Opuscula Math. 45, no. 5 (2025), 665-684
https://doi.org/10.7494/OpMath.2025.45.5.665
Opuscula Mathematica
Systems of differential inclusions with competing operators and variable exponents
Francesca Vetro
Rakib Efendiev
Abstract. In this paper, we study a system of differential inclusions with Dirichlet boundary condition, involving competing operators and variable exponents. More precisely, we investigate the existence of both generalized solutions and weak solutions to the problem under consideration. In order to archive our results, we make use of approximation through finite dimensional subspaces via a Galerkin basis along with minimization and nonsmooth analysis.
Keywords: systems of differential inclusions, hemivariational inequalities, competing operators, Galerkin basis.
Mathematics Subject Classification: 49Q20, 49N60, 46E35.
- K.C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. https://doi.org/10.1016/0022-247x(81)90095-0
- F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons Inc., New York, 1983.
- L. Diening, P. Harjulehto, P. Hästö, M. Rŭzĭcka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer-Verlag, Berlin Heidelberg, 2011.
- M. Galewski, D. Motreanu, On variational competing \((p,q)\)-Laplacian Dirichlet problem with gradient depending weight, Appl. Math. Letters 148 (2024), 108881. https://doi.org/10.1016/j.aml.2023.108881
- L. Gambera, S.A. Marano, D. Motreanu, Quasi-linear Dirichlet systems with competing operators and convection, J. Math. Anal. Appl. 530 (2024), 127718. https://doi.org/10.1016/j.jmaa.2023.127718
- M. Ghasemi, C. Vetro, Z. Zhang, Dirichlet \(\mu\)-parametric differential problem with multivalued reaction term, Mathematics 13 (2025), 1295. https://doi.org/10.3390/math13081295
- M. Jleli, M. Kirane, B. Samet, A general blow-up result for a degenerate hyperbolic inequality in an exterior domain, Bull. Math. Sci. 13 (2023), no. 3, 2150012. https://doi.org/10.1142/s1664360721500120
- Z. Liu, R. Livrea, D. Motreanu, S. Zeng, Variational differential inclusions without ellipticity condition, Electron J. Qual. Theory Differ. Equ. 2020 (2020), no. 43, 17 pp. https://doi.org/10.14232/ejqtde.2020.1.43
- D. Motreanu, Quasilinear Dirichlet problems with competing operators and convection, Open Math. 18 (2020), no. 1, 1510-1517. https://doi.org/10.1515/math-2020-0112
- D. Motreanu, Systems of hemivariational inclusions with competing operators, Mathematics 12 (2024), no. 1766, 11 pp. https://doi.org/10.3390/math12111766
- A. Moussaoui, D. Nabab, J. Vélin, Singular quasilinear convective systems involving variable exponents, Opuscula Math. 44 (2024), no. 1, 105-134. https://doi.org/10.7494/opmath.2024.44.1.105
- P.D. Panagiotopoulos, Hemivariational Inequalities, Berlin, Heidelberg: Springer, 1993. https://doi.org/10.1007/978-3-642-51677-1_4
- V.D. Rădulescu, D.D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
- C. Vetro, Variable exponent \(p(x)\)-Kirchhoff type problem with convection, J. Math. Anal. Appl. 506 (2022), no. 2, 125721. https://doi.org/10.1016/j.jmaa.2021.125721
- Francesca Vetro (corresponding author)
https://orcid.org/0000-0001-7448-5299
- Baku Engineering University, Scientific Research Center, Khirdalan City, Baku, Absheron, Azerbaijan
- Rakib Efendiev
https://orcid.org/0000-0001-9864-5410
- Baku Engineering University, Department of Mathematics and Computer Science, Khirdalan City, Baku, Absheron, Azerbaijan
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2025-05-16.
- Revised: 2025-08-11.
- Accepted: 2025-08-12.
- Published online: 2025-09-13.