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Abstract. In this paper, we study a system of differential inclusions with Dirichlet
boundary condition, involving competing operators and variable exponents. More
precisely, we investigate the existence of both generalized solutions and weak solutions
to the problem under consideration. In order to archive our results, we make use of
approximation through finite dimensional subspaces via a Galerkin basis along with
minimization and nonsmooth analysis.
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1. INTRODUCTION

Let Q C RJX with N > 2 be a bounded domain whose boundary J< is Lipschitz.
For m € C(Q) with m(x) > 1 for all z € Q, we put

m~ =minm(z) and m" = maxm(x).
zeQ zeQ

Let now p; and ¢; with ¢ = 1,2 be functions satisfying the following assumptions:
(HO) pi,q; € C(Q) are such that
1<q; <qi(x) <qf <p; <piz) <pf < +oo

forallz € Qandi=1,2.

In the present paper, we focus on the following problem of differential inclusions with
Dirichlet boundary condition

{(—Apl(.)lu + ,ulAql(,)ul, —APQ(,)UQ + ,UQqu(.)UQ) S 8F(u1,u2) in Q, (1 1)

up =ug =0 on 0,
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where i1, 12 € R are parameters and —A, () and A, (., for i = 1,2, denote the
negative p;(-)-Laplace operator and the positive g;(-)-Laplace operator, respectively. In
the right-hand side of problem (1.1), we find the generalized gradient OF of a locally
Lipschitz function F : R? — R. We stress that pointwise OF (uy,us) is a subset of R2.
Therefore, (1.1) is a system of two differential inclusions, which are said hemivariational
inclusions because they involve generalized gradients. Further, we point out that,
according to the Clarke’s subdifferentiation theory (see [2]), corresponding to (1.1) we
have the following hemivariational inequality

(=Ap,(yurs ha) + pa(Agy yur, ) + (=D, yu2, ha)
+ p2(Agy(yuz, ha) < /FO(U17U2§h1ah2)d$ (1.2)
Q

for all (hy, hy) € WP (Q) x Wy P20 (Q), with F° being the generalized directional
derivative of F. We mention that hemivariational inequalities have relevant appli-
cations, for example, in the context of mechanics, as one can see by Chang [1] and
Panagiotopoulos [12] where the study of such a type of inequalities was developed. We
also cite the recent paper of Jleli et al. [7] (hyperbolic differential inequality).

The driven operators involved in (1.1) are sum of a negative p;(-)-Laplace operator
and a positive ¢;(-)-Laplace operator weighted by the parameter p; € R. When p; > 0
such operators do not satisfy the ellipticity condition and they become competing
operators. We recall that problems involving competing operators with constant
exponents were first considered in Liu et al. [8] and then in Motreanu [9, 10], Galewski
et al. [4] and Gambera et al. [5], see also their references. For the case of variable
exponents, we instead mention the recent works of Ghasemi et al. [6] (competing
operator), Moussaoui et al. [11] and Vetro [14] (p(-)-Laplace operator).

Taking into account the possible loss of ellipticity for system (1.1) due to the
presence of parameters u; for i = 1,2, as explored in [9] we need to consider a new
type of solution, called generalized solution.

Definition 1.1. We say that (uj,ug) € Wol’pl(')(Q) X W&’pQ(')(Q) is a generalized
solution to problem (1.1) if there exists a sequence

{(uan, uzn) nen € Wy (Q) x Wy 20 (@)
such that
(i) win % u; in WyP(Q), as n — 400 for i = 1,2,
(i) —Ap,(yUin + 1ilDg, (Y Uin — Cin 2 0 in (Wol’pi(')(Q))*7 as n — +oo, with
Cin € (Wolp“()((l))* and (;, € OF (u1n,u2,) a.e. in Q for i = 1,2,
(iii) (—Ap, () Uin + il g, () Uin, Win — Us) — 0, as n — +o0 for i = 1, 2.

In addition, using the hemivariational inequality given in (1.2), we can provide
a notion of weak solution to problem (1.1) as follows.
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Definition 1.2. We say that (uj,us) € Wol’pl(')(ﬂ) X Wol’pz(')(Q) is a weak solution
to problem (1.1) if it solves the inequality (1.2). This means that there exists ((1,(2) €
(Wol’pl(')(Q))* X (Wol’pz(')(Q))* satisfying ({1, (2) € OF (uy, uz) a.e. on Q such that

(=Ap, (yur, ha) + i {Ag, (yut, ha)

+ (—=Ap, (U2, h2) + po(Ag, (U2, ha) = /(C1h1 + Coho)d.
Q

Remark 1.3. We point out that any weak solution to problem (1.1) is also a gener-

alized solution. In fact, if (ug,us) € Wol’pl(')(Q) X Wol’pQ(')(Q) is a weak solution to
problem (1.1), then it is sufficient to take

Uip :=u; and (jp:=( forallneNandi=1,2

in Definition 1.1, in order to conclude that (uj,us) is a generalized solution to
problem (1.1).

Thus, our first aim is in exploring the link between weak solutions and generalized
solutions to problem (1.1). As above mentioned, any weak solution to problem under
consideration is in addition a generalized solution. We here show that the reverse
implication holds, under very general assumptions on F' (see hypothesis (Hp)), if driven
operators in (1.1) are both elliptic, which means to claim that pq < 0 as well as ua <0
(see Theorem 4.1). Then, we establish the existence, for any ui, ue € R, of at least
a generalized solution to problem (1.1), supposed again that hypothesis (Hp) holds
(see Theorem 5.1). Finally, combining the results in Theorems 4.1 and 5.1, we achieve
the existence of at least a weak solution to problem (1.1), supposed p1, 2 < 0 (see
Theorem 5.2). We point out that in order to obtain our results, we make use of
approximation through finite dimensional subspaces via a Galerkin basis along with
minimization and nonsmooth analysis. In this way, we are able to derive some a priori
estimates, which are of independent interest in the context of competing operators
(see Propositions 3.3 and 3.4).

We emphasize that the results of the present paper extend ones in Motreanu [10]
to the case of variable exponents and ones in Ghasemi et al. [6] to the case of systems.

2. PRELIMINARIES

In this section, we collect some notions and results which we need for our study. More
precisely, we first give any remarks on variable exponent Lebesgue and Sobolev spaces,
and then we recall some basic elements of nonsmooth analysis. We refer the reader
to books of Diening et al. [3] and Rédulescu et al. [13] for more details on variable
exponent Lebesgue and Sobolev spaces. A detailed treatment on nonsmooth analysis
can be find in Clarke [2].
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Let gﬁRN with V> 2 be a bounded domain whose boundary is Lipschitz. Also,
let m € C(Q) such that m(z) > 1 for all x € (. We here use m’ in order to denote
the conjugate variable exponent of m, that is, we have that

=1 forallz € Q.

m(z)  m' ()
By Lm(')(Q) we denote the variable exponent Lebesgue space, that is,
L™OQ) = {u € M(Q) : pmy(u) < +oo}

where M (Q2) stands for the set of all measurable functions u: 2 — R, while p,(.)
denotes the modular given by

Py (u) = / lu[™®) dz for all u € M(Q). (2.1)
Q

As usual, we consider on Lm(')(Q) the Luxemburg norm, that is,

ullmcy = inf {3 > 05 puy (5) <1

for all w € L™ (). With such norm L™()(Q) becomes a separable, uniformly convex
and hence reflexive Banach space whose dual space is given by L™ ()(Q). We point
out that the modular p,, ) and the norm || - ||,y are strictly related, like one can see
from the following result.

Proposition 2.1. Let m € C(Q) be such that m(z) > 1 for all z € Q. Then
the following hold:

(1) [[wllpy <1 (resp. > 1,=1) if and only if pp(y(u) <1 (resp. > 1,=1),
oy mt m-

(i) 4 [ullmy < 1 then [ull2F) < pgy () < i,

ey m— mt

(ii) 4f lullmy > 1 then [Jull73 ) < ppy(u) < lull)-

We note that Proposition 2.1 in particular assures that the following inequality
m~ mt
[ulliney =1 < pmey (u) <l +1 (22)

is verified for all v € L™()(Q). Also, we recall that the Holder-type inequality

1 1
dr < | — . m/(-
[ vt < [+ e Bl ol
Q

holds for all u € L™)(Q) and all (S L™ C)(Q). Moreover, for my,my € C(Q) such
that 1 < mq(x) < ma(x) for all x € Q, we have the continuous embedding

Lm20)(Q) — L™ 0(Q).
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Using L™()(Q) we introduce the variable exponent Sobolev space W1™()(Q) by
Wwime)(Q) = {u e LmO(Q) : |Vu| € Lm<->(Q)}
equipped with the norm
lullymey = lullmey + 1VUllme),

where [|[Vuluy = || [Vl [lmey for all w € Wm0 (Q). We write Wol’m(')(Q) by the
closure of C§°(€2) with respect to the norm || - ||1 ). We point out that whm)(Q)
and VVO1 ’m(')(Q) are uniformly convex, separable and reflexive Banach spaces. Further,

we stress that the Poincaré inequality is valid for VVO1 () (Q). Therefore, there exists
a constant ¢, > 0 such that the following inequality

[ellmy < em IVUllm(

holds for all v € Wol’m(')(Q). Taking this into account, we can consider on Wol’m(')(ﬂ)
the equivalent norm given by

lull := [Vumy forallue Wol’m(')(ﬂ).
Finally, we have the following Sobolev embedding result.

Proposition 2.2. Let m € C(Q) be such that 1 < m(x) < p}(z) := % for all

x €Q andi=1,2. Then, we have the continuous embedding
W (Q) — LmO(Q).

If 1 <m(z) < pi(z) for all x € Q, then the above embedding is compact.

We emphasize that, according to Proposition 2.2, if m(x) < p}(z) for all x € Q,
we can find a constant ¢; > 0 such that

[y < & [Vl forallu € Wy (Q) and i = 1,2. (2.3)
Next, we recall that the negative m(-)-Laplace operator
Ay s Wy ™ (Q) = (W™ (@)

is defined by
(—Amyu, h) = / |Vu|™® =2y - Vhdz
Q

for all u,h € VVol’m(')(Q)7 while the positive m(-)-Laplace operator A, is given by

(—Apyu, h) = —/\Vu\m(”)_QVu-Vhda:
Q
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for all u, h € VVO1 7m(')(Q). Such operators have several notable properties. In particular,
both —A,,y and A,y are bounded (that is, they map bounded sets to bounded
sets) and continuous. In addition, —A,,) is strictly monotone and satisfies the
(S)-properties, which means that

Up 5 uin Wol’m(')(ﬂ) and  limsup(— A, yUn, Uy, —u) <0
n—-+4oo
imply
Uy — U in Wol’m(')(Q).

We conclude this section with some basic fact from the theory of nonsmooth
analysis. Let X be a Banach space with topological dual X*. Also, let (-,-) be the
duality pairing between X and X*. A function ¥ : X — R is called locally Lipschitz if
for every u € X there are an open neighborhood U of v and a constant ¢y > 0 such
that the following inequality

[Y(x) = ¥(y)| < cullz —yll

is verified for all z,y € U. The generalized directional derivative of ¢) at u € X in the
direction h € X is defined by

0 (u; 1) = lim sup LEH ) = ¥(@)

?
r—u,t}0 t

while the generalized gradient of ¢ at u € X is given by
0Y(u) = {u* € X* : (u*,hy <¢°(u;h), forall h e X}.

The multifunction u — 9 (u) is called the Clarke subdifferential of . We remark
that such subdifferential has several interesting properties. In particular, we recall the
following.

Proposition 2.3. Let ¥ : X — R be a locally Lipschitz function at u € X.

(P1) If ¥ has a local minimum or mazimum at uw € X, then 0 € Y (u).

(P2) The Clarke subdifferential Ov(u) is a nonempty, convez, weak®-compact subset
of X*.
(P3) If {un}tnen C X and {(n}neny C X* are two sequences such that

Cn € 0U(up), up —uinX and ¢, N ¢,
then ¢ € OY(u).

(P4) (Mean-value theorem) If ¢ is locally Lipschitz on an open neighborhood containing
the segment [u,v], then there exists w € (u,v) and ¢ € OY(w) satisfying

b(v) =9 (u) = (v —u).
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We point out that if ¢ € C1(X), then ¢ is locally Lipschitz with d¢(u) = {¢'(u)}
for all w € X.

Finally, as we will make use of the Galerkin basis of VVO1 P i(z)(Q), for the sake of
reader convenience, we here recall such notion.

Definition 2.4. A sequence {X,, }nen of vector subspaces of Wol’p"'(z)(Q) is a Galerkin
basis of WO1 P i(I)(Q) if the following conditions hold:

(i) dim(X,,) < +oo for all n € N,
(ii) X, € X,,41 for all m € N,
(iif) UnZy, Xn = Wo ™ ().

3. ASSOCIATED ENERGY FUNCTIONAL

In this section, we introduce the energy functional J associated to problem (1.1) and
examine its properties. More precisely, we here show that such functional is locally
Lipschitz and coercive. Then, we explore some usefull properties of the local minimizers
of J. We stress that in order to archive such results we make use of embedding results
along with the theory of nonsmooth analysis.

First, we are going to formulate the precise assumptions on F'.

(HF) F : R?> — R is a locally Lipschitz function satisfying the following
growth condition: there exist positive constants ag, a1, as, bg, b1, b2, a1, as with
l<a;<py,1<as<p;,apf A <p; and by pJ By < p;, such that

_ Py
|21] < ag + ar[t|Pr ~ + agls|

and

m\"* |

P
‘ZQ| S bo +b1‘t|u +b2|5|p2—71

for all t,s € R and (21, 22) € OF (t,s), where A; and Bj are the best constants

such that
/|u1|p1_dx < AV |! ) for all uy € Wy (@), (3.1)
Q
/|u2|p5d;z: < Bi||Vua|??, ., for all uy € Wy P2 (0), (3.2)
Q

respectively (see (2.3)).
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We point out that, according to (2.3), as 1 < a; < p; due to hypothesis (Hp), from
now on we will denote by A, A3, By, B3 constants satisfying the following estimates

—
£
5
AN

< Ao Vurllp, 0o, /|u1|°”dx < Aol Vur |, for all uy € WP O (@),
Q

(3.3)

—
3
»
U
8
A

< Byl Vusllpu, /|u2|°‘2 de < Bo|[Vus|l22,, for all us € W0 ().
Q

(3.4)

Let now ¥ : Wol’pl(')(ﬂ) X Wol’p?(')(Q) — R be the functional given by

U(uy,uz) = | F(uy,us)de (3.5)
/

for all (u1,us) € Wol’pl(') (Q) x Wol’m(') (Q). We stress that, as (Hp) holds, we have that

U is Lipschitz continuous on the bounded subsets of Wo?*)(Q) x W) 7>1)(Q). This
in particular guarantees that ¥ has everywhere a well-defined Clarke subdifferential

oW - WP (@) x WhPO () s 2V @) x (W P @)

Using ¥, we define the functional J : Wo*)(Q) x W #21)(Q) — R corresponding
to problem (1.1) by

2
1 _ 1 .
J(uy,ug) :Z /pi(x)\Vuﬂp’(x)dx—ui/m|Vui|q’(x)dx — U(ug,ug) (3.6)
=1 \Q Q

for all (uy,us) € W&’pl(')(Q) X Wol’m(')(ﬁ).
Now, our first aim is in showing that J is locally Lipschitz and coercive, which
means that J(uy,uz) = +00 as ||(u1, u2)|| = ||u1] + ||uz|| = +oo.
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Proposition 3.1. Let hypotheses (H0) and (Hp) be satisfied. Also, let J be the
functional defined in (3.6). Then, J is locally Lipschitz and

4:(2) =27y, . Vhda

2
8](U1,U2) = Z / \Vul
i=1 Q

— 8\I/(U1, ’U,g)

Pi(I)*Qvui - Vhidr — p; / |Vu,
Q

(3.7)

for all (u1,uz), (h1,ha) € Wol’pl(')(Q) X Wol’pZ(')(Q). Furthermore, J is coercive on
WQLIM(')(Q) « Wol,m(')(Q)_

Proof. First, we note that as (Hp) holds, the functional ¥ given in (3.5) is locally
Lipschitz. This, with a view to (3.6), permits us to we affirm that J is locally Lipschitz
as well. Thus, in order to achieve (3.7) we have just to derive the Clarke subdifferential
of ¥ and then of J.

Therefore, we are going to show that J is a coercive functional. To this end,

h
we point out that using (2.2) and the continuous embedding VVO1 P i(')(Q) — VVO1 Q)
q.

for i = 1,2, we get that
/|vu,» @)y < [Tl %, + 1
a (3.8)
q"

+

for some C; > 0, for all u; € Wol’pi(')(Q) and i =1,2.
Also, from hypothesis (Hp) and mean-value theorem (see (P4) of Proposition 2.3),
we derive that

a - b —
|F(t,5)] < [F(0,0)] + aolt] + bo|s| + —[t["r + —=|s|?>
Py 2
asa] Z%j by i—lj
+ 2 ft]s| T+ [t 2 ||
Dy +0g D1 T 0y

_ b _
< |F(0,0)] + aolt| + bols| + ZL[¢|Pr + 22 |s|P2
D1 D2 (3.9)

+a(e)|t|** +e|s[P2 +elt|Pr + b(e)|s|*2 (by Young’s inequality with )

a —
< |F(0,0)| + ao|t| + bos| + (pl +5> |t]P
1

b _
+<fﬂw)m%+a@ﬂ”+M@s”,
Do
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for all t,s € R, where we have ¢,a(e),b(¢) > 0. Thus, using (2.2) along with the
estimates (3.9), (3.1), (3.2), (3.3), (3.4) and (3.8), from (3.6) we see that

“@dg | —|F(0,0)]|9]

URSES S

+
= \Pi )

a - b -
— / (aolml + bolua| + (1 +5> lug|Pr + (2 +E> [ug|P2
J P1 V2

a(e)ur | + b(s)|u2|“2>dx

2
>3 ( (Vs
—ag A2||Vurllp, () — boB2[|Vuz|lp, ) — ale) As[[ V[
« b 5
— b(e)Bs|[Vuz |7 ) — <p + 5) A1||Vu1||p1( - <p2 + 5) B1||VuQH§§(A)

1 2

1 ar pt 1 b py
> — (1 — =LA - SAlpfr) HVU1||,,1( - (1 — —2B) —eBip5
p1 P P2 P2

pi(w)dfo/|Vui
4
Q

<

_ |Nz|
w-v-%e,

K2

[0+ D) - IF0.00

; ml P el :
x [ Vuall2 ) — f01||vu1||zl(.) - ECQHVWH;];()
—ag A2||Vui|lp, () — boBz2||Vuz|lp,(

— ale)As||Vunl[? ) — b(e) Bs || Vua[52 ),

for all (u1,us) € Wol’pl(')(Q) X W()l’m(')(Q), with |Q| being the Lebesgue measure of 2
in RY. Now, we recall that a; p A; < p] and bapg By < p, from hypothesis (Hr).
According to this, for € > 0 small we have that

4 bapy
17%A176A1p1~_>0 as well as 1*27]2231
5 Y2

— 631;17;r > 0.

Taking this into account, as from hypothesis (HO0) for i = 1,2 we have that p; > ¢;",
we conclude that the functional J is coercive. This proves the claim. O

Let now {X,} and {Y,,} be a Galerkin basis of Wol’pl(')(Q) and Wol’pQ(')(Q),
respectively. We stress that {X,, x Y,} is a Galerkin basis of the product space

Wy O(Q) x Wi P21 (Q). Using such Galerkin basis, we are going to state and prove
the following result for local minimizers of the functional J.

Proposition 3.2. Let hypotheses (HO) and (Hp) be satisfied. Also, let J be the
functional given in (3.6). Then, for any n € N we have that

J(Uin, uap) = inf{J(vi,v2) : (v1,v2) € Xp, X Yy, }
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for some (u1pn,uzn) € Xy, X Yy, and ((1n,Con) € (Wol’pl(')(Q))* X (Wol’p?(')(Q))* with
(Cin, Con) € OF (u1n, uzy) a.e. on Q satisfying

/|vu1n|m<w>*2vu1n -Vhydz — iy / Vg, | @2y, - Vhide — /glnh1 dz =0,
Q Q Q

(3.10)
/|vu2n|1’2<w>*2vu2n - Vhodz — pia / |Vtgn |2 @~V g, - Vhy dz — /anhg dx =0,
Q Q Q

(3.11)
for all hy € X, and all hy €Y.

Proof. First, we point out that as {X,, x ¥,,} is a Galerkin basis of the product space
Wol’pl(')(Q) X Wol’m(')(Q), we have that

dim(X, xY,) < +oo forallneN.

Also, from Proposition 3.1 we know that J is locally Lipschitz and coercive. For way
of this, we can find (u1y,u2,) € X, x Y, such that

J(U1p, ugp) = inf{J(v1,v2) : (v1,v2) € X, Xx Y, }.
Thus, from (P;) of Proposition 2.3 we deduce that
(07 O) S aJ‘anYn (ulna u2n)- (312)

Now, according to (3.12), we have that there exists (z1p, 22n) € 0¥ (u1n, u2,) such
that

(—Api(.)um + Mz’Aqi(-)Uz’n — Zin,hyy =0  fori=1,2. (3.13)
Then, using Theorem 2.7.5 and Remark 2.7.6 of Clarke [2], we can affirm that

OV (U1, u2y) C /8F(u1n,uQn)dm.
Q

This assures that, corresponding to (z1n, 22n) € OV (u1p, U2y), we can find ({1, (on) €
OF (u1n, u2y,) a.e. on € such that

<Zina hz> = /(znhz dx for i = 1, 2. (314)
Q

Using (3.14) in (3.13), we derive that both (3.10) and (3.11) hold. Therefore, the as-
sertion of proposition is proved. O

Next, we focus on the minimizer sequence {(u1y, U2, )}nen Obtained in Proposi-
tion 3.2. We are in the position to produce the following result.
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Proposition 3.3. Let hypotheses (HO) and (Hp) be satisfied. Also, let
{(urn uzn) bnew © Wo PO (9) x Wy 720 (@)
be a sequence as given in Proposition 3.2. Then, the following a priori estimate
1Vuallpy ) + [Vetza ) < K (3.15)
holds, for some K >0 and alln € N

Proof. We note that choosing as test function h; = uy,, € X,, in (3.10) and then using
(3.1), (3.3), (3.8), hypothesis (Hr) and Young’s inequality with ¢, we derive that

[ 1V = / Vura[# o+ [ Giads
Q Q

< | (CallVunallf ) + 1) + a0 Azl Vasnly () + a1 Ar[Funn 57,

+ aga( )Ag

|a1 ot a25B1||Vu2nH§§(.)-

Analogously, choosing as test function hy = ug, € Y, in (3.11) and using (3.2), (3.4),
(3.8), hypothesis (Hp) and the Young inequality with &, we see that

/ Vatzn P* @ dz = / (Vatgn] 2@ de + / Comtionda

< |M2|(C2\|Vuzn||q§( 3+ 1)+ boBs | Vtanllp, () + b2 B1 | Vuza 72

+ byb(e) Bs|

2 ) + b1€A1||V’U/1an1()

[e%
pa2(-

The previous inequalities along with (2.2) yield that
(1—Ai(a; + sbl))HVumH 1o+ (@ =Bi(b2 + sag))HVugnH

< |M1\01||Vu1n||ql( 3t |M2\02||Vu2n||ql( 3t aoA2||Vu1n||p1()
+ b0 Ba|[Vuzn ) + aza(e) Asl| Va2 ) + b1b(e) Bsl|Vuznllp2 ) + C

for all n € N and some C' > 0. Now, we recall that 1 — Aja; > 0 and 1 — B1by > 0
from hypothesis (Hr). According to this, for ¢ > 0 small we have that
1—Ai(a; +eby) >0 aswellas 1— Bj(bs +eaz) > 0.

This, along with the fact that p; > qf > 1 for i = 1,2 due to hypothesis (H0), permits
us to conclude that the sequence

{IVutnllpy ) + IVu2n o) bner

is bounded by a constant in W, ") (Q) x Wy*2")(Q). This means that the a priori
estimate (3.15) holds and hence the proof is concluded. O

Our next result gives indications about the boundedness of the operators involved
n (3.10) and (3.11).
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Proposition 3.4. Let hypotheses (H0) and (Hr) be satisfied. Also, let
{(uln’UQTL)}nGN C WOLpl()(Q) X WOLPZ()(Q)

and
(Cins Con) € (W PO (Q))* x (W P20 ()"

be as given in Proposition 3.2. Then, there exists a positive constant K > 0 such that
the following inequality

|| - Apz()uzn + /jszq,()uzn - Cin”(Wol"pi(')(Q))* < K (316)
holds for allm € N and i = 1,2.
Proof. In order to prove the claim, we point out that the following inequality

[(=Ap, () Uin + HilDg, (Y Uin — Cin, hi)l

= / |Vatin |2Vt - Vhida — i / |Vatin| % Vi - Vhidar - / Ginhida
Q Q Q

< / Vs PO T+ (1] / Vs |40 [V i + / (Conl |l
Q Q Q
(3.17)

holds for any h; € W()l’pi(')(Q) and ¢ = 1,2. Also, we note that according to (2.1)
we have that

pi(w)*l) = Ppi(2)([Vin|) fori=1,2.

P () (| Vtin
This in particular guarantees that for i = 1,2 there exists 7; > 0 satisfying

IV tin pi(z)—1

pi() = ||Vum||;£()

Now, using the previous inequality along with (3.15) and the Holder inequality, we
can estimate the first two terms in the right-hand side of (3.17). Thus, we see that

Q

for some ]\//.71 > 0, and

/|vum|%'<w>—1|v1mdx < /(1+ |Vt 7?7 |V hy|da

@GRy dar < 20/ Vi [P ) IV Rl

< J\Z”th

pi(*)

Q 2 Ny (3.19)
< C”Vhl pi(+) + 2|\Vum||pi(_)||Vhi pi()
< M;||Vhillp,

for some 5, ]\Z > 0, with C being an embedding constant.
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Next, in according to hypothesis (Hr) and (3.15), we have that

- 22
/|C1n||h1|dw < /(ao + arfurn [P 1+ alugn| 1) |ha|da
Q Q

_ -
< agA2|[Vhallp, () + a1 ClVurally! (5 11V A llpy (3.20)

p1(°)

p

it

+as D [[Vuan ||
< My ||Vh |y ()

pa(+) IVhy Hp1(~)

for some M; > 0, with C', D being embedding constants. We stress that, in a similar
way, we can also see that

[ Ganllbal do < 12 [Fhalp, (3.21)
Q

for some My > 0.
Now, using (3.17), (3.18), (3.19) and (3.20) we arrive to the following inequality

(=Dp (Utn + 1118, () — Cin ha)| < (My + My + M) VA,
while from (3.17), (3.18), (3.19) and (3.21) we derive that

(= Ap,(ytian + 128, () = Cany ho)| < (My + Ma + Ms)|[Vhal|p, (.-

On the base of the previous inequalities, we are able to conclude that (3.16) holds
for some positive constant K. O

4. WEAK SOLUTIONS VIA GENERALIZED SOLUTIONS

In this section, we focus on link between weak solutions and generalized solutions
to problem (1.1). As previous mentioned, any weak solution to problem (1.1) is in
addition a generalized solution (see Remark 1.3). We here show that the reverse
implication holds if driven operators in (1.1) are both elliptic, which means to claim
that pup <0 as well as us < 0.

Theorem 4.1. Let hypotheses (HO) and (Hp) be satisfied. If 1 < 0 and pe < 0,
then any generalized solution to problem (1.1) is in addition a weak solution.

Proof. In order to produce the claim, we suppose that p; < 0 and ps < 0 (that
is, we assume that the driven operators in (1.1) are elliptic). Also, let (u1,uz2) €
Wol’pl(‘)(Q) X Wol’m(')(Q) be a generalized solution to problem (1.1). Now, our aim
is in showing that (uj,us) is in addition a weak solution to (1.1). To this purpose,



Systems of differential inclusions with competing operators and variable exponents 679

we remark that, as (ui,us) is a generalized solution to problem (1.1), we can find
a sequence
{(u1n7u2ﬂ)}nEN C Wol’pl()(Q) % Wolpz()(ﬂ)

and
Cin € (W&’pi(‘)(ﬂ))* with (i, € OF (u1n,uy,) a.e. in Q fori = 1,2,

satisfying all the conditions in Definition 1.1. Furthermore, we recall that the negative
gi-Laplacian operator, —Ag (), for i = 1,2 is monotone. Hence, we know that

<—Aqi(,)u + A‘Zi(')v’ u—v) >0

for all u,v € Wol’qi(')(Q) and 7 = 1,2. This, along with the fact that u; < 0, assures
that the following inequality

i (=D g, (Y in + Dy, () Uiy Uin — ui) <0

holds for n € N and ¢ = 1,2. Keeping this and Definition 1.1 (i), (iii) in mind,
for i = 1,2 we can write that

lim sup(—Ay, () Win, Win — U;)
n—-+oo

= limsup [(—Ap, (Uin + 1D gy () UWins Uin — W) + i (=D () Uin + Dy, () Uiy Uin — Us)

n—-+oo
+ il =Dy ()i Uin — ;)]
< Hmsup(—A,, () Uin + il g, () Win, Win — Us) + f 1im (=Ag s, Uin — u;) = 0.

n——+oo n—-+oo

From the previous inequality, as the operator —A,, () is of (S)-type and continuous,
we deduce for i = 1,2 that

Ui —> U; 1D Wol’p"(')(Q) asn — +0o
and further
—Ap, (YUin = —Ap,(yu; in (Wol’pi(')(Q))* asn — +oo.

Moreover, as ;, — u; in Wol’p"’(')(Q) and the operator —A, () is continuous, for 7 = 1,2
we have also that

lim Aql()um = Aql()ul in (Wol’qi()(Q))*

n— oo
At this point, we stress that from Propositions 3.2 and 3.4 we know that

{Cintnen € (WP (Q))*  is bounded for i = 1,2.
Therefore, for ¢ = 1,2 we can assume that

Cin — ¢ in (Wol’pi(')(ﬂ))* asn — +o0o.
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Thus, according to (P3) of Proposition 2.3, we have that ((1,{2) € OF(u1,us) a.e.
on €. Then, using Definition 1.1 (ii) along with the fact that w;, — u; in Wol’pi(')(Q)
and (Cin, Can) € OF (U1, u2y) C (Wol’pl(')(Q))* X (Wol’m(')(Q))*, we derive for i = 1,2
that

pri(‘)ui + uiAqi(‘)ui —(¢ =0 in (W&’pl()(g))*,

where (1,(2) € OF (u1,u2) C (Wol’p(')(Q))* X (Wol’pz(')(Q))* a.e. on Q. With a view
to Definition 1.2, this assures that the generalized solution (uq,us) to problem (1.1) is
in addition a weak solution. Therefore, the claim is now proved. O

5. EXISTENCE RESULT

In this section, we are ready finally to state and prove the main result of the present
paper. Precisely, we here show that problem (1.1) admits for any u1, e € R at least

a generalized solution in Wol’pl(‘)(Q) X VVOLPQ(')(Q)7 supposed that hypotheses (HO)
and (Hp) hold. We stress that, according to Theorem 4.1, we have that such solution
is in addition a weak solution to problem (1.1) whenever p; < 0 and pz < 0.

Now, our main result reads as follows.

Theorem 5.1. Let hypotheses (H0) and (HF) be satisfied. Then, for any pi,pu2 € R
we have that problem (1.1) admits at least a generalized solution (uy,us) in

WOL:Dl(') (Q) > Wol,Pz(') (Q)

Proof. In order to prove the claim, we have to show that there exists (u1,u2) €
Wol’pl(‘)(Q) X Wol’m(')(Q) such that all the assumptions in Definition 1.1 are satisfied.
To this end, we consider a Galerkin basis {X,} of VVO1 P 1(')(Q) and a Galerkin basis
{Y,.} of W()l’pQ(')(Q). Also, as hypotheses (H0) and (Hp) hold, let

{(uln’7u2n)}n€N C WOLpl()(Q) X W017p2()(ﬂ)

and
(Cins Con) € (W PO (Q))* x (W P20 (2))*

with (Cip,Con) € OF (u1n, u2,) a.e. in §, as given in Proposition 3.2. Now, according
to Propositions 3.2 and 3.3, we have that

{(1n, uzn) new € Wo () x W #*(Q) - is bounded.
For way of this, we can suppose that
Uiy, —> u; in Wol’pi(')(Q) and g, — w; in LPO(Q)

as n — +oo, for some u; € Wol’pi(')(Q) and ¢ = 1,2. Consequently, we have that
condition (i) of Definition 1.1 is verified.
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Next, we point out that Proposition 3.2 along with Proposition 3.4 assures that

{=Lp,(ytin + 1:8g, () tin = Gintner © (W7 ()"
is bounded for i = 1, 2. Therefore, we can suppose that
A (Ui + 1D g (Y tin — Cin 2>y i (W PO (Q))* (5.1)
as n — +o00, for some y; € (Wol’pi(')(Q))* and i =1,2.
Now, we take hy € US> X,, in (3.10) and hy € US>V, in (3.11). We remark that

according to Definition 2.4 we have that (hy, hs) € X, x Y,, for all n > ng for some
ng € N. Then, as

(= Ay, () Uin, hi) + (il g, () Win, i) — /thidx =0
Q
for all n > ng and ¢ = 1,2 from (3.10) and (3.11), passing to the limit as n — +oo
and using (5.1), we deduce that the following equality
Jim (A, ) Uin + Hilg;()Uin = Giny hi) =0
holds for ¢ = 1, 2. This in particular guarantees that
(yi,hi) =0 fori=1,2.
Consequently, on the base of Definition 2.4 (iii), we can affirm that
y; =0 fore=1,2.
Thus, we have that
—Ap, (YWin + 1ilg, () Uin = Cin 20 in (Wol’pi(‘)(ﬂ))* (5.2)

as n — +oo and i = 1, 2. Therefore, Definition 1.1 (ii) is satisfied as well.

Next, we point out that if in (3.10) we choose h; = u;, — u; € Wol’pi(')(Q) for
i =1,2, pass to the limit as n — +o00 and use (5.2), then according to the properties
of the sequences {uip tnen and {(in }nen, we get that

n—4oo

lim /Cm(um — ul) dxr = 0.
Q
Taking this into account, from

n—-+o0o

im (= Ap, () Win, Uin — i) + 1ilDg, () Win, Uin — Us) — /Cm(um - Ui)d$:| =0,
Q
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we derive that

n—-+oo

This means that Definition 1.1 (iii) is true too.
Finally, as all the assumptions in Definition 1.1 are satisfied, we conclude that

(u1,us9) € Wol’pl(')(Q) X Wol’pz(‘)(ﬂ) is a generalized solution to problem (1.1). Taking
into account that p, uo € R are arbitrary, this produces the claim. O

We emphasize that as immediate consequence of Theorems 4.1 and 5.1 we have
the following result.

Theorem 5.2. Let hypotheses (HO) and (Hp) be satisfied. Also, let p1 <0 and ps < 0.
Then, problem (1.1) admits at least a weak solution in Wol’pl(')(Q) X Wol’m’(')(Q).

For the sake of reader convenience, an example illustrating how our results can be
applied is provided next.

Example 5.3. Let f; : R — R be the function so defined

2 1 :
fl(t)_{t cos 3 ift #0,

0 ift=0.

We stress that f; is a locally Lipschitz function with Clarke subdifferential given by

2t cos L +sind ift#£0
Of(t) = Ereny ’
fi®) {[1,1] ift =0.

Next, we consider the function f; : R — R defined by
fo(t) = |t| for allt e R.

Such function has instead Clarke subdifferential given by

-1 ift <0,
Ofs =< [-1,1] ift=0,
1 ift > 0.

Using f1 and fo, we introduce the function F : R? — R defined by
F(t,s) = fi(t) +t fa(s) + s° (5.3)

for all t, s € R. We point out that F' is a locally Lipschitz function. Further, we can
easily see that the Clarke subdifferential of F' is given by

OF(t,s) = (0f1(t) + fa(s), t Ofa(s) + 2s)
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for all ¢, s € R. Taking this into account, for any ((1,(2) € F(t, s) we have that the
following inequalities

Gl <T+20t[+s| and |G| < [t] +2[s]

are verified for all (¢,s) € R?.

Now, we assume o; = 2 and p; > 2 for i = 1, 2. Such choice of o; and p; permits

us to affirm that hypothesis (Hp) is satisfied by the function F' introduced in (5.3).
Thus, we are going to consider the following problem

(prl(‘)ul + ,LtlAql(_)ul, 7Ap2(.)U2 + MQqu(,)UQ) € 6F(u1,uQ) in €, (5 4)

up =ug =0 on 0f, '

where 2 is a bounded domain of RY (N > 2), F is from (5.3), and we suppose p; > 2
for i = 1,2, with p;, ¢; satisfying hypothesis (H0). As hypothesis (Hg) holds as well,
we are in the position to apply both Theorem 5.1 and Theorem 5.2. Consequently,
according to Theorem 5.1, we have that for any pi,us € R the problem under
consideration admits at least a generalized solution. From Theorem 5.2 we instead
derive the existence of a weak solution to the problem whenever 1 < 0 and us < 0.
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