space structure are not applicable. Motivated by
the work of Baldelli et al. [5] and consider a suitable concentration compactness
principle.

The structure of the paper is as follows: We provide the variational setting and
provide preliminary lemmas in Section 2. And the purpose of Section 3 is using
concentration-compactness principle, the truncation technique and the genus the-
ory to demonstrate Theorem 1.1. In Section 4, the auxiliary energy functional and
concentration compactness principle can be used to prove Theorem 1.3.

To some extent, the results of this paper extend those of Cai and Rădulescu [6],
Chen et al. [9], Li and Zou [26], and Xiao et al. [47].
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2. PRELIMINARIES

In this section, we briefly review the definitions and list some basic properties of the
workspace. Let X := H1(RN ) ∩D1,q

(
RN
)
, endowed with the standard norm:

∥u∥X = ∥u∥H1(RN ) + ∥u∥D1,q(RN ),

where D1,q
(
RN
)

:= {u ∈ Lq∗(RN ) : ∇u ∈ Lq(RN )} which is equipped with the
following semi-norm:

∥u∥D1,q(RN ) = ∥∇u∥q

and | · |τ is the usual norm on Lν(RN ) for ν ∈ [1,+∞). To research for the normalized
solutions of equation (1.1), we analyze the critical points of the following functional

I(u) = 1
2

∫

RN

|∇u|2dx+ 1
q

∫

RN

|∇u|qdx−
∫

RN

H(u)dx

on the constraint manifold

S(a) =
{
u ∈ Xrad := H1

rad(RN ) ∩D1,q
rad

(
RN
)

: |u|2 = a
}
,

where
H(t) = µ

γ
|t|γ + 1

2∗ |t|2∗
, t ∈ R.

It is well known that I ∈ C1(X,R) and the Fréchet derivative of I is given by

⟨I ′(u), u⟩ =
∫

RN

|∇u|2dx+
∫

RN

|∇u|qdx− µ

∫

RN

|u|γdx−
∫

RN

|u|2∗
dx

on S(a). Then there exists the continuous embedding X ↪→ Lν(RN ) for all ν ∈ [2, 2∗]
and the compact embedding X ↪→↪→ Lν(RN ) for all ν ∈ (2, 2∗) and S denotes the
best Sobolev constant by

S := inf
u∈X
u̸=0

∫
RN |∇u|2dx

(∫
RN |u|2∗dx

) 2
2∗
. (2.1)

Lemma 2.1 ([9, Lemma 2.1]). Let l ∈ (q, 2∗), a constant C > 0 exists such that for
all u ∈ X

|v|l ≤ C|∇v|θl,q
q |v|(1−θl,q)

2 ,

where θl,q = Nq(l−2)
l[Nq−2(N−q)] .
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Lemma 2.2 ([25, Lemma 2.1]). Let τ ∈ (q, 2∗), there exists a constant

Cτ := (τ /2∥Wτ ∥τ−2
2 )1/τ > 0

such that, for each u ∈ Xrad(RN )

∥v∥ τ ≤ Cτ ∥∇v∥ā
2∥v∥(1−ā)

2 ,

where ā = N
( 1

2 − 1
τ

)
and Wτ is the unique positive solution of

−∆W +
(

1
ā

− 1
)
W = 2

τ ā
|W |τ−2W.

Lemma 2.3 ([34, Lemma I.1.]). Let {un} be a weakly convergent sequence to u in X

such that |un|2
∗
⇀ ν and |∇un|2 + |∇un|q ⇀ κ in the sense of measures. Then, for

some at most countable index set I,
(i) ν = |u|2∗ +

∑
i∈I δxiνi, νi > 0;

(ii) κ ≥ |∇u|2 + |∇u|q +
∑

i∈I δxiµi, µi > 0,
(iii) κi ≥ Sν

2/2∗

i ,
where S is the best Sobolev constant is given by (2.1), δxi

are Dirac measures at xi,
and κi, νi are positive constants.
Lemma 2.4 ([5, Lemma 8]). Let the sequence {un} weakly converge to u in X,
and define

ν∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

|un|2
∗
dx,

κ∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

(|∇un|2 + |∇un|q)dx.

The quantities ν∞ and κ∞ exist and satisfy

(i) lim supn→∞
∫
RN |un|2

∗
dx =

∫
RN dν + ν∞,

(ii) lim supn→∞
∫
RN (|∇un|2 + |∇un|q)dx =

∫
RN dκ+ κ∞,

(iii) κ∞ ≥ Sν
2/2∗
∞ .

3. IN Lp-SUBCRITICAL PERTURBATION

We first review the genus theory to obtain the existence and multiplicity of normalized
solutions for equation (1.1) in Lp-subcritical case.

Let X be a Banach space and M be a subset of X, if u ∈ M and −u ∈ M , we call
M is symmetric. Then we can define the following set:

Ξ := {M ⊂ X\{0} : M is closed and symmetric with respect to the origin}.
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Set

γ(M) =





+∞ if is no such odd map exists,
0 if M = ∅,
inf
{
k ∈ N : there exists an odd φ ∈ C

(
M,Rk\{0}

)}
,

where Ξk = {M ∈ Ξ : γ(M) ≥ k} and M ∈ Ξ.
In what follows, we need to make accurate analysis of the action functional I(u).

If u ∈ S(a), by Lemma 2.2, we can get

I(u) = 1
2

∫

RN

|∇u|2dx+ 1
q

∫

RN

|∇u|qdx− µ

γ

∫

RN

|u|γdx− 1
2∗

∫

RN

|u|2∗
dx

≥ 1
2 |∇u|22 − µ

γ
aγ− N(γ−2)

2 K|∇u|
N(γ−2)

2
2 − 1

2∗S
− 2∗

2 |∇u|2∗
2

:= h (|∇u|2) ,

(3.1)

where
h(t) = 1

2 t
2 − µ

γ
aγ− N(γ−2)

2 Kt
N(γ−2)

2 − 1
2∗S

− 2∗
2 t2

∗
.

Since 2 < γ < 2 + 4
N , we have N(γ−2)

2 < 2, the following function

g(t) = 1
2 t

2− N(γ−2)
2 − 1

2∗S
− 2∗

2 t2
∗− N(γ−2)

2 , ∀t ∈ (0,∞)

attains a uniquely maximum point (t0, g(t0)), where t0 > 0, g(t0) > 0. Hence, if
µ

γ
aγ− N(γ−2)

2 K < g(t0) := α,

then at t0, the function h(t) also achieve a unique positive local maximum. In particular,
there exist two constants 0 < θ1 < t0 < θ2 < +∞ such that

{
h(t) > 0 if t ∈ (θ1, θ2),
h(t) < 0 if t ∈ (0, θ1) ∪ (θ2,+∞).

Based on the above facts, we conclude that the energy functional I is unbounded from
below on S(a). In order to guarantee that the energy functional I is bounded and
coercive on S(a), we will introduce a truncated function. Let τ : R+ → [0, 1] be a C∞

and non-increasing function that satisfies

τ(t) =
{

0 if t ≥ θ2,

1 if t ≤ θ1.

Given u ∈ S(a), the corresponding truncated functional as follows:

Iτ (u) = 1
2

∫

RN

|∇u|2dx+ 1
q

∫

RN

|∇u|qdx− µ

γ

∫

RN

|u|γdx− τ (|∇u|)
2∗

∫

RN

|u|2∗
dx.
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From Lemma 2.2, we can get

Iτ (u) ≥ 1
2 |∇u|22 − µ

γ
aγ− N(γ−2)

2 K|∇u|
N(γ−2)

2
2 − τ (|∇u|)

2∗ S− 2∗
2 |∇u|2∗

:= h̃ (|∇u|2) ≥ h (|∇u|2),

where
h̃(t) = 1

2 t
2 − µ

γ
aγ− N(γ−2)

2 Kt
N(γ−2)

2 − τ (|∇u|)
2∗ S− 2∗

2 t2
∗
.

Then, we derive h̃(t) ≥ h(t) > −∞ for a ∈
(

0,
(

α
µK

) 2
2N−γ(N−2)

)
and each t ∈ (0, θ1).

We assume a ∈
(

0,
(

α
µK

) 2
2N−γ(N−2)

)
, and for all t ∈ [θ1,+∞), we have

h̃(t) = 1
2 t

2 − µ

γ
aγ− N(γ−2)

2 Kt
N(γ−2)

2 .

Additionally, if we further assume the condition that

a ∈
(

0,
( γ

2µK

) 2
2γ−Nγ+2N

θ1
4−Nγ+2N

2γ−Nγ+2N

)
.

Then we can conclude that

0 < a < min
{( α

µK

) 2
2N−γ(N−2)

,
( γ

2µK

) 2
2γ−Nγ+2N

θ1
4−Nγ+2N

2γ−Nγ+2N

}
.

Under this assumption, for any t ≥ θ1, we have h̃(t) > 0. Therefore, we can choose
θ1 > 0 small enough to ensure that

1
2 t

2
1 − 1

2∗S
− 2∗

2 t2
∗

1 ≥ 0 for all t1 ∈ [0, θ1] and θ1 < S
N
4 . (3.2)

Lemma 3.1. The energy functional Iτ satisfies the following properties:

(a) Iτ ∈ C1 (Xrad,R),
(b) Iτ is coercive and bounded from below on S(a); furthermore, if Iτ ≤ 0, we have

|∇u|q + |∇u|2 ≤ θ1 and I(u) = Iτ (u).

Proof. Taking the same arguments as Willem [45, Lemma 2.16], we can deduce that
Iτ ∈ C1 (Xrad,R), so we omit the proof here. We only prove (b). Fix u ∈ S(a), the
definition of τ gives that τ(|∇u|) → 0 as |∇u| → ∞. Thus,

Iτ (u) ≥ 1
q

∫

RN

|∇u|qdx+ 1
2

∫

RN

|∇u|2dx− µ

γ

∫

RN

|u|γdx

≥ 1
q

∥∇u∥q + 1
2∥∇u∥2 − µ

γ
Ca(1−a)γ∥∇u∥aγ → +∞
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since aγ < 2, where a is the constant introduced in Lemma 2.2, it follows that the
energy functional Iτ is coercive. Since h̃ has a maximum value from the definition
of h̃, we deduce that Iτ (u) is bounded from below on S(a). In addition, h̃(t) < 0 if
Iτ (u) < 0. According to the definition of h̃(t), this further leads to |∇u|q + |∇u|2 ≤ θ1.
Hence, we obtain τ = 1 from the definition of τ , i.e. Iτ (u) = I(u). We finish the proof
of Lemma 3.1.

Lemma 3.2. Let {un} be a (PS)c sequence at level c < 0 for Iτ restricted to S(a),
then u ̸≡ 0.

Proof. Assume for contradiction that u ≡ 0. Let {un} ⊂ S(a) be a (PS)c sequence
at level c < 0 for Iτ . According to Lemma 3.1(b), we have |∇un|2 + |∇un|q ≤ θ1 for
large n and {un} is also a (PS)c sequence of I constrained to S(a) with c < 0, i.e.
I (un) → c < 0 and ∥∥∥I|′S(a) (un)

∥∥∥ → 0 as n → ∞.

We now observe that the sequence {un} is bounded in Xrad, then there exists some
subsequence un ⇀ u in Xrad and for every ν ∈ (2, 2∗), un → u in Lν

(
RN
)

and
un(x) → u(x) a.e. on RN . Then we have

lim
n→∞

∫

RN

|un|γ dx =
∫

RN

|u|γdx, (3.3)

since 2 < γ < 2 + 4
N . And

lim
n→∞

∫

RN

|un|γ dx = 0.

By the definition of Iτ and (3.2), it follows that

0 > c = lim
n→∞

Iτ (un) = lim
n→∞

I (un)

= lim
n→∞

(
1
2

∫

RN

|∇un|2dx+ 1
q

∫

RN

|∇un|qdx− µ

γ

∫

RN

|un|γdx− 1
2∗

∫

RN

|un|2∗
dx

)

≥ lim
n→∞

(
1
2

∫

RN

|∇un|2dx+ 1
q

∫

RN

|∇un|qdx− µ

γ

∫

RN

|un|γdx− 1
2∗S

− 2∗
2 |∇un|2∗

)

≥ −µ

γ
lim

n→∞

∫

RN

|un|γdx = 0

which is absurd. This completes the proof of Lemma 3.2.

We define the functional Ψ(v) : Xrad → R by

Ψ(v) = 1
2

∫

RN

|v|2dx.
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It follows that S(a) = Ψ−1 ({a2/2
})

. Thus, we can apply [45, Proposition 5.12], which
guarantees the existence of λn ∈ R fulfilling

∥I ′ (un) − λnΨ′ (un)∥ → 0 as n → ∞.

Then, we obtain

−∆un − ∆qun − µ |un|γ−2
un − |un|2

∗−2
un = λnun + on(1) in X∗

rad, (3.4)

where X∗
rad represents the dual space of Xrad.

The appearance of a critical term leads to a loss of compactness for the mini-
mizing sequence {un} in the entire space. To address this challenge, we apply the
concentration-compactness principle developed in [34].

Lemma 3.3. There holds un → u in L2∗ (RN
)
.

Proof. We divide the proof into three steps.

Step 1. We prove that κ ({xi}) = νi, where κ ({xi}) is given in Lemma 2.3.
We first introduce a cut-off function φρ(x) := φ( x−xi

ρ ) which satisfies

φ(x) =
{

1 if x ∈ B1,

0 if x ∈ Bc
2,

and |∇φ| ≤ 2.
Next, we note that {unφρ} is bounded in Xrad and φρ take values in R, then

⟨I ′(φρun), φρun⟩ → 0 as n → ∞. Based on these facts, we can conclude that
∫

RN

|∇un|2 φρ(x)dx+
∫

RN

un∇un∇φρ(x)dx

+
∫

RN

|∇un|q φρ(x)dx+
∫

RN

un |∇un|q−2 ∇un∇φρ(x)dx

= µ

∫

RN

|un|γφρ(x)dx+
∫

RN

|un|2∗
φρ(x)dx+ on(1).

(3.5)

In fact, since |∇un|2 + |∇un|q ≤ θ1 as n → ∞, then applying Lemmas 2.3 and 2.4
we deduce the existence of two positive measures ν, κ such that

|∇un|2 + |∇un|q ⇀ κ and |un|2
∗
⇀ ν (3.6)

as n → ∞.
Due to the boundedness of {un} in Xrad, together with (3.3) and Hölder’s inequality,

it follows that
lim
ρ→0

lim
n→∞

∫

RN

un|∇un|q−2∇un∇φρ(x)dx = 0
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and
lim
ρ→0

lim
n→∞

∫

RN

un∇un∇φρ(x)dx = 0.

According to the definition of φρ and γ ∈ (2, 2 + 4
N ), we obtain

lim
ρ→0

lim sup
n→∞

∫

RN

|un|γφρdx = 0.

From Lemma 2.3 and (3.6)

lim
ρ→0

lim
n→∞

∫

RN

φρ(|∇un|2 + |∇un|q)dx = lim
ρ→0

∫

RN

φρdκ = κ ({xi}) ,

lim
ρ→0

lim
n→∞

∫

RN

φρ |un|2
∗
dx = lim

ρ→0

∫

RN

φρdν = ν ({xi}) = νi.

In summary, by letting n → ∞ in (3.5), and then taking the limit as ρ → 0, we arrive
at the conclusion that κ ({xi}) = νi.
Step 2. We demonstrate that κ∞ = ν∞, where κ∞ and ν∞ are defined by Lemma 2.4.

We introduce a cut-off function, ηR(x) = η(x/R) ∈ C∞ (RN
)
, which satisfies

ηR(x) =
{

0 if x ∈ RN \B2,

1 if x ∈ B1,

we observe that {unηR} is bounded in Xrad(RN ) and ηR take values in R,
⟨I ′(ηRun), ηRun⟩ → 0 as n → ∞. Based on the above, we can conclude that

∫

RN

|∇un|2 ηR(x)dx+
∫

RN

un∇un∇ηR(x)dx

+
∫

RN

|∇un|q ηR(x)dx+
∫

RN

un |∇un|q−2 ∇un∇ηR(x)dx

= µ

∫

RN

|un|γηR(x)dx+
∫

RN

|un|2∗
ηR(x)dx+ on(1).

(3.7)

This implies that

lim
R→∞

lim
n→∞

∫

RN

un|∇un|q−2∇un∇ηR(x)dx = 0

and
lim

R→∞
lim

n→∞

∫

RN

un∇un∇ηR(x)dx = 0.
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From the definition of ηR, it follows that
∫

{x∈RN :|x|>R}

(|∇un|2 + |∇un|q)dx ≤
∫

RN

ηR(|∇un|2 + |∇un|q)dx

≤
∫

{x∈RN :|x|>R/2}

(|∇un|2 + |∇un|q)dx.

Thus, by applying Lemma 2.4, we derive

lim
R→∞

lim
n→∞

∫

RN

ηR(|∇un|2 + |∇un|q)dx = κ∞ (3.8)

and
lim

R→∞
lim

n→∞

∫

RN

ηR |un|2
∗
dx = ν∞,

lim
R→∞

lim
n→∞

∫

RN

ηR |un|γ dx = lim
R→∞

∫

RN

ηR|u|γdx = lim
R→∞

∫

|x|>R/2

ηR|u|γdx = 0.

As R → ∞, (3.7) leads to κ∞ = ν∞.

Step 3. We demonstrate that for every i0 ∈ I, νi = 0 and ν∞ = 0.
To prove this, we proceed by contradiction. Assume that there exists i0 ∈ I, such

that νi0 > 0 or ν∞ > 0. Steps 1 and 2 imply that κi ≥ Sκ
2

2∗
i or κ∞ ≥ Sκ

2
2∗
∞ . It yields

that κi ≥ S
N
2 or κ∞ ≥ S

N
2 . If the former case is valid, then

θ2
1 ≥ lim

ρ→0
lim

n→∞

∫

RN

(|∇un|22 + |∇un|qq)dx ≥ lim
ρ→0

lim
n→∞

∫

RN

φ̂ρ(|∇un|2 + |∇un|q)dx

= lim
ρ→0

∫

RN

φ̂ρdκ = κi0 ≥ S
N
2

which contradicts (3.2). The last case is the same as the first case, which also contra-
dicts (3.2). Consequently, we have

un → u in L2∗
(RN/BR(0)).

Thus, we conclude that
un → u in L2∗

(RN ).

This completes the proof of Lemma 3.3.
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Lemma 3.4. For all c < 0, the functional Iτ satisfies the (PS)c condition on S(a).
Proof. According to (3.4), we infer that

−∆u− ∆q|u|q−2u− µ |u|γ−2
u− |u|2

∗−2
u = λau.

Therefore, we obtain that

|∇u|22 + |∇u|qq − µ

∫

RN

|u|γdx−
∫

RN

|u|2∗
dx = λa

∫

RN

|u|2dx. (3.9)

Next, we show that λa < 0. Indeed, if u is a weak solution of equation (3.9), then
the Pohozaev identity [24] yields

N − 2
2

∫

RN

|∇u|2dx+ N − q

q

∫

RN

|∇u|qdx

= Nµ

γ

∫

RN

|u|γdx+ N − 2
2

∫

RN

|u|2∗
dx+ Nλa

2

∫

RN

|u|2dx.
(3.10)

Next, by u ̸≡ 0, 2 < γ < 2 + 4
N , we infer from (3.9) and (3.10) that

λa

∫

RN

|u|2dx = −N − 2
2

(
− 2
N − 2

N − q

q
+ 1
) ∫

RN

|u|q dx

+
(

−N − 2
2

)(
2µN

(N − 2)γ − µ

) ∫

RN

|u|γdx

=
(
N − q

q
− N − 2

2

) ∫

RN

|u|q dx− µ

(
N

γ
− N − 2

2

) ∫

RN

|u|γdx

< 0

then λa < 0. Thus, we conclude that

lim
n→∞

[
|∇un|22 + |∇un|qq − λa |un|22

]
= lim

n→∞

[
µ |un|γγ + |un|2

∗

2∗ + on(1)
]

= µ|u|γγ + |u|2∗
2∗

= |∇u|22 + |∇u|qq − λa|u|22.

(3.11)

Since λa < 0, we get un → u in Xrad and |u|2 = a. We finish the proof of Lemma 3.4.

We consider the set

I−ε
τ = {u ∈ ωa : Iτ (u) ≤ −ε} ⊂ Xrad for ε > 0.

The set I−ε
τ is symmetric and closed since Iτ (u) is even and continuous on Xrad. The

following lemma then holds; it is the same as Lemma 3.2 in [1].



700 Lulu Wei and Yueqiang Song

Lemma 3.5. Give k ∈ N, for any µ ≥ µk and 0 < ε ≤ εk, there exist µk := µ(k) > 0
and εk := ε(k) > 0 such that γ (I−ε

τ ) ≥ k.
We define the set

Ξk := {M1 ⊂ S(a) : M1 is symmetric and closed, γ(M1) ≥ k}

and
ck := inf

M1∈Ξk

sup
u∈M1

Iτ (u) > −∞ for any k ∈ N

according to Lemma 3.1(b). We proceed to establish Theorem 1.1 by setting

Kc := {u ∈ ωa : Iτ (u) = c, I ′
τ (u) = 0} .

Lemma 3.6. If c = ck = ck+1 = . . . = ck+r, then it follows that γ (Kc) ≥ r + 1.
Specially, there are at least r + 1 nontrivial critical points of Iτ (u).
Proof. It is clear that I−ε

τ ∈ Ξ for ε > 0. Then, Lemma 3.5 assures the existence of
µk := µ(k) > 0 and εk := ε(k) > 0 where k ∈ N, such that if µ ≥ µk and 0 < ε ≤ εk,
then γ (I−εk

τ ) ≥ k, and so I−εk
τ ∈ Σk. Furthermore, we get the following inequality:

ck ≤ sup
u∈I−εk

τ

Iτ (u) = −εk < 0.

If c = ck = ck+1 = . . . = ck+r < 0, we obtain that Iτ (u) satisfies the (PS)c condition
at the level c < 0 by using Lemma 3.4. As a result, the set Kc is a compact. Then,
we can conclude that Iτ (u) which is restricted on S(a) has at least r + 1 nontrivial
critical points by applying Theorem 2.1 from [20].

Proof of Theorem 1.1. From Lemma 3.1(b), we obtain that Iτ (u) in Lemma 3.6 and I
have the same critical points, thus we complete the proof of Theorem 1.1.

4. IN L2-SUPERCRITICAL PERTURBATION

For L2-supercritical case, q+ 2q
N < γ < 2N

N−2 . Given that N(γ− q) > 2q, we cannot use
truncation technique directly to consider equation (1.1) cause the truncated functional
Iτ is still unbounded from below on S(a). Inspired by the research of Jeanjean [18],
for any u ∈ Xrad and ϑ ∈ R, we define

τ(u, ϑ)(x) = e
Nϑ

2 u
(
eϑx
)
.

Then we obtain the auxiliary functional Ĩ : Xrad → R as follows:

Ĩ(u, ϑ) = 1
2e

2ϑ

∫

RN

|∇u|2dx

+ 1
q
e

ϑ(qN+2q−2N)
2

∫

RN

|∇u|qdx− 1
eNϑ

∫

RN

H
(
e

Nϑ
2 u(x)

)
dx,

(4.1)
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equivalent to

Ĩ(u, ϑ) = 1
2

∫

RN

|∇v|2dx+ 1
q

∫

RN

|∇v|qdx−
∫

RN

H(v(x))dx = I(v)

for v = τ(u, ϑ)(x).

4.1. THE MINIMAX APPROACH

We will show that Ĩ exhibits the mountain pass geometric structure on S(a) × R.

Lemma 4.1. For any fixed u ∈ S(a), we have:

(a) Ĩ(u, ϑ) → 0+ when ϑ → −∞,
(b) Ĩ(u, ϑ) → −∞ when ϑ → +∞.

Proof. (a) Using τ(u, ϑ)(x) = e
Nϑ

2 u
(
eϑx
)
, for every ϱ ≥ 2, we have

∫

RN

|τ(u, ϑ)(x)|2 dx = a2,

∫

RN

|τ(u, ϑ)(x)|ϱdx = eNϑ( ϱ−2
2 )

∫

RN

|u|ϱdx, (4.2)

∫

RN

|∇τ(u, ϑ)(x)|2dx = e2ϑ

∫

RN

|∇u|2dx (4.3)

and ∫

RN

|∇τ(u, ϑ)(x)|qdx = e
ϑ(qN+2q−2N)

2

∫

RN

|∇u|qdx. (4.4)

From the above equation, by setting δ > 2, we derive that
∫

RN

|∇τ(u, ϑ)(x)|2dx → 0,
∫

RN

|∇τ(u, ϑ)(x)|qdx → 0 as ϑ → −∞

and

|τ(u, ϑ)|δ → 0 as ϑ → −∞. (4.5)

From this, as ϑ → −∞, it follows that
∫

RN

|H(τ(u, ϑ))|dx = µ

γ

∫

RN

|τ(u, ϑ)|γdx+ 1
2∗

∫

RN

|τ(u, ϑ)|2∗
dx → 0,

then we can get
I(τ(u, ϑ)) → 0 as ϑ → −∞,

proving (a).
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(b) From (4.3) and (4.4), passing the limit as ϑ → +∞, we obtain
∫

RN

|∇τ(u, ϑ)(x)|qdx → +∞ and
∫

RN

|∇τ(u, ϑ)(x)|2dx → +∞.

Therefore, we have

I(τ(u, ϑ)) = 1
2

∫

RN

|∇τ(u, ϑ)(x)|2dx+ 1
q

∫

RN

|∇τ(u, ϑ)(x)|qdx

− µ

γ

∫

RN

|τ(u, ϑ)|γdx− 1
2∗

∫

RN

|τ(u, ϑ)|2∗
dx

= e2ϑ

2

∫

RN

|∇u|2dx+ e
ϑ(qN+2q−2N)

2

q

∫

RN

|∇u|qdx

− µeNϑ( γ−2
2 )

γ

∫

RN

|u(x)|γdx− e
2Nϑ
N−2

2∗

∫

RN

|u(x)|2∗
dx

→ −∞ as ϑ → +∞,

due to γ > q + 2q
N , q ∈ ( 2N

N+2 , 2). Therefore, the proof of Lemma 4.1 is complete.

Lemma 4.2. There exists G(a) > 0 such that

0 < sup
u∈Ω1

I(u) < inf
u∈Ω2

I(u),

where

Ω1 =



u ∈ S(a) :

∫

RN

|∇u|2dx+
∫

RN

|∇u|qdx ≤ G(a)



 ,

Ω2 =



u ∈ S(a) :

∫

RN

|∇u|2dx+
∫

RN

|∇u|qdx = NG(a)



 .

Proof. Suppose u, v ∈ S(a) are such that
∫

RN

|∇u|2dx+
∫

RN

|∇u|qdx < G(a)

and ∫

RN

|∇v|2dx+
∫

RN

|∇v|qdx = NG(a),
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where G(a) is arbitrary but fixed. Then due to ∥I ′(un) − λnψ
′(un)∥ → 0 as n → ∞,

we have

∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx− µ

∫

RN

|un|γdx−
∫

RN

|un|2∗
dx = λn

∫

RN

|un|2dx. (4.6)

Since γ ∈ (q + 2q
N , 2∗) and q ∈ ( 2N

N+2 , 2), we obtain

I(v) − I(u) ≥ 1
2

∫

RN

|∇v|2dx+ 1
q

∫

RN

|∇v|qdx− µ

γ

∫

RN

|v|γdx− 1
2∗

∫

RN

|v|2∗
dx

− 1
2

∫

RN

|∇u|2dx− 1
q

∫

RN

|∇u|qdx

≥ 1
2

∫

RN

|∇v|2dx+ 1
q

∫

RN

|∇v|qdx− 1
2∗

(
µ

∫

RN

|v|γdx+
∫

|v|2∗
dx

)

− 1
2

∫

RN

|∇u|2dx− 1
q

∫

RN

|∇u|qdx

≥ 1
2

∫

RN

|∇v|2dx+ 1
q

∫

RN

|∇v|qdx− 1
2∗

( ∫

RN

|∇v|2dx+
∫

RN

|∇v|qdx

− λn

∫

RN

|v|2dx
)

− 1
2

∫

RN

|∇u|2dx− 1
q

∫

RN

|∇u|qdx

≥ 1
2

( ∫

RN

|∇v|2dx+
∫

RN

|∇v|qdx
)

− 1
2∗

( ∫

RN

|∇v|2dx+
∫

RN

|∇v|qdx
)

− 1
q

( ∫

RN

|∇u|2dx+
∫

RN

|∇u|qdx
)

≥
(N

2 − N

2∗ − 1
q

)
G(a)

≥ 0.

For any u ∈ S(a), we have

∫

RN

|∇u|2dx+
∫

RN

|∇u|qdx ≤ G(a).
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Combining this with (4.6), we obtain

I(u) ≥ 1
2

∫

RN

|∇u|2dx+ 1
q

∫
|∇u|qdx− 1

2∗


µ

∫

RN

|u|rdx+
∫

RN

|u|2∗
dx




≥ 1
2

( ∫

RN

|∇u|2dx+
∫

|∇u|qdx
)

− 1
2∗

( ∫

RN

|∇u|2dx+
∫

|∇u|qdx
)

≥ 1
2G(a) − 1

2∗G(a) ≥ 0.

Thus, the proof of Lemma 4.2 is complete.

Following [45], we define the tangent space S(a) at u as

Tu :=



v ∈ Xrad :

∫

RN

uvdx = 0



 ,

and the tangent space of S(a) × R at (u, t) as

T̃u,t :=



(v, k) ∈ Xrad × R :

∫

RN

uvdx = 0



 ,

where a > 0.

Lemma 4.3. Assume G(a) > 0 given in Lemma 4.2, then there exist û, ũ ∈ S(a)
such that:

(a) |∇û|22 + |∇û|qq ≤ G(a)
2 ,

(b) |∇ũ|22 + |∇ũ|qq > 2G(a),
(c) I(ũ) < 0 < I(û).

Furthermore, we set
cµ(a) = inf

h∈Γa

max
t∈[0,1]

I(h(t))

with
Γa = {h ∈ C ([0, 1], S(a)) : h(0) = û, h(1) = ũ} ,

and
c̃µ(a) = inf

ĥ∈Γ̃a

max
t∈[0,1]

Ĩ(ĥ(t))

with
Γ̃a =

{
ĥ ∈ C ([0, 1], S(a) × R) : ĥ(0) = (û, 0), ĥ(1) = (ũ, 0)

}

then we have
0 < max{I(û), I(ũ)} ≤ cµ(a) = c̃µ(a).
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Proof. For every u0 ∈ S(a), Lemmas 4.1 and 4.2 ensure that there exist two numbers
ϑ1 << −1 and ϑ2 >> 1 such that û = φ (u0, ϑ1) and ũ = φ (u0, ϑ2) satisfy (a)–(c).
We write each ĥ ∈ Γ̃a as

ĥ(t) =
(
ĥ1(t), ĥ2(t)

)
∈ S(a) × R.

If we define h(t) = φ
(
ĥ1(t), ĥ2(t)

)
, then h(t) ∈ Γa and

cµ(a) ≤ max
t∈[0,1]

I(h(t)) = max
t∈[0,1]

Ĩ(ĥ(t)).

Due to the arbitrariness of ĥ ∈ Γ̃a, it follows that c̃µ(a) ≥ cµ(a).
Moreover, for every h ∈ Γa, defining ĥ(t) = (h(t), 0), then ĥ(t) ∈ Γ̃a and

max
t∈[0,1]

I(h(t)) = max
t∈[0,1]

Ĩ(ĥ(t)) ≥ c̃µ(a).

Since h ∈ Γa is arbitrary, we can conclude that c̃µ(a) ≤ cµ(a). Therefore, c̃µ(a) = cµ(a),
and max{I(û), I(ũ)} ≤ cµ(a).

By applying Proposition 2.2 in Jeanjean [18], pseudo-gradient flow and the standard
Ekeland variational principle, we can assert there exists (PS)c̃µ(a) sequence for Ĩ(u, β).

Proposition 4.4. Let ĥn ⊂ Γ̃a satisfy

max
t∈[0,1]

Ĩ
(
ĥn(t)

)
≤ c̃µ(a) + 1

n
.

Then when n → ∞ there exists a sequence {(vn, ϑn)} ⊂ Sr(a) × R such that:
(a) Ĩ (vn, βn) → c̃µ(a),
(b) Ĩ ′∣∣

Sr(a)×R (vn, ϑn) → 0, i.e.,

∂ϑĨ (vn, ϑn) → 0 and
〈
∂vĨ (vn, ϑn) , ψ̃

〉
→ 0

for each

ψ̃ ∈ Tvn,ϑn =



ψ̃ =

(
ψ̃1, ψ̃2

)
∈ Xrad

(
RN
)

× R :
∫

RN

vnψ̃1 dx = 0



 .

Lemma 4.5. Let {(vn, ϑn)} ⊂ Sr(a) × R, where {(vn, ϑn)} ⊂ Sr(a) × R is from
Proposition 4.4, setting un = φ (vn, ϑn), then as n → ∞, we have:
(a) I(un) → cµ(a),
(b) P (un) → 0, where

P (un) =
∫

RN

|∇un|2dx+ qN + 2q − 2N
2q

∫

RN

|∇un|qdx+N

∫

RN

H(un)dx

− N

2

∫

RN

h(un)undx.
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Proof. For (a), since I(un) = Ĩ (vn, ϑn) and cµ(a) = c̃µ(a), we obtain the conclusion.
For (b), by (4.1) we have

lim
ϑ→0

∂ϑĨ(vn, ϑn)= lim
ϑ→0

∂ϑ

[
e2ϑn

2

∫

RN

|∇vn|2dx

+ e
ϑn(qN+2q−2N)

2

q

∫

RN

|∇vn|qdx

− 1
eNϑn

∫

RN

H(e
Nϑn

2 vn)dx
]

= lim
ϑ→0

[
e2ϑn

∫

RN

|∇vn|2dx+ N

eNϑn

∫

RN

H(e
Nϑn

2 vn)dx

+ (qN + 2q − 2N)
2q e

ϑn(qN+2q−2N)
2

∫

RN

|∇vn|qdx

− N

2eNϑn

∫

RN

h(e
Nϑn

2 vn)e
Nϑn

2 vndx

]

=
∫

RN

|∇un|2dx+ qN + 2q − 2N
2q

∫

RN

|∇un|qdx

+N

∫

RN

H(un)dx

− N

2

∫

RN

h(un)undx

= P (un).

Thus, P (un) → 0, as n → ∞.

Lemma 4.6. There holds limµ→+∞ cµ(a) = 0.
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Proof. For every u0 ∈ Xrad and t ∈ [0, 1], h0(t) = φ (u0, (1 − t)ϑ1 + tϑ2) is a path
in Γa. Then, we obtain that

cµ(a) ≤ max
t∈[0,1]

I(h0(t))

= max
t∈[0,1]

{
1
2e

2[(1−t)ϑ1+tϑ2]
∫

RN

|∇u0|2dx+ 1
q
e

[(1−t)ϑ1+tϑ2](qN+2q−2N)
2

∫

RN

|∇u0|qdx

− µ

γ
e

N(γ−2)
2 [(1−t)ϑ1+tϑ2]

∫

RN

|u0|γdx

− 1
2∗ e

N(2∗−2)
2 [(1−t)ϑ1+tϑ2]

∫

RN

|u0|2∗
dx

}

≤ max
σ>0

{
σ2

2

∫

RN

|∇u0|2dx+ 1
q
σ

qN+2q−2N
2

∫

RN

|∇u0|qdx− µσN( γ−2
2 )

γ
|u0|γγ

}

= C

(
1
µ

) 2
N(γ−2)−4

,

where σ := e(1−t)ϑ1+tϑ2 . Together with γ ∈
(
q + 2q

N , 2∗), we can conclude that
limµ→∞ cµ(a) = 0.

By utilizing the Lagrange multipliers rule for un given in Lemma 4.5, we can
identify a sequence {λn} ⊂ R satisfies

−∆un − ∆qun = h(un) + λnun + on(1). (4.7)

We can demonstrate that {un} is a bounded sequence on S(a) by using Lemmas 2.3
and 2.4 of Jeanjean et al. [18]. Consequently, we deduce that λn must fulfill equality
as follows:

λn = 1
|un|22





∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx−
∫

RN

h(un)undx



+ on(1)

or equivalently,

λn = 1
a2





∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx−
∫

RN

h(un)undx



+ on(1). (4.8)
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Lemma 4.7. There exists a constant D > 0 such that

lim sup
n→+∞

∫

RN

H(un)dx ≤ Dcµ(a),

lim sup
n→+∞

∫

RN

h(un)undx ≤ Dcµ(a),

lim sup
n→+∞

∫

RN

(|∇un|2 + |∇un|q)dx ≤ Dcµ(a).

Proof. From Lemma 4.5(a) and (b), we get

Ncµ(a) + on(1) = NI(un) + P (un)

= N + 2
2

∫

RN

(|∇un|2 + |∇un|q)dx− N

2

∫

RN

h(un)undx

= (N + 2)


cµ(a) +

∫

RN

H(un)dx+ on(1)




− N

2

∫

RN

h(un)undx+(N + 2)(q − 2)
2q

∫

RN

|∇un|qdx.

Therefore, we conclude that

− (N + 2)
∫

RN

H(un)dx+ N

2

∫

RN

h(un)undx

= 2cµ(a) + on(1) + (N + 2)(q − 2)
2q

∫

RN

|∇un|qdx.
(4.9)

Since H(t) := µ
γ |t|γ + 1

2∗ |t|2∗ , for all t ∈ RN and γ ∈
(
q + 2q

N , 2∗), we derive that for
every t ∈ R

γH(t) ≤ h(t)t. (4.10)

Combining with (4.9), we obtain that
(
Nγ

2 − (N + 2)
) ∫

RN

H(un)dx ≤ 2cµ(a) + on(1).

Thus,

lim sup
n→+∞

∫

RN

H(un)dx ≤ Dcµ(a).
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By (4.9), we also have

lim sup
n→+∞

∫

RN

h (un)undx ≤ Dcµ(a)

and
lim sup
n→+∞

∫

RN

(|∇un|2 + |∇un|q)dx ≤ Dcµ(a).

Therefore, we finish the proof of Lemma 4.7.

Equation (4.9) reveals that the sequence
{∫

RN H (un) dx
}

n
is not closed to 0.

In fact, if ∫

RN

H (un) dx → 0 as n → +∞,

then by H(t) ≥ h(t)t
2∗ ≥ 0, for every t ∈ R, we have

∫

RN

h (un)undx → 0 as n → +∞.

Together with (4.9), we can get cµ(a) = 0, which is impossible. Then, we can choose
a subsequence and assume that

∫

RN

H (un) dx → D1 > 0 as n → ∞. (4.11)

Lemma 4.8. The sequence {λn} is bounded in RN with

λn = −µ
a2

(
N

γ
− N − 2

2

) ∫

RN

|un|γ dx− N(q − 2)
2qa2

∫

RN

|∇un|q dx+ on(1)

and
lim sup
n→+∞

λn ≤ D

a2 cµ(a)

for a suitable constant D > 0.

Proof. Since {un} is bounded, it follows that {λn} is bounded. Indeed,

λn = 1
a2





∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx−
∫

RN

h (un)undx



+ on(1). (4.12)
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By Lemma 4.7, we obtain

λn ≤ 1
a2





∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx+
∫

RN

h (un)undx



+ on(1)

≤ D

a2 cµ(a) + on(1).

This guarantees the boundedness of {λn}. Moreover, we obtain that the second
inequality holds. For the first equality, it follows from Lemma 4.5(b) that

∫

RN

|∇un|2dx+ qN + 2q − 2N
2q

∫

RN

|∇un|qdx

= N

2

∫

RN

h (un)undx−N

∫

RN

H (un) dx+ on(1).

Substituting this equality into (4.11), we get

λna
2 = −µ

(
N

γ
− N − 2

2

) ∫

RN

|un|γ dx− N(q − 2)
2q

∫

RN

|∇un|qdx+ on(1)

which completes the proof of Lemma 4.8.

In this section, we address the space Xrad. Since un ⇀ u in Xrad, and un → u
in Lγ

(
RN
)

for γ ∈
(
q + 2q

N , 2∗), then we can get

lim
n→+∞

∫

RN

|un|γ dx =
∫

RN

|u|γdx. (4.13)

Lemma 4.9. There exists µ∗ > 0 for each µ ≥ µ∗ > 0, such that u ̸= 0.
Proof. Assume by contradiction that u = 0. Therefore, we observe that

lim
n→+∞

∫

RN

|un|γ dx = 0 (4.14)

and by Lemma 4.8, we obtain
lim sup
n→+∞

λn = 0. (4.15)

By (4.11), (4.14), (4.15) and the following equality

a2λn =
∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx−
∫

RN

h (un)undx+ on(1),

we have ∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx− |un|2
∗

2∗ = on(1). (4.16)
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Then we can assume that
∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx = L+ on(1) and |un|2
∗

2∗ = L+ on(1), (4.17)

where L ≥ 0. If L = 0, by the definition of I(un), we can obtain that cµ(a) = 0, which
is impossible. If L > 0, we can observe that

S ≤
∫
RN |∇un|2dx

(∫
RN |un|2∗

dx
) 2

2∗
≤
∫
RN |∇un|2dx+

∫
RN |∇un|qdx

(∫
RN |un|2∗

dx
) 2

2∗
. (4.18)

Together with (4.17) and passing the limit as n → ∞ in (4.18), we get that

L ≥ S
N
2 .

On the other hand, we obtain

on(1) + cµ(a) = 1
2



∫

RN

|∇un|2dx+
∫

RN

|∇un|qdx


− µ

γ
|un|γγ − 1

2∗ |un|2∗
2∗

= 1
N
L ≥ 1

N
S

N
2

which is contradiction by Lemma 4.6. Therefore, we prove that u ≠ 0 as µ > 0 large
enough. Hence, the proof of Lemma 4.9 is complete.

Lemma 4.10. Increasing if necessary µ∗, for any µ ≥ µ∗, we have un → u
in L2∗ (RN

)
.

Proof. Using the same arguments as in Lemma 3.3, we obtain the desired result.
Therefore, we omit the proof.

4.2. PROOF OF THEOREM 1.2

From the above analysis, we obtain un ⇀ u, where u is nontrivial. Since µ is large
enough and by Lemma 4.8, we have

lim
n→+∞

λn = lim
n→+∞

−µ
a2

(
N

γ
− N − 2

2

) ∫

RN

|un|γdx− N(q − 2)
2qa2

∫

RN

|∇un|qdx+ on(1)

= −−µ
a2

(
N

γ
− N − 2

2

) ∫

RN

|u|γdx− N(q − 2)
2qa2

∫

RN

|∇u|qdx < 0.

Therefore, we can assume that

λn → λa < 0 as n → +∞.
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Using (4.7), it follows that

−∆u− ∆qu− h(u) = λau in RN . (4.19)

Thus,
|∇u|22 + |∇u|qq − λa|u|22 =

∫

RN

h(u)udx.

On the other hand, we have that

|∇un|22 + |∇un|qq − λn|un|22 =
∫

RN

h(un)undx+ on(1).

By Lemma 4.10, it follows that

un → u in L2∗ (
RN
)
.

Furthermore, we deduce that

lim
n→+∞

∫

RN

h (un)undx =
∫

RN

h(u)udx.

Therefore, one has

lim
n→+∞

(
|∇un|22 + |∇un|qq − λn |un|22

)
= |∇u|22 + |∇u|qq − λa|u|22.

By λa < 0, we obtain that
un → u in Xrad.

Thus, we conclude that |u|22 = a, which confirms the required result.
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