Opuscula Math. 45, no. 5 (2025), 623-645
https://doi.org/10.7494/OpMath.2025.45.5.623
Opuscula Mathematica
Nontrivial solutions for Neumann fractional p-Laplacian problems
Chun Li
Dimitri Mugnai
Tai-Jin Zhao
Abstract. In this paper, we investigate some classes of Neumann fractional \(p\)-Laplacian problems. We prove the existence and multiplicity of nontrivial solutions for several different nonlinearities, by using variational methods and critical point theory based on cohomological linking.
Keywords: fractional \(p\)-Laplacian, Neumann boundary condition, linking over cones.
Mathematics Subject Classification: 35A15, 47J30, 35S15, 47G10, 45G05.
- B. Abdellaoui, A. Attar, R. Bentifour, On fractional \(p\)-Laplacian parabolic problem with general data, Ann. Mat. Pura Appl. (4) 197 (2018), 329-356. https://doi.org/10.1007/s10231-017-0682-z
- A. Audrito, J.-C. Felipe-Navarro, X. Ros-Oton, The Neumann problem for the fractional Laplacian: regularity up to the boundary, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (2023), 1155-1222. https://doi.org/10.2422/2036-2145.202105_096
- B. Barrios, E. Colorado, A. De Pablo, U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023
- B. Barrios, L. Montoro, I. Peral, F. Soria, Neumann conditions for the higher order \(s\)-fractional Laplacian \((-\Delta)^s u\) with \(s>1\), Nonlinear Anal. 193 (2020), 111368. https://doi.org/10.1016/j.na.2018.10.012
- P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012. https://doi.org/10.1016/0362-546x(83)90115-3
- Z. Binlin, G. Molica Bisci, R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), 2247-2264. https://doi.org/10.1088/0951-7715/28/7/2247
- T. Chen, W. Liu, Solvability of fractional boundary value problem with \(p\)-Laplacian via critical point theory, Bound. Value Probl. 75 (2016), 1-12. https://doi.org/10.1186/s13661-016-0583-x
- E. Cinti, F. Colasuonno, Existence and non-existence results for a semilinear fractional Neumann problem, NoDEA Nonlinear Differential Equations Appl. 30 (2023), 79. https://doi.org/10.1007/s00030-023-00886-4
- M. Degiovanni, S. Lancellotti, Linking over cones and nontrivial solutions for \(p\)-Laplace equations with \(p\)-superlinear nonlinearity, Ann. Inst. Henri Poincare, Anal. Non Lineaire 24 (2007), 907-919. https://doi.org/10.1016/j.anihpc.2006.06.007
- L.M. Del Pezzo, J.D. Rossi, A.M. Salort, Fractional eigenvalue problems that approximate Steklov eigenvalue problems, Proc. R. Soc. Edinb., Sect. A 148 (2018), 499-516. https://doi.org/10.1017/s0308210517000361
- E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
- S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33 (2017), 377-416. https://doi.org/10.4171/rmi/942
- D.E. Edmunds, W.D. Evans, Fractional Sobolev Spaces and Inequalities, Cambridge University Press, 2022. https://doi.org/10.1017/9781009254625
- E.R. Fadell, P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139-174. https://doi.org/10.1007/bf01390270
- M. Frigon, On a new notion of linking and application to elliptic problems at resonance, J. Differ. Equ. 153 (1999), 96-120. https://doi.org/10.1006/jdeq.1998.3540
- A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional \(p\)-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2014), 101-125. https://doi.org/10.1515/acv-2014-0024
- A. Iannizzotto, M. Squassina, Weyl-type laws for fractional \(p\)-eigenvalue problems, Asymptot. Anal. 88 (2014), 233-245. https://doi.org/10.3233/asy-141223
- J.M. Mazon, J.D. Rossi, J. Toledo, Fractional \(p\)-Laplacian evolution equations, J. Math. Pures Appl. 105 (2016), 810-844. https://doi.org/10.1016/j.matpur.2016.02.004
- D. Motreanu, V.V. Motreanu, N. Papageorgiou, Topological and variational methods with applications to nonlinear boundary value problems, Springer, New York, 2014. https://doi.org/10.1007/978-1-4614-9323-5
- D. Mugnai, Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), 379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition, NoDEA. Nonlinear Differential Equations Appl. 19 (2012), 299-301. https://doi.org/10.1007/s00030-011-0129-y
- D. Mugnai, N.S. Papageorgiou, Wang's multiplicity result for superlinear \((p,q)\)-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), 4919-4937. https://doi.org/10.1090/s0002-9947-2013-06124-7
- D. Mugnai, K. Perera, E. Proietti Lippi, A priori estimates for the fractional \(p\)-Laplacian with nonlocal Neumann boundary conditions and applications, Comm. Pure Appl. Anal. 21 (2022), 275-292. https://doi.org/10.3934/cpaa.2021177
- D. Mugnai, A. Pinamonti, E. Vecchi, Towards a Brezis-Oswald-type result for fractional problems with Robin boundary conditions, Calc. Var. Partial Differ. Equ. 59 (2020), 43. https://doi.org/10.1007/s00526-020-1708-8
- D. Mugnai, E. Proietti Lippi, Linking over cones for the Neumann fractional \(p\)-Laplacian, J. Differential Equations 271 (2021), 797-820. https://doi.org/10.1016/j.jde.2020.09.018
- D. Mugnai, E. Proietti Lippi, Neumann fractional \(p\)-Laplacian: eigenvalues and existence results, Nonlinear Anal. 188 (2019), 455-474. https://doi.org/10.1016/j.na.2019.06.015
- D. Mugnai, E. Proietti Lippi, Quasilinear fractional Neumann problems, Mathematics 13 (2025), 85. https://doi.org/10.20944/preprints202411.0826.v1
- R. Musina, A.I. Nazarov, Strong maximum principles for fractional Laplacians, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), 1223-1240. https://doi.org/10.1017/prm.2018.81
- G. Palatucci, The Dirichlet problem for the \(p\)-fractional Laplace equation, Nonlinear Anal. 177 (2018), 699-732. https://doi.org/10.1016/j.na.2018.05.004
- P. Piersanti, P. Pucci, Existence theorems for fractional \(p\)-Laplacian problems, Anal. Appl. (Singap.) 15 (2017), 607-640. https://doi.org/10.1142/s0219530516500020
- P. Stinga, B. Volzone, Fractional semilinear Neumann problems arising from a fractional Keller-Segel model, Calc. Var. Partial Differential Equations 54 (2015), 1009-1042. https://doi.org/10.1007/s00526-014-0815-9
- M. Warma, The fractional Neumann and Robin type boundary conditions for the regional fractional \(p\)-Laplacian, NoDEA Nonlinear Differ. Equ. Appl. 23 (2016), 1-46. https://doi.org/10.1007/s00030-016-0354-5
- Chun Li
- Southwest University, School of Mathematics and Statistics, Chongqing 400715, P.R. China
- Dimitri Mugnai (corresponding author)
https://orcid.org/0000-0001-8908-5220- Tuscia University, Department of Ecology and Biology (DEB), Largo dell'Universita, 01100 Viterbo, Italy
- Tai-Jin Zhao
- Southwest University, School of Mathematics and Statistics, Chongqing 400715, P.R. China
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2025-08-08.
- Revised: 2025-09-02.
- Accepted: 2025-09-02.
- Published online: 2025-09-13.

