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Abstract. In this paper, we study a system of differential inclusions with Dirichlet
boundary condition, involving competing operators and variable exponents. More
precisely, we investigate the existence of both generalized solutions and weak solutions
to the problem under consideration. In order to archive our results, we make use of
approximation through finite dimensional subspaces via a Galerkin basis along with
minimization and nonsmooth analysis.
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1. INTRODUCTION

Let Ω ⊂ RN with N ≥ 2 be a bounded domain whose boundary ∂Ω is Lipschitz.
For m ∈ C(Ω) with m(x) > 1 for all x ∈ Ω, we put

m− = min
x∈Ω

m(x) and m+ = max
x∈Ω

m(x).

Let now pi and qi with i = 1, 2 be functions satisfying the following assumptions:

(H0) pi, qi ∈ C(Ω) are such that

1 < q−
i ≤ qi(x) ≤ q+

i < p−
i ≤ pi(x) ≤ p+

i < +∞

for all x ∈ Ω and i = 1, 2.

In the present paper, we focus on the following problem of differential inclusions with
Dirichlet boundary condition

{
(−∆p1(·)u1 + µ1∆q1(·)u1,−∆p2(·)u2 + µ2∆q2(·)u2) ∈ ∂F (u1, u2) in Ω,
u1 = u2 = 0 on ∂Ω,

(1.1)
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where µ1, µ2 ∈ R are parameters and −∆pi(·) and ∆qi(·), for i = 1, 2, denote the
negative pi(·)-Laplace operator and the positive qi(·)-Laplace operator, respectively. In
the right-hand side of problem (1.1), we find the generalized gradient ∂F of a locally
Lipschitz function F : R2 → R. We stress that pointwise ∂F (u1, u2) is a subset of R2.
Therefore, (1.1) is a system of two differential inclusions, which are said hemivariational
inclusions because they involve generalized gradients. Further, we point out that,
according to the Clarke’s subdifferentiation theory (see [2]), corresponding to (1.1) we
have the following hemivariational inequality

⟨−∆p1(·)u1, h1⟩ + µ1⟨∆q1(·)u1, h1⟩ + ⟨−∆p2(·)u2, h2⟩

+ µ2⟨∆q2(·)u2, h2⟩ ≤
∫

Ω

F ◦(u1, u2;h1, h2) dx (1.2)

for all (h1, h2) ∈ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω), with F ◦ being the generalized directional

derivative of F . We mention that hemivariational inequalities have relevant appli-
cations, for example, in the context of mechanics, as one can see by Chang [1] and
Panagiotopoulos [12] where the study of such a type of inequalities was developed. We
also cite the recent paper of Jleli et al. [7] (hyperbolic differential inequality).

The driven operators involved in (1.1) are sum of a negative pi(·)-Laplace operator
and a positive qi(·)-Laplace operator weighted by the parameter µi ∈ R. When µi ≥ 0
such operators do not satisfy the ellipticity condition and they become competing
operators. We recall that problems involving competing operators with constant
exponents were first considered in Liu et al. [8] and then in Motreanu [9, 10], Galewski
et al. [4] and Gambera et al. [5], see also their references. For the case of variable
exponents, we instead mention the recent works of Ghasemi et al. [6] (competing
operator), Moussaoui et al. [11] and Vetro [14] (p(·)-Laplace operator).

Taking into account the possible loss of ellipticity for system (1.1) due to the
presence of parameters µi for i = 1, 2, as explored in [9] we need to consider a new
type of solution, called generalized solution.

Definition 1.1. We say that (u1, u2) ∈ W
1,p1(·)
0 (Ω) × W

1,p2(·)
0 (Ω) is a generalized

solution to problem (1.1) if there exists a sequence

{(u1n, u2n)}n∈N ⊂ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω)

such that

(i) uin
w−→ ui in W

1,pi(·)
0 (Ω), as n → +∞ for i = 1, 2,

(ii) −∆pi(·)uin + µi∆qi(·)uin − ζin
w−→ 0 in (W 1,pi(·)

0 (Ω))∗, as n → +∞, with
ζin ∈ (W 1,pi(·)

0 (Ω))∗ and ζin ∈ ∂F (u1n, u2n) a.e. in Ω for i = 1, 2,
(iii) ⟨−∆pi(·)uin + µi∆qi(·)uin, uin − ui⟩ → 0, as n → +∞ for i = 1, 2.

In addition, using the hemivariational inequality given in (1.2), we can provide
a notion of weak solution to problem (1.1) as follows.
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Definition 1.2. We say that (u1, u2) ∈ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω) is a weak solution

to problem (1.1) if it solves the inequality (1.2). This means that there exists (ζ1, ζ2) ∈
(W 1,p1(·)

0 (Ω))∗ × (W 1,p2(·)
0 (Ω))∗ satisfying (ζ1, ζ2) ∈ ∂F (u1, u2) a.e. on Ω such that

⟨−∆p1(·)u1, h1⟩ + µ1⟨∆q1(·)u1, h1⟩

+ ⟨−∆p2(·)u2, h2⟩ + µ2⟨∆q2(·)u2, h2⟩ =
∫

Ω

(ζ1h1 + ζ2h2)dx.

Remark 1.3. We point out that any weak solution to problem (1.1) is also a gener-
alized solution. In fact, if (u1, u2) ∈ W

1,p1(·)
0 (Ω) × W

1,p2(·)
0 (Ω) is a weak solution to

problem (1.1), then it is sufficient to take

uin := ui and ζin := ζi for all n ∈ N and i = 1, 2

in Definition 1.1, in order to conclude that (u1, u2) is a generalized solution to
problem (1.1).

Thus, our first aim is in exploring the link between weak solutions and generalized
solutions to problem (1.1). As above mentioned, any weak solution to problem under
consideration is in addition a generalized solution. We here show that the reverse
implication holds, under very general assumptions on F (see hypothesis (HF )), if driven
operators in (1.1) are both elliptic, which means to claim that µ1 ≤ 0 as well as µ2 ≤ 0
(see Theorem 4.1). Then, we establish the existence, for any µ1, µ2 ∈ R, of at least
a generalized solution to problem (1.1), supposed again that hypothesis (HF ) holds
(see Theorem 5.1). Finally, combining the results in Theorems 4.1 and 5.1, we achieve
the existence of at least a weak solution to problem (1.1), supposed µ1, µ2 ≤ 0 (see
Theorem 5.2). We point out that in order to obtain our results, we make use of
approximation through finite dimensional subspaces via a Galerkin basis along with
minimization and nonsmooth analysis. In this way, we are able to derive some a priori
estimates, which are of independent interest in the context of competing operators
(see Propositions 3.3 and 3.4).

We emphasize that the results of the present paper extend ones in Motreanu [10]
to the case of variable exponents and ones in Ghasemi et al. [6] to the case of systems.

2. PRELIMINARIES

In this section, we collect some notions and results which we need for our study. More
precisely, we first give any remarks on variable exponent Lebesgue and Sobolev spaces,
and then we recall some basic elements of nonsmooth analysis. We refer the reader
to books of Diening et al. [3] and Rădulescu et al. [13] for more details on variable
exponent Lebesgue and Sobolev spaces. A detailed treatment on nonsmooth analysis
can be find in Clarke [2].
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Let Ω ⊆ RN with N ≥ 2 be a bounded domain whose boundary is Lipschitz. Also,
let m ∈ C(Ω) such that m(x) > 1 for all x ∈ Ω. We here use m′ in order to denote
the conjugate variable exponent of m, that is, we have that

1
m(x) + 1

m′(x) = 1 for all x ∈ Ω.

By Lm(·)(Ω) we denote the variable exponent Lebesgue space, that is,

Lm(·)(Ω) =
{
u ∈ M(Ω) : ρm(·)(u) < +∞

}

where M(Ω) stands for the set of all measurable functions u : Ω → R, while ρm(·)
denotes the modular given by

ρm(·)(u) :=
∫

Ω

|u|m(x) dx for all u ∈ M(Ω). (2.1)

As usual, we consider on Lm(·)(Ω) the Luxemburg norm, that is,

∥u∥m(·) := inf
{
λ > 0 : ρm(·)

(u
λ

)
≤ 1

}

for all u ∈ Lm(·)(Ω). With such norm Lm(·)(Ω) becomes a separable, uniformly convex
and hence reflexive Banach space whose dual space is given by Lm′(·)(Ω). We point
out that the modular ρm(·) and the norm ∥ · ∥m(·) are strictly related, like one can see
from the following result.

Proposition 2.1. Let m ∈ C(Ω) be such that m(x) > 1 for all x ∈ Ω. Then
the following hold:

(i) ∥u∥m(·) < 1 (resp. > 1,= 1) if and only if ρm(·)(u) < 1 (resp. > 1,= 1),
(ii) if ∥u∥m(·) < 1 then ∥u∥m+

m(·) ≤ ρm(·)(u) ≤ ∥u∥m−
m(·),

(iii) if ∥u∥m(·) > 1 then ∥u∥m−
m(·) ≤ ρm(·)(u) ≤ ∥u∥m+

m(·).

We note that Proposition 2.1 in particular assures that the following inequality

∥u∥m−
m(·) − 1 ≤ ρm(·)(u) ≤ ∥u∥m+

m(·) + 1 (2.2)

is verified for all u ∈ Lm(·)(Ω). Also, we recall that the Hölder-type inequality
∫

Ω

|u v| dx ≤
[

1
m− + 1

(m′)−

]
∥u∥m(·) ∥v∥m′(·)

holds for all u ∈ Lm(·)(Ω) and all v ∈ Lm′(·)(Ω). Moreover, for m1,m2 ∈ C(Ω) such
that 1 < m1(x) ≤ m2(x) for all x ∈ Ω, we have the continuous embedding

Lm2(·)(Ω) ↪→ Lm1(·)(Ω).
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Using Lm(·)(Ω) we introduce the variable exponent Sobolev space W 1,m(·)(Ω) by

W 1,m(·)(Ω) =
{
u ∈ Lm(·)(Ω) : |∇u| ∈ Lm(·)(Ω)

}

equipped with the norm

∥u∥1,m(·) = ∥u∥m(·) + ∥∇u∥m(·),

where ∥∇u∥m(·) = ∥ |∇u| ∥m(·) for all u ∈ W 1,m(·)(Ω). We write W 1,m(·)
0 (Ω) by the

closure of C∞
0 (Ω) with respect to the norm ∥ · ∥1,m(·). We point out that W 1,m(·)(Ω)

and W 1,m(·)
0 (Ω) are uniformly convex, separable and reflexive Banach spaces. Further,

we stress that the Poincaré inequality is valid for W 1,m(·)
0 (Ω). Therefore, there exists

a constant cm > 0 such that the following inequality

∥u∥m(·) ≤ cm ∥∇u∥m(·)

holds for all u ∈ W
1,m(·)
0 (Ω). Taking this into account, we can consider on W 1,m(·)

0 (Ω)
the equivalent norm given by

∥u∥ := ∥∇u∥m(·) for all u ∈ W
1,m(·)
0 (Ω).

Finally, we have the following Sobolev embedding result.

Proposition 2.2. Let m ∈ C(Ω) be such that 1 < m(x) ≤ p∗
i (x) := Npi(x)

N−pi(x) for all
x ∈ Ω and i = 1, 2. Then, we have the continuous embedding

W
1,pi(·)
0 (Ω) ↪→ Lm(·)(Ω).

If 1 < m(x) < p∗
i (x) for all x ∈ Ω, then the above embedding is compact.

We emphasize that, according to Proposition 2.2, if m(x) < p∗
i (x) for all x ∈ Ω,

we can find a constant c̄i > 0 such that

∥u∥m(·) ≤ c̄i ∥∇u∥pi(·) for all u ∈ W
1,pi(·)
0 (Ω) and i = 1, 2. (2.3)

Next, we recall that the negative m(·)-Laplace operator

−∆m(x) : W 1,m(x)
0 (Ω) → (W 1,m(x)

0 (Ω))∗

is defined by
⟨−∆m(·)u, h⟩ =

∫

Ω

|∇u|m(x)−2∇u · ∇hdx

for all u, h ∈ W
1,m(·)
0 (Ω), while the positive m(·)-Laplace operator ∆m(·) is given by

⟨−∆m(·)u, h⟩ = −
∫

Ω

|∇u|m(x)−2∇u · ∇hdx
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for all u, h ∈ W
1,m(·)
0 (Ω). Such operators have several notable properties. In particular,

both −∆m(·) and ∆m(·) are bounded (that is, they map bounded sets to bounded
sets) and continuous. In addition, −∆m(·) is strictly monotone and satisfies the
(S)+-properties, which means that

un
w−→ u in W 1,m(·)

0 (Ω) and lim sup
n→+∞

⟨− ∆m(·)un, un − u⟩ ≤ 0

imply
un → u in W 1,m(·)

0 (Ω).

We conclude this section with some basic fact from the theory of nonsmooth
analysis. Let X be a Banach space with topological dual X∗. Also, let ⟨·, ·⟩ be the
duality pairing between X and X∗. A function ψ : X → R is called locally Lipschitz if
for every u ∈ X there are an open neighborhood U of u and a constant cU > 0 such
that the following inequality

|ψ(x) − ψ(y)| ≤ cU ∥x− y∥

is verified for all x, y ∈ U . The generalized directional derivative of ψ at u ∈ X in the
direction h ∈ X is defined by

ψ◦(u;h) = lim sup
x→u,t↓0

ψ(x+ th) − ψ(x)
t

,

while the generalized gradient of ψ at u ∈ X is given by

∂ψ(u) = {u∗ ∈ X∗ : ⟨u∗, h⟩ ≤ ψ◦(u;h), for all h ∈ X}.

The multifunction u → ∂ψ(u) is called the Clarke subdifferential of ψ. We remark
that such subdifferential has several interesting properties. In particular, we recall the
following.

Proposition 2.3. Let ψ : X → R be a locally Lipschitz function at u ∈ X.

(P1) If ψ has a local minimum or maximum at u ∈ X, then 0 ∈ ∂ψ(u).
(P2) The Clarke subdifferential ∂ψ(u) is a nonempty, convex, weak∗-compact subset

of X∗.
(P3) If {un}n∈N ⊂ X and {ζn}n∈N ⊂ X∗ are two sequences such that

ζn ∈ ∂ψ(un), un → u in X and ζn
w∗
−−→ ζ,

then ζ ∈ ∂ψ(u).
(P4) (Mean-value theorem) If ψ is locally Lipschitz on an open neighborhood containing

the segment [u, v], then there exists w ∈ (u, v) and ζ ∈ ∂ψ(w) satisfying

ψ(v) − ψ(u) = ⟨ζ, v − u⟩.
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We point out that if ϕ ∈ C1(X), then ϕ is locally Lipschitz with ∂ϕ(u) = {ϕ′(u)}
for all u ∈ X.

Finally, as we will make use of the Galerkin basis of W 1,pi(x)
0 (Ω), for the sake of

reader convenience, we here recall such notion.

Definition 2.4. A sequence {Xn}n∈N of vector subspaces of W 1,pi(x)
0 (Ω) is a Galerkin

basis of W 1,pi(x)
0 (Ω) if the following conditions hold:

(i) dim(Xn) < +∞ for all n ∈ N,
(ii) Xn ⊆ Xn+1 for all n ∈ N,
(iii)

⋃∞
n=1 Xn = W

1,pi(x)
0 (Ω).

3. ASSOCIATED ENERGY FUNCTIONAL

In this section, we introduce the energy functional J associated to problem (1.1) and
examine its properties. More precisely, we here show that such functional is locally
Lipschitz and coercive. Then, we explore some usefull properties of the local minimizers
of J . We stress that in order to archive such results we make use of embedding results
along with the theory of nonsmooth analysis.

First, we are going to formulate the precise assumptions on F .

(HF ) F : R2 → R is a locally Lipschitz function satisfying the following
growth condition: there exist positive constants a0, a1, a2, b0, b1, b2, α1, α2 with
1 < α1 < p−

1 , 1 < α2 < p−
2 , a1 p

+
1 A1 < p−

1 and b2 p
+
2 B1 < p−

2 , such that

|z1| ≤ a0 + a1|t|p−
1 −1 + a2|s|

p
−
2

α′
1

and

|z2| ≤ b0 + b1|t|
p

−
1

α′
2 + b2|s|p−

2 −1

for all t, s ∈ R and (z1, z2) ∈ ∂F (t, s), where A1 and B1 are the best constants
such that

∫

Ω

|u1|p−
1 dx ≤ A1∥∇u1∥p−

1
p1(·) for all u1 ∈ W

1,p1(·)
0 (Ω), (3.1)

∫

Ω

|u2|p−
2 dx ≤ B1∥∇u2∥p−

2
p2(·) for all u2 ∈ W

1,p2(·)
0 (Ω), (3.2)

respectively (see (2.3)).
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We point out that, according to (2.3), as 1 < αi < p−
i due to hypothesis (HF ), from

now on we will denote by A2, A3, B2, B3 constants satisfying the following estimates

∫

Ω

|u1|dx ≤ A2∥∇u1∥p1(·),
∫

Ω

|u1|α1dx ≤ A3∥∇u1∥α1
p1(·) for all u1 ∈ W

1,p1(·)
0 (Ω),

(3.3)

∫

Ω

|u2|dx ≤ B2∥∇u2∥p2(·),
∫

Ω

|u2|α2 dx ≤ B3∥∇u2∥α2
p2(·) for all u2 ∈ W

1,p2(·)
0 (Ω).

(3.4)

Let now Ψ : W 1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω) → R be the functional given by

Ψ(u1, u2) =
∫

Ω

F (u1, u2)dx (3.5)

for all (u1, u2) ∈ W
1,p1(·)
0 (Ω)×W 1,p2(·)

0 (Ω). We stress that, as (HF ) holds, we have that
Ψ is Lipschitz continuous on the bounded subsets of W 1,p1(·)

0 (Ω) ×W
1,p2(·)
0 (Ω). This

in particular guarantees that Ψ has everywhere a well-defined Clarke subdifferential

∂Ψ : W 1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω) → 2(W

1,p1(·)
0 (Ω))∗×(W

1,p2(·)
0 (Ω))∗

.

Using Ψ, we define the functional J : W 1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω) → R corresponding

to problem (1.1) by

J(u1, u2) =
2∑

i=1




∫

Ω

1
pi(x) |∇ui|pi(x)dx− µi

∫

Ω

1
qi(x) |∇ui|qi(x)dx


 − Ψ(u1, u2) (3.6)

for all (u1, u2) ∈ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω).

Now, our first aim is in showing that J is locally Lipschitz and coercive, which
means that J(u1, u2) → +∞ as ∥(u1, u2)∥ = ∥u1∥ + ∥u2∥ → +∞.



Systems of differential inclusions with competing operators and variable exponents 673

Proposition 3.1. Let hypotheses (H0) and (HF ) be satisfied. Also, let J be the
functional defined in (3.6). Then, J is locally Lipschitz and

∂J(u1, u2) =
2∑

i=1




∫

Ω

|∇ui|pi(x)−2∇ui · ∇hidx− µi

∫

Ω

|∇ui|qi(x)−2∇ui · ∇hidx




− ∂Ψ(u1, u2)
(3.7)

for all (u1, u2), (h1, h2) ∈ W
1,p1(·)
0 (Ω) × W

1,p2(·)
0 (Ω). Furthermore, J is coercive on

W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω).

Proof. First, we note that as (HF ) holds, the functional Ψ given in (3.5) is locally
Lipschitz. This, with a view to (3.6), permits us to we affirm that J is locally Lipschitz
as well. Thus, in order to achieve (3.7) we have just to derive the Clarke subdifferential
of Ψ and then of J .

Therefore, we are going to show that J is a coercive functional. To this end,
we point out that using (2.2) and the continuous embedding W 1,pi(·)

0 (Ω) ↪→ W
1,q+

i
0 (Ω)

for i = 1, 2, we get that
∫

Ω

|∇ui|qi(x)dx ≤ ∥∇ui∥q+
i

qi(·) + 1

≤ Ci∥∇ui∥q+
i

pi(·) + 1

(3.8)

for some Ci > 0, for all ui ∈ W
1,pi(·)
0 (Ω) and i = 1, 2.

Also, from hypothesis (HF ) and mean-value theorem (see (P4) of Proposition 2.3),
we derive that

|F (t, s)| ≤ |F (0, 0)| + a0|t| + b0|s| + a1

p−
1

|t|p−
1 + b2

p−
2

|s|p−
2

+ a2α
′
1

p−
2 + α′

1
|t||s|

p
−
2

α′
1 + b1α

′
2

p−
1 + α′

2
|t|

p
−
1

α′
2 |s|

≤ |F (0, 0)| + a0|t| + b0|s| + a1

p−
1

|t|p−
1 + b2

p−
2

|s|p−
2

+ a(ε)|t|α1 + ε|s|p−
2 + ε|t|p−

1 + b(ε)|s|α2 (by Young’s inequality with ε)

≤ |F (0, 0)| + a0|t| + b0|s| +
(
a1

p−
1

+ ε

)
|t|p−

1

+
(
b2

p−
2

+ ε

)
|s|p−

2 + a(ε)|t|α1 + b(ε)|s|α2 ,

(3.9)
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for all t, s ∈ R, where we have ε, a(ε), b(ε) > 0. Thus, using (2.2) along with the
estimates (3.9), (3.1), (3.2), (3.3), (3.4) and (3.8), from (3.6) we see that

J(u1, u2) ≥
2∑

i=1


 1
p+

i

∫

Ω

|∇ui|pi(x)dx− |µi|
q−

i

∫

Ω

|∇ui|qi(x)dx


 − |F (0, 0)||Ω|

−
∫

Ω

(
a0|u1| + b0|u2| +

(
a1

p−
1

+ ε

)
|u1|p−

1 +
(
b2

p−
2

+ ε

)
|u2|p−

2

+ a(ε)|u1|α1 + b(ε)|u2|α2
)
dx

≥
2∑

i=1

(
1
p+

i

(∥∇ui∥p−
i

pi(·) − 1) − |µi|
q−

i

(Ci∥∇ui∥q+
i

pi(·) + 1)
)

− |F (0, 0)||Ω|

− a0 A2∥∇u1∥p1(·) − b0B2∥∇u2∥p2(·) − a(ε)A3∥∇u1∥α1
p1(·)

− b(ε)B3∥∇u2∥α2
p2(·) −

(
a1

p−
1

+ ε

)
A1∥∇u1∥p−

1
p1(·) −

(
b2

p−
2

+ ε

)
B1∥∇u2∥p−

2
p2(·)

≥ 1
p+

1

(
1 − a1 p

+
1

p−
1

A1 − εA1p
+
1

)
∥∇u1∥p−

1
p1(·) + 1

p+
2

(
1 − b2 p

+
2

p−
2

B1 − εB1p
+
2

)

× ∥∇u2∥p−
2

p2(·) − |µ1|
q−

1
C1∥∇u1∥q+

1
p1(·) − |µ2|

q−
2
C2∥∇u2∥q+

2
p2(·)

− a0 A2∥∇u1∥p1(·) − b0B2∥∇u2∥p2(·)
− a(ε)A3∥∇u1∥α1

p1(·) − b(ε)B3∥∇u2∥α2
p2(·),

for all (u1, u2) ∈ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω), with |Ω| being the Lebesgue measure of Ω

in RN . Now, we recall that a1 p
+
1 A1 < p−

1 and b2 p
+
2 B1 < p−

2 from hypothesis (HF ).
According to this, for ε > 0 small we have that

1 − a1 p
+
1

p−
1

A1 − εA1p
+
1 > 0 as well as 1 − b2 p

+
2

p−
2

B1 − εB1p
+
2 > 0.

Taking this into account, as from hypothesis (H0) for i = 1, 2 we have that p−
i > q+

i ,
we conclude that the functional J is coercive. This proves the claim.

Let now {Xn} and {Yn} be a Galerkin basis of W 1,p1(·)
0 (Ω) and W

1,p2(·)
0 (Ω),

respectively. We stress that {Xn × Yn} is a Galerkin basis of the product space
W

1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω). Using such Galerkin basis, we are going to state and prove

the following result for local minimizers of the functional J .

Proposition 3.2. Let hypotheses (H0) and (HF ) be satisfied. Also, let J be the
functional given in (3.6). Then, for any n ∈ N we have that

J(u1n, u2n) = inf{J(v1, v2) : (v1, v2) ∈ Xn × Yn}
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for some (u1n, u2n) ∈ Xn × Yn and (ζ1n, ζ2n) ∈ (W 1,p1(·)
0 (Ω))∗ × (W 1,p2(·)

0 (Ω))∗ with
(ζ1n, ζ2n) ∈ ∂F (u1n, u2n) a.e. on Ω satisfying
∫

Ω

|∇u1n|p1(x)−2∇u1n · ∇h1dx− µ1

∫

Ω

|∇u1n|q1(x)−2∇u1n · ∇h1dx−
∫

Ω

ζ1nh1 dx = 0,

(3.10)∫

Ω

|∇u2n|p2(x)−2∇u2n · ∇h2dx− µ2

∫

Ω

|∇u2n|q2(x)−2∇u2n · ∇h2 dx−
∫

Ω

ζ2nh2 dx = 0,

(3.11)
for all h1 ∈ Xn and all h2 ∈ Yn.

Proof. First, we point out that as {Xn × Yn} is a Galerkin basis of the product space
W

1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω), we have that

dim(Xn × Yn) < +∞ for all n ∈ N.

Also, from Proposition 3.1 we know that J is locally Lipschitz and coercive. For way
of this, we can find (u1n, u2n) ∈ Xn × Yn such that

J(u1n, u2n) = inf{J(v1, v2) : (v1, v2) ∈ Xn × Yn}.

Thus, from (P1) of Proposition 2.3 we deduce that

(0, 0) ∈ ∂J |Xn×Yn
(u1n, u2n). (3.12)

Now, according to (3.12), we have that there exists (z1n, z2n) ∈ ∂Ψ(u1n, u2n) such
that

⟨−∆pi(·)uin + µi∆qi(·)uin − zin, hi⟩ = 0 for i = 1, 2. (3.13)

Then, using Theorem 2.7.5 and Remark 2.7.6 of Clarke [2], we can affirm that

∂Ψ(u1n, u2n) ⊂
∫

Ω

∂F (u1n, u2n) dx.

This assures that, corresponding to (z1n, z2n) ∈ ∂Ψ(u1n, u2n), we can find (ζ1n, ζ2n) ∈
∂F (u1n, u2n) a.e. on Ω such that

⟨zin, hi⟩ =
∫

Ω

ζinhi dx for i = 1, 2. (3.14)

Using (3.14) in (3.13), we derive that both (3.10) and (3.11) hold. Therefore, the as-
sertion of proposition is proved.

Next, we focus on the minimizer sequence {(u1n, u2n)}n∈N obtained in Proposi-
tion 3.2. We are in the position to produce the following result.
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Proposition 3.3. Let hypotheses (H0) and (HF ) be satisfied. Also, let

{(u1n, u2n)}n∈N ⊂ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω)

be a sequence as given in Proposition 3.2. Then, the following a priori estimate

∥∇u1n∥p1(·) + ∥∇u2n∥p2(·) ≤ K (3.15)

holds, for some K > 0 and all n ∈ N
Proof. We note that choosing as test function h1 = u1n ∈ Xn in (3.10) and then using
(3.1), (3.3), (3.8), hypothesis (HF ) and Young’s inequality with ε, we derive that

∫

Ω

|∇u1n|p1(x)dx = µ1

∫

Ω

|∇u1n|q1(x)dx+
∫

Ω

ζ1nu1ndx

≤ |µ1|(C1∥∇u1n∥q+
1

p1(·) + 1) + a0A2∥∇u1n∥p1(·) + a1A1∥∇u1n∥p−
1

p1(·)

+ a2a(ε)A3∥∇u1,n∥α1
p1(·) + a2εB1∥∇u2n∥p−

2
p2(·).

Analogously, choosing as test function h2 = u2n ∈ Yn in (3.11) and using (3.2), (3.4),
(3.8), hypothesis (HF ) and the Young inequality with ε, we see that

∫

Ω

|∇u2n|p2(x)dx = µ2

∫

Ω

|∇u2n|q2(x)dx+
∫

Ω

ζ2nu2ndx

≤ |µ2|(C2∥∇u2n∥q+
2

p2(·) + 1) + b0B2∥∇u2n∥p2(·) + b2B1∥∇u2n∥p−
2

p2(·)

+ b1b(ε)B3∥∇u2,n∥α2
p2(·) + b1εA1∥∇u1n∥p−

1
p1(·).

The previous inequalities along with (2.2) yield that

(1 −A1(a1 + εb1))∥∇u1n∥p−
1

p1(·) + (1 −B1(b2 + εa2))∥∇u2n∥p−
2

p2(·)

≤ |µ1|C1∥∇u1n∥q+
1

p1(·) + |µ2|C2∥∇u2n∥q+
1

p2(·) + a0A2∥∇u1n∥p1(·)

+ b0B2∥∇u2n∥p2(·) + a2a(ε)A3∥∇u1,n∥α1
p1(·) + b1b(ε)B3∥∇u2,n∥α2

p2(·) + Ĉ

for all n ∈ N and some Ĉ > 0. Now, we recall that 1 − A1a1 > 0 and 1 − B1b2 > 0
from hypothesis (HF ). According to this, for ε > 0 small we have that

1 −A1(a1 + εb1) > 0 as well as 1 −B1(b2 + εa2) > 0.

This, along with the fact that p−
i > q+

i > 1 for i = 1, 2 due to hypothesis (H0), permits
us to conclude that the sequence

{∥∇u1n∥p1(·) + ∥∇u2n∥p2(·)}n∈N

is bounded by a constant in W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω). This means that the a priori

estimate (3.15) holds and hence the proof is concluded.

Our next result gives indications about the boundedness of the operators involved
in (3.10) and (3.11).
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Proposition 3.4. Let hypotheses (H0) and (HF ) be satisfied. Also, let

{(u1n, u2n)}n∈N ⊂ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω)

and
(ζ1n, ζ2n) ∈ (W 1,p1(·)

0 (Ω))∗ × (W 1,p2(·)
0 (Ω))∗

be as given in Proposition 3.2. Then, there exists a positive constant K̄ > 0 such that
the following inequality

∥ − ∆pi(·)uin + µi∆qi(·)uin − ζin∥(W
1,pi(·)
0 (Ω))∗ ≤ K̄ (3.16)

holds for all n ∈ N and i = 1, 2.
Proof. In order to prove the claim, we point out that the following inequality

|⟨−∆pi(·)uin + µi∆qi(·)uin − ζin, hi⟩|

=

∣∣∣∣∣∣

∫

Ω

|∇uin|pi(x)−2∇uin · ∇hidx− µi

∫

Ω

|∇uin|qi(x)−2∇uin · ∇hidx−
∫

Ω

ζinhidx

∣∣∣∣∣∣

≤
∫

Ω

|∇uin|pi(x)−1|∇hi|dx+ |µi|
∫

Ω

|∇uin|qi(x)−1|∇hi|dx+
∫

Ω

|ζin||hi|dx

(3.17)

holds for any hi ∈ W
1,pi(·)
0 (Ω) and i = 1, 2. Also, we note that according to (2.1)

we have that

ρp′
i
(x)(|∇uin|pi(x)−1) = ρpi(x)(|∇uin|) for i = 1, 2.

This in particular guarantees that for i = 1, 2 there exists γi > 0 satisfying

∥|∇uin|pi(x)−1∥p′
i
(·) ≤ ∥∇uin∥γi

pi(·).

Now, using the previous inequality along with (3.15) and the Hölder inequality, we
can estimate the first two terms in the right-hand side of (3.17). Thus, we see that∫

Ω

|∇uin|pi(x)−1|∇hi|dx ≤ 2∥|∇uin|pi(x)−1∥p′
i
(·)∥∇hi∥pi(·)

≤ 2∥∇uin∥γi

pi(·)∥∇hi∥pi(·)

≤ M̂i∥∇hi∥pi(·)

(3.18)

for some M̂i > 0, and∫

Ω

|∇uin|qi(x)−1|∇hi|dx ≤
∫

Ω

(1 + |∇uin|pi(·)−1)|∇hi|dx

≤ C̃∥∇hi∥pi(·) + 2∥∇uin∥γi

pi(·)∥∇hi∥pi(·)

≤ M̃i∥∇hi∥pi(·)

(3.19)

for some C̃, M̃i > 0, with C̃ being an embedding constant.
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Next, in according to hypothesis (HF ) and (3.15), we have that

∫

Ω

|ζ1n||h1|dx ≤
∫

Ω

(a0 + a1|u1n|p−
1 −1 + a2|u2n|

p
−
2

α′
1 )|h1|dx

≤ a0A2∥∇h1∥p1(·) + a1C̄∥∇u1n∥p−
1 −1

p1(·) ∥∇h1∥p1(·)

+ a2 D̄ ∥∇u2n∥
p

−
2

α′
1

p2(·)∥∇h1∥p1(·)

≤ M̄1 ∥∇h1∥p1(·)

(3.20)

for some M̄1 > 0, with C̄, D̄ being embedding constants. We stress that, in a similar
way, we can also see that

∫

Ω

|ζ2n||h2| dx ≤ M̄2 ∥∇h2∥p2(·) (3.21)

for some M̄2 > 0.
Now, using (3.17), (3.18), (3.19) and (3.20) we arrive to the following inequality

|⟨−∆p1(·)u1n + µ1∆q1(·) − ζ1n, h1⟩| ≤ (M̂1 + M̃1 + M̄1)∥∇h1∥p1(·),

while from (3.17), (3.18), (3.19) and (3.21) we derive that

|⟨−∆p2(·)u2n + µ2∆q2(·) − ζ2n, h2⟩| ≤ (M̂2 + M̃2 + M̄2)∥∇h2∥p2(·).

On the base of the previous inequalities, we are able to conclude that (3.16) holds
for some positive constant K̄.

4. WEAK SOLUTIONS VIA GENERALIZED SOLUTIONS

In this section, we focus on link between weak solutions and generalized solutions
to problem (1.1). As previous mentioned, any weak solution to problem (1.1) is in
addition a generalized solution (see Remark 1.3). We here show that the reverse
implication holds if driven operators in (1.1) are both elliptic, which means to claim
that µ1 ≤ 0 as well as µ2 ≤ 0.

Theorem 4.1. Let hypotheses (H0) and (HF ) be satisfied. If µ1 ≤ 0 and µ2 ≤ 0,
then any generalized solution to problem (1.1) is in addition a weak solution.

Proof. In order to produce the claim, we suppose that µ1 ≤ 0 and µ2 ≤ 0 (that
is, we assume that the driven operators in (1.1) are elliptic). Also, let (u1, u2) ∈
W

1,p1(·)
0 (Ω) × W

1,p2(·)
0 (Ω) be a generalized solution to problem (1.1). Now, our aim

is in showing that (u1, u2) is in addition a weak solution to (1.1). To this purpose,
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we remark that, as (u1, u2) is a generalized solution to problem (1.1), we can find
a sequence

{(u1n, u2n)}n∈N ⊂ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω)

and
ζin ∈ (W 1,pi(·)

0 (Ω))∗ with ζin ∈ ∂F (u1n, u2n) a.e. in Ω for i = 1, 2,
satisfying all the conditions in Definition 1.1. Furthermore, we recall that the negative
qi-Laplacian operator, −∆qi(·), for i = 1, 2 is monotone. Hence, we know that

⟨−∆qi(·)u+ ∆qi(·)v, u− v⟩ ≥ 0

for all u, v ∈ W
1,qi(·)
0 (Ω) and i = 1, 2. This, along with the fact that µi ≤ 0, assures

that the following inequality

µi⟨−∆qi(·)uin + ∆qi(·)ui, uin − ui⟩ ≤ 0

holds for n ∈ N and i = 1, 2. Keeping this and Definition 1.1 (i), (iii) in mind,
for i = 1, 2 we can write that

lim sup
n→+∞

⟨−∆pi(·)uin, uin − ui⟩

= lim sup
n→+∞

[
⟨−∆pi(·)uin + µi∆qi(·)uin, uin − ui⟩ + µi⟨−∆qi(·)uin + ∆qi(·)ui, uin − ui⟩

+ µi⟨−∆qi(·)ui, uin − ui⟩
]

≤ lim sup
n→+∞

⟨−∆pi(·)uin + µi∆qi(·)uin, uin − ui⟩ + µi lim
n→+∞

⟨−∆qi(·)ui, uin − ui⟩ = 0.

From the previous inequality, as the operator −∆pi(·) is of (S)+-type and continuous,
we deduce for i = 1, 2 that

uin → ui in W
1,pi(·)
0 (Ω) as n → +∞

and further

−∆pi(·)uin → −∆pi(·)ui in (W 1,pi(·)
0 (Ω))∗ as n → +∞.

Moreover, as uin → ui in W 1,pi(·)
0 (Ω) and the operator −∆qi(·) is continuous, for i = 1, 2

we have also that

lim
n→+∞

∆qi(·)uin = ∆qi(·)ui in (W 1,qi(·)
0 (Ω))∗.

At this point, we stress that from Propositions 3.2 and 3.4 we know that

{ζin}n∈N ⊂ (W 1,pi(·)
0 (Ω))∗ is bounded for i = 1, 2.

Therefore, for i = 1, 2 we can assume that

ζin
w−→ ζi in (W 1,pi(·)

0 (Ω))∗ as n → +∞.
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Thus, according to (P3) of Proposition 2.3, we have that (ζ1, ζ2) ∈ ∂F (u1, u2) a.e.
on Ω. Then, using Definition 1.1 (ii) along with the fact that uin → ui in W

1,pi(·)
0 (Ω)

and (ζ1n, ζ2n) ∈ ∂F (u1n, u2n) ⊂ (W 1,p1(·)
0 (Ω))∗ × (W 1,p2(·)

0 (Ω))∗, we derive for i = 1, 2
that

−∆pi(·)ui + µi∆qi(·)ui − ζi = 0 in (W 1,pi(·)
0 (Ω))∗,

where (ζ1, ζ2) ∈ ∂F (u1, u2) ⊂ (W 1,p(·)
0 (Ω))∗ × (W 1,p2(·)

0 (Ω))∗ a.e. on Ω. With a view
to Definition 1.2, this assures that the generalized solution (u1, u2) to problem (1.1) is
in addition a weak solution. Therefore, the claim is now proved.

5. EXISTENCE RESULT

In this section, we are ready finally to state and prove the main result of the present
paper. Precisely, we here show that problem (1.1) admits for any µ1, µ2 ∈ R at least
a generalized solution in W

1,p1(·)
0 (Ω) × W

1,p2(·)
0 (Ω), supposed that hypotheses (H0)

and (HF ) hold. We stress that, according to Theorem 4.1, we have that such solution
is in addition a weak solution to problem (1.1) whenever µ1 ≤ 0 and µ2 ≤ 0.

Now, our main result reads as follows.

Theorem 5.1. Let hypotheses (H0) and (HF ) be satisfied. Then, for any µ1, µ2 ∈ R
we have that problem (1.1) admits at least a generalized solution (u1, u2) in
W

1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω).

Proof. In order to prove the claim, we have to show that there exists (u1, u2) ∈
W

1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω) such that all the assumptions in Definition 1.1 are satisfied.

To this end, we consider a Galerkin basis {Xn} of W 1,p1(·)
0 (Ω) and a Galerkin basis

{Yn} of W 1,p2(·)
0 (Ω). Also, as hypotheses (H0) and (HF ) hold, let

{(u1n, u2n)}n∈N ⊂ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω)

and
(ζ1n, ζ2n) ∈ (W 1,p1(·)

0 (Ω))∗ × (W 1,p2(·)
0 (Ω))∗

with (ζ1n, ζ2n) ∈ ∂F (u1n, u2n) a.e. in Ω, as given in Proposition 3.2. Now, according
to Propositions 3.2 and 3.3, we have that

{(u1n, u2n)}n∈N ⊂ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω) is bounded.

For way of this, we can suppose that

uin
w−→ ui in W 1,pi(·)

0 (Ω) and uin → ui in Lpi(·)(Ω)

as n → +∞, for some ui ∈ W
1,pi(·)
0 (Ω) and i = 1, 2. Consequently, we have that

condition (i) of Definition 1.1 is verified.
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Next, we point out that Proposition 3.2 along with Proposition 3.4 assures that

{−∆pi(·)uin + µi∆qi(·)uin − ζin}n∈N ⊂ (W 1,pi(·)
0 (Ω))∗

is bounded for i = 1, 2. Therefore, we can suppose that

−∆pi(·)uin + µi∆qi(·)uin − ζin
w−→ yi in (W 1,pi(·)

0 (Ω))∗ (5.1)

as n → +∞, for some yi ∈ (W 1,pi(·)
0 (Ω))∗ and i = 1, 2.

Now, we take h1 ∈ ∪+∞
n=1Xn in (3.10) and h2 ∈ ∪+∞

n=1Yn in (3.11). We remark that
according to Definition 2.4 we have that (h1, h2) ∈ Xn × Yn for all n ≥ n0 for some
n0 ∈ N. Then, as

⟨−∆pi(·)uin, hi⟩ + ⟨µi∆qi(·)uin, hi⟩ −
∫

Ω

ζinhidx = 0

for all n ≥ n0 and i = 1, 2 from (3.10) and (3.11), passing to the limit as n → +∞
and using (5.1), we deduce that the following equality

lim
n→+∞

⟨−∆pi(·)uin + µi∆qi(·)uin − ζin, hi⟩ = 0

holds for i = 1, 2. This in particular guarantees that

⟨yi, hi⟩ = 0 for i = 1, 2.

Consequently, on the base of Definition 2.4 (iii), we can affirm that

yi = 0 for i = 1, 2.

Thus, we have that

−∆pi(·)uin + µi∆qi(·)uin − ζin
w−→ 0 in (W 1,pi(·)

0 (Ω))∗ (5.2)

as n → +∞ and i = 1, 2. Therefore, Definition 1.1 (ii) is satisfied as well.
Next, we point out that if in (3.10) we choose hi = uin − ui ∈ W

1,pi(·)
0 (Ω) for

i = 1, 2, pass to the limit as n → +∞ and use (5.2), then according to the properties
of the sequences {uin}n∈N and {ζin}n∈N, we get that

lim
n→+∞

∫

Ω

ζin(uin − ui) dx = 0.

Taking this into account, from

lim
n→+∞

[
⟨−∆pi(·)uin, uin − ui⟩ + µi∆qi(·)uin, uin − ui⟩ −

∫

Ω

ζin(uin − ui)dx
]

= 0,
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we derive that

lim
n→+∞

[
⟨−∆pi(·)uin, uin − ui⟩ + µi⟨∆qi(·)uin, uin − ui⟩

]
= 0.

This means that Definition 1.1 (iii) is true too.
Finally, as all the assumptions in Definition 1.1 are satisfied, we conclude that

(u1, u2) ∈ W
1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω) is a generalized solution to problem (1.1). Taking

into account that µ1, µ2 ∈ R are arbitrary, this produces the claim.

We emphasize that as immediate consequence of Theorems 4.1 and 5.1 we have
the following result.

Theorem 5.2. Let hypotheses (H0) and (HF ) be satisfied. Also, let µ1 ≤ 0 and µ2 ≤ 0.
Then, problem (1.1) admits at least a weak solution in W

1,p1(·)
0 (Ω) ×W

1,p2(·)
0 (Ω).

For the sake of reader convenience, an example illustrating how our results can be
applied is provided next.

Example 5.3. Let f1 : R → R be the function so defined

f1(t) =
{
t2 cos 1

t if t ̸= 0,
0 if t = 0.

We stress that f1 is a locally Lipschitz function with Clarke subdifferential given by

∂f1(t) =
{

2t cos 1
t + sin 1

t if t ̸= 0,
[−1, 1] if t = 0.

Next, we consider the function f2 : R → R defined by

f2(t) = |t| for all t ∈ R.

Such function has instead Clarke subdifferential given by

∂f2 =





−1 if t < 0,
[−1, 1] if t = 0,
1 if t > 0.

Using f1 and f2, we introduce the function F : R2 → R defined by

F (t, s) = f1(t) + t f2(s) + s2 (5.3)

for all t, s ∈ R. We point out that F is a locally Lipschitz function. Further, we can
easily see that the Clarke subdifferential of F is given by

∂F (t, s) = (∂f1(t) + f2(s), t ∂f2(s) + 2s)
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for all t, s ∈ R. Taking this into account, for any (ζ1, ζ2) ∈ ∂F (t, s) we have that the
following inequalities

|ζ1| ≤ 1 + 2|t| + |s| and |ζ2| ≤ |t| + 2|s|

are verified for all (t, s) ∈ R2.
Now, we assume αi = 2 and p−

i > 2 for i = 1, 2. Such choice of αi and pi permits
us to affirm that hypothesis (HF ) is satisfied by the function F introduced in (5.3).
Thus, we are going to consider the following problem

{
(−∆p1(·)u1 + µ1∆q1(·)u1,−∆p2(·)u2 + µ2∆q2(·)u2) ∈ ∂F (u1, u2) in Ω,
u1 = u2 = 0 on ∂Ω,

(5.4)

where Ω is a bounded domain of RN (N ≥ 2), F is from (5.3), and we suppose p−
i > 2

for i = 1, 2, with pi, qi satisfying hypothesis (H0). As hypothesis (HF ) holds as well,
we are in the position to apply both Theorem 5.1 and Theorem 5.2. Consequently,
according to Theorem 5.1, we have that for any µ1, µ2 ∈ R the problem under
consideration admits at least a generalized solution. From Theorem 5.2 we instead
derive the existence of a weak solution to the problem whenever µ1 ≤ 0 and µ2 ≤ 0.
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