Opuscula Math. 45, no. 5 (2025), 657-663
https://doi.org/10.7494/OpMath.2025.45.5.657

 
Opuscula Mathematica

A note on nonlocal discrete problems involving sign-changing Kirchhoff functions

Biagio Ricceri

Abstract. In this note, we establish a multiplicity theorem for a nonlocal discrete problem of the type \[\begin{cases} -\left(a\sum_{m=1}^{n+1}|x_m-x_{m-1}|^2+b\right)(x_{k+1}-2x_k+x_{k-1})=h_k(x_k), &k=1,\ldots ,n, \\ x_0=x_{n+1}=0 \end{cases}\] assuming \(a\gt 0\) and (for the first time) \(b\gt 0\).

Keywords: minimax theorems, Kirchhoff functions, difference equations, variational methods, multiplicity of solutions.

Mathematics Subject Classification: 39A27, 15A63.

Full text (pdf)

  1. Y.H. Kim, Existence and uniqueness of solutions to non-local problems of Brezis-Oswald type and its application, Fractal Fract. 8 (2024), 622. https://doi.org/10.3390/fractalfract8110622
  2. Y.H. Kim, Existence and uniqueness of solution to the p-Laplacian equations involving discontinuous Kirchhoff functions via a global minimum principle of Ricceri, Minimax Theory Appl. 10 (2025), 34-42.
  3. I.H. Kim, Y.H. Kim, Existence, uniqueness, and localization of positive solutions to nonlocal problems of the Kirchhoff type via the global minimum principle of Ricceri, AIMS Mathematics 10 (2025), no. 3, 4540-4557. https://doi.org/10.3934/math.2025210
  4. P. Pucci, V.D. Rădulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal. 186 (2019), 1-5. https://doi.org/10.1016/j.na.2019.02.022
  5. B. Ricceri, Multiplicity theorems involving functions with non-convex range, Stud. Univ. Babeş-Bolyai Math. 68 (2023), 125-137. https://doi.org/10.24193/subbmath.2023.1.09
  6. B. Ricceri, Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions, Adv. Nonlinear Anal. 13 (2024), Paper no. 20230104. https://doi.org/10.1515/anona-2023-0104
  7. B. Ricceri, Multiple critical points in closed sets via minimax theorems, Optimization (2025), 1-15. https://doi.org/10.1080/02331934.2025.2457549.
  8. G. Yin, J. Liu, Existence and multiplicity of nontrivial solutions for a nonlocal problem, Bound. Value Probl. 2015 (2015), Article no. 26. https://doi.org/10.1186/s13661-015-0284-x
  • Communicated by Marek Galewski.
  • Received: 2025-05-13.
  • Accepted: 2025-08-24.
  • Published online: 2025-09-13.
Opuscula Mathematica - cover

Cite this article as:
Biagio Ricceri, A note on nonlocal discrete problems involving sign-changing Kirchhoff functions, Opuscula Math. 45, no. 5 (2025), 657-663, https://doi.org/10.7494/OpMath.2025.45.5.657

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.