Opuscula Math. 45, no. 5 (2025), 665-684
https://doi.org/10.7494/OpMath.2025.45.5.665

 
Opuscula Mathematica

Systems of differential inclusions with competing operators and variable exponents

Francesca Vetro
Rakib Efendiev

Abstract. In this paper, we study a system of differential inclusions with Dirichlet boundary condition, involving competing operators and variable exponents. More precisely, we investigate the existence of both generalized solutions and weak solutions to the problem under consideration. In order to archive our results, we make use of approximation through finite dimensional subspaces via a Galerkin basis along with minimization and nonsmooth analysis.

Keywords: systems of differential inclusions, hemivariational inequalities, competing operators, Galerkin basis.

Mathematics Subject Classification: 49Q20, 49N60, 46E35.

Full text (pdf)

  1. K.C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. https://doi.org/10.1016/0022-247x(81)90095-0
  2. F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons Inc., New York, 1983.
  3. L. Diening, P. Harjulehto, P. Hästö, M. Rŭzĭcka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer-Verlag, Berlin Heidelberg, 2011.
  4. M. Galewski, D. Motreanu, On variational competing \((p,q)\)-Laplacian Dirichlet problem with gradient depending weight, Appl. Math. Letters 148 (2024), 108881. https://doi.org/10.1016/j.aml.2023.108881
  5. L. Gambera, S.A. Marano, D. Motreanu, Quasi-linear Dirichlet systems with competing operators and convection, J. Math. Anal. Appl. 530 (2024), 127718. https://doi.org/10.1016/j.jmaa.2023.127718
  6. M. Ghasemi, C. Vetro, Z. Zhang, Dirichlet \(\mu\)-parametric differential problem with multivalued reaction term, Mathematics 13 (2025), 1295. https://doi.org/10.3390/math13081295
  7. M. Jleli, M. Kirane, B. Samet, A general blow-up result for a degenerate hyperbolic inequality in an exterior domain, Bull. Math. Sci. 13 (2023), no. 3, 2150012. https://doi.org/10.1142/s1664360721500120
  8. Z. Liu, R. Livrea, D. Motreanu, S. Zeng, Variational differential inclusions without ellipticity condition, Electron J. Qual. Theory Differ. Equ. 2020 (2020), no. 43, 17 pp. https://doi.org/10.14232/ejqtde.2020.1.43
  9. D. Motreanu, Quasilinear Dirichlet problems with competing operators and convection, Open Math. 18 (2020), no. 1, 1510-1517. https://doi.org/10.1515/math-2020-0112
  10. D. Motreanu, Systems of hemivariational inclusions with competing operators, Mathematics 12 (2024), no. 1766, 11 pp. https://doi.org/10.3390/math12111766
  11. A. Moussaoui, D. Nabab, J. Vélin, Singular quasilinear convective systems involving variable exponents, Opuscula Math. 44 (2024), no. 1, 105-134. https://doi.org/10.7494/opmath.2024.44.1.105
  12. P.D. Panagiotopoulos, Hemivariational Inequalities, Berlin, Heidelberg: Springer, 1993. https://doi.org/10.1007/978-3-642-51677-1_4
  13. V.D. Rădulescu, D.D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
  14. C. Vetro, Variable exponent \(p(x)\)-Kirchhoff type problem with convection, J. Math. Anal. Appl. 506 (2022), no. 2, 125721. https://doi.org/10.1016/j.jmaa.2021.125721
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2025-05-16.
  • Revised: 2025-08-11.
  • Accepted: 2025-08-12.
  • Published online: 2025-09-13.
Opuscula Mathematica - cover

Cite this article as:
Francesca Vetro, Rakib Efendiev, Systems of differential inclusions with competing operators and variable exponents, Opuscula Math. 45, no. 5 (2025), 665-684, https://doi.org/10.7494/OpMath.2025.45.5.665

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.