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ON NONLOCAL DISCRETE PROBLEMS
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Abstract. In this note, we establish a multiplicity theorem for a nonlocal discrete
problem of the type
{

−
(
a
∑n+1

m=1 |xm − xm−1|2 + b
)

(xk+1 − 2xk + xk−1) = hk(xk), k = 1, . . . , n,
x0 = xn+1 = 0

assuming a > 0 and (for the first time) b < 0.
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1. INTRODUCTION

If Ω is a bounded domain of Rn and K : [0,+∞[→ R, φ : Ω × R → R are two given
functions, the nonlocal problem

{
−K(

∫
Ω |∇u(x)|2)∆u = φ(x, u) in Ω,

u = 0 on ∂Ω

is certainly among the most studied ones in today’s nonlinear analysis (we refer to [4]
for an introduction to the subject).

In checking the relevant literature, one can realize that, in the majority of the papers,
one assumes K(t) = at+ b with a > 0 and b ≥ 0 and, in any case, that the Kirchhoff
function K is assumed to be, in particular, continuous and non-negative in [0,+∞[.

However, it is natural to ask what happens when at least one of these properties fails.
The case where K can be discontinuous in [0,+∞[ has been considered for the

first time in [5], for n = 1, and then in [6] for the general case (see also [1–3]). In these
papers, however, K is non-negative.
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The papers dealing with a sign-changing function K are more numerous, but in
each of them it is assumed that K(t) = at+ b with a < 0 and b ≥ 0. The first of these
papers was [8].

In the present very short note, we are interested in the discrete counterpart of the
above problem. That is to say, given n continuous functions fk : R → R (k = 1, . . . , n),
we deal with the problem

{
−K

(∑n+1
h=1 |xh − xh−1|2

)
(xk+1 − 2xk + xk−1) = fk(xk), k = 1, . . . , n,

x0 = xn+1 = 0.

Also for this discrete problem, we can repeat what we said before, even in a stronger
way: it seems that in each paper on the subject, the function K is continuous and
non-negative in [0,+∞[.

Our aim is to establish a multiplicity result for this problem where (for the first
time) the Kirchhoff function K changes sign.

2. RESULTS

Before stating our result, we recall the following two theorems which will be key tools
used in our proof.
Theorem 2.1 ([7]). Let X be a topological space, let Y be a convex set in a topological
vector space and let h : X × Y → R be lower semicontinuous and inf-compact in X,
and continuous and quasi-concave in Y . Also, assume that

sup
Y

inf
X
h < inf

X
sup

Y
h.

Moreover, let φ : X → R be a lower semicontinuous function such that

sup
X
φ− inf

X
φ < inf

X
sup

Y
h− sup

Y
inf
X
h.

Then, for each convex set S ⊆ Y , dense in Y , there exists ỹ ∈ S such that the function
h(·, ỹ) + φ(·) has at least two global minima.
Theorem 2.2 ([7]). Let X be a topological space, let H be a real Hilbert, let Y
be a closed ball in H centered at 0, and let Q : X → R, ψ : X → H. Assume
that the functional x 7→ Q(x) − ⟨ψ(x), y⟩ is lower semicontinuous for each y ∈ Y ,
while the functional x 7→ Q(x) − ⟨ψ(x), y0⟩ is inf-compact for some y0 ∈ Y . Moreover,
assume that, for each x ∈ X, there exists u ∈ X such that

Q(x) = Q(u)

and
ψ(x) = −ψ(u).

Finally, assume that there is no global minimum of Q at which ψ vanishes. Then,
we have

sup
y∈Y

inf
x∈X

(Q(x) − ⟨ψ(x), y⟩) < inf
x∈X

sup
y∈Y

(Q(x) − ⟨ψ(x), y⟩).
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Our main result is as follows:

Theorem 2.3. Let K : [0,+∞[→ R, f1, . . . , fn : R → R be n+ 1 continuous functions
satisfying the following conditions:

(a) inft>0
∫ t

0 K(s)ds < 0 and lim inft→+∞

∫ t

0
K(s)ds

t > 0,

(b) lim sup|t|→+∞

∣∣∫ t

0
fk(s)ds

∣∣
t2 < +∞ for each k = 1, . . . , n,

(c) for each k = 1, . . . , n, the function t →
∫ t

0 fk(s)ds is odd and vanishes only at 0.

Then, for each r > 0, there exists a number δ > 0 with the following property:
for every n-tuple of continuous functions g1, . . . , gn : R → R satisfying

max
1≤k≤n


sup

t∈R

t∫

0

gk(s)ds− inf
t∈R

t∫

0

gk(s)ds


 < δ,

there exists (µ̃1, . . . µ̃n) ∈ Rn, with
∑n

k=1 |µ̃k|2 < r2, such that the problem
{

−K
(∑n+1

h=1 |xh − xh−1|2
)
(xk+1 − 2xk + xk−1) = gk(xk) + µ̃kfk(xk), k=1, . . . , n,

x0 = xn+1 = 0

has at least three solutions.

Proof. Fix r > 0. First, we are going to apply Theorem 2.2. In this connection, take

X = {(x0, x1, . . . , xn, xn+1) ∈ Rn+2 : x0 = xn+1 = 0},

with the scalar product

⟨x, y⟩1 =
n+1∑

k=1
(xk − xk−1)(yk − yk−1).

We denote by ⟨·, ·⟩2 the usual scalar product on Rn, that is,

⟨x, y⟩2 =
n∑

k=1
xkyk.

Fix γ > 0 so that
∥x∥2 ≤ γ∥x∥1 (2.1)

for all x ∈ X. Consider the functions Q : X → R and ψ : X → Rn defined by

Q(x) = 1
2

∥x∥2
1∫

0

K(s)ds
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and

ψ(x) =




x1∫

0

f1(s)ds, . . . ,
xn∫

0

fn(s)ds




for all x ∈ X. Fix µ ∈ Rn. In view of (a) and (b), there exist η1, η2, η3 > 0 such that

t∫

0

K(s)ds ≥ η1t− η2 (2.2)

for all t ≥ 0 and ∣∣∣∣∣∣

t∫

0

fk(s)ds

∣∣∣∣∣∣
≤ η3(t2 + 1) (2.3)

for all t ∈ R, k = 1, . . . , n. Fix x ∈ X. Using (2.2) and the Cauchy–Schwarz inequality,
we obtain

Q(x) − ⟨ψ(x), µ⟩2 ≥ 1
2η1∥x∥2

1 − 1
2η2 − |⟨ψ(x), µ⟩2|

≥ 1
2η1∥x∥2

1 − 1
2η2 − ∥µ∥2∥ψ(x)∥2.

(2.4)

On the other hand, in view of (2.3), for each k = 1, . . . , n, we have
∣∣∣∣∣∣

xk∫

0

fk(s)ds

∣∣∣∣∣∣
≤ η3(|xk|2 + 1)

and hence

∥ψ(x)∥2 ≤ η3

√√√√
n∑

k=1
(|xk|2 + 1)2 ≤ η3

(
n∑

k=1
|xk|2 + n

)
. (2.5)

Putting (2.1), (2.4) and (2.5) together, we get

Q(x) − ⟨ψ(x), µ⟩2 ≥ 1
2η1∥x∥2

1 − ∥µ∥2η3(γ2∥x∥2
1 + n) − 1

2η2. (2.6)

Now, fix σ > 0 so that
σ < min

{
η1

2η3γ2 , r

}
.

Let Y be the closed ball in Rn centered at 0, of radius σ. If µ ∈ Y , in view of (2.6),
we have

lim
∥x∥1→+∞

(Q(x) − ⟨ψ(x), µ⟩2) = +∞

and so the function x → Q(x)−⟨ψ(x), µ⟩2 is inf-compact. Further, observe that, by (c),
the function ψ vanishes only at 0, while, by (a), 0 is not a global minimum of Q.
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Clearly, Q is even and ψ is odd, in view of (c). In other words, each assumption of
Theorem 2.2 is satisfied. Consequently, the number

δ := 1
n

(
inf

x∈X
sup
µ∈Y

(Q(x) − ⟨ψ(x), µ⟩2) − sup
µ∈Y

inf
x∈X

(Q(x) − ⟨ψ(x), µ⟩2)
)

(2.7)

is positive. At this point, we apply Theorem 2.1 taking

h(x, µ) = Q(x) − ⟨ψ(x), µ⟩2

for all (x, µ) ∈ X × Y . Fix n continuous functions g1, . . . , gn : R → R satisfying

max
1≤k≤n


sup

t∈R

t∫

0

gk(s)ds− inf
t∈R

t∫

0

gk(s)ds


 < δ (2.8)

and consider the function φ : X → R defined by

φ(x) = −
n∑

k=1

xk∫

0

gk(s)ds

for all x ∈ X. Clearly, in view of (2.7) and (2.8), we have

sup
X
φ− inf

X
φ ≤

n∑

k=1


sup

t∈R

t∫

0

gk(s)ds− inf
t∈R

t∫

0

gk(s)ds




≤ n max
1≤k≤n


sup

t∈R

t∫

0

gk(s)ds− inf
t∈R

t∫

0

gk(s)ds




< inf
X

sup
Y
h− sup

Y
inf
X
h.

So, each assumption of Theorem 2.1 is satisfied. As a consequence, there exists µ̃ ∈ Y
such that the function

Jµ̃(·) := h(·, µ̃) + φ(·)
has at least two global minima in X. It is clear that this function Jµ̃ is C1, with
derivative given by

J ′
µ̃(x)(y) = K

(
n+1∑

h=1
|xh − xh−1|2

)
⟨x, y⟩1 −

n∑

k=1
gk(xk)yk −

n∑

k=1
µ̃kfk(xk)yk

for all x, y ∈ X. So, taking into account that

⟨x, y⟩1 = −
n∑

k=1
(xk+1 − 2xk + xk−1)yk,
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we have

J ′
µ̃(x)(y) = −K

(
n+1∑

h=1
|xh − xh−1|2

)
n∑

k=1
(xk+1 − 2xk + xk−1)yk

−
n∑

k=1
gk(xk)yk −

n∑

k=1
µ̃kfk(xk)yk

(2.9)

for all x, y ∈ X. Since Jµ̃ is coercive and has at least two global minima, by a classical
theorem of Courant, it possesses at least three critical points which, by (2.9), are three
solutions of the problem.

Here is a remarkable corollary of Theorem 2.3.

Corollary 2.4. Let f1, . . . fn : R → R be n continuous functions satisfying conditions
(b) and (c) of Theorem 2.3. Then, for each a, r > 0 and b < 0, there exists a number
δ > 0 with the following property: for every n-tuple of continuous functions g1, . . . , gn :
R → R satisfying

max
1≤k≤n


sup

t∈R

t∫

0

gk(s)ds− inf
t∈R

t∫

0

gk(s)ds


 < δ,

there exists (µ̃1, . . . µ̃n) ∈ Rn, with
∑n

k=1 |µ̃k|2 < r2, such that the problem





−
(
a

n+1∑

h=1
|xh − xh−1|2 + b

)
(xk+1 − 2xk + xk−1) = gk(xk) + µ̃kfk(xk), k=1, . . . , n,

x0 = xn+1 = 0

has at least three solutions.

Proof. It is enough to observe that the function K(t) = at+ b satisfies condition (a)
of Theorem 2.3.

Remark 2.5. It is important to remark that the technique adopted in the proof
Theorem 2.3 cannot be used to treat the non-discrete problem, keeping condition (a).
This is due to the fact that, under condition (a), the functional

u 7→

∫
Ω

|∇u(x)|2dx∫

0

K(s)ds

is not weakly lower semicontinuous in H1
0 (Ω).
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