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1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the following problem
{

(−∆)s
pu = λ|u|p−2u + f(x, u) in Ω,

Ns,pu = 0 in RN \ Ω,
(1.1)

where p > 1, 0 < s < 1, λ ∈ R, Ω ⊂ RN is a bounded domain with Lipschitz
boundary ∂Ω, f : Ω × R → R is a Carathéodory function and

(−∆)s
pu(x) := P.V.

∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

dy,

while
Ns,pu(x) :=

∫

Ω

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

dy

for all x ∈ RN \ Ω. This kind of condition is called nonlocal Neumann boundary
condition, see [12] for the case p = 2 and [4, 25, 26] for the general case. In order to
find solutions for problem (1.1), we will work with the function space

X :=
{

u : RN → R : u is measurable and such that ∥u∥ < ∞
}

,
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where

∥u∥ :=
(

1
2

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy +
∫

Ω

|u|pdx

) 1
p

,

and Q = R2N \ (CΩ)2, CΩ = RN \ Ω.1) For the convenience of use, we also denote the
fractional Gagliardo seminorm for a measurable function u by

[u] =
(∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy

) 1
p

,

see [13]. Finally, we denote by ∥ · ∥ν the standard Lν-norm, ν ∈ [1, ∞), that is

∥u∥ν =
(∫

Ω

|u(t)|νdt

) 1
ν

.

By the Sobolev embedding theorem, it is well known that the embedding mapping
X ↪→ Lν(Ω) is continuous for all 1 ≤ ν ≤ p∗

s and compact for all 1 ≤ ν < p∗
s,

see [11, Theorems 6.5, 6.7, 7.1], where p∗
s is the fractional Sobolev critical exponent of

order s, defined as

p∗
s =

{
Np

N−ps ps < N,

∞ ps ≥ N.

Hence, for 1 ≤ ν ≤ p∗
s, there is a positive constant M0 such that

∥u∥ν ≤ M0∥u∥ for all u ∈ X. (1.2)

From [25] we take the following definition.

Definition 1.1. Let u ∈ X. If

1
2

∫∫

Q

Jp(u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dxdy = λ

∫

Ω

|u|p−2uvdx +
∫

Ω

f(x, u)vdx

for any v ∈ X, we say that u is a weak solution of problem (1.1), where

Jp(u(x) − u(y)) = |u(x) − u(y)|p−2(u(x) − u(y)).

The corresponding functional Φ on X is defined by

Φ(u) = 1
2p

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy − λ

p

∫

Ω

|u|pdx −
∫

Ω

F (x, u)dx,

1) The constant 1/2 multiplying the double integral is used just for useful normalization in the proofs
of the main results.
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where F (x, t) =
∫ t

0 f(x, s)ds. At least formally, finding weak solutions of problem (1.1)
is equivalent to looking for critical points of Φ, and the equivalence depends on different
regularity and growth assumptions on f , which we introduce below.

Before giving our results, we need to recall some concepts about the eigenvalues of
the fractional p-Laplacian, see [25]: consider the nonlinear eigenvalue problem

{
(−∆)s

pu = λ|u|p−2u in Ω,

Ns,pu = 0 in RN \ Ω,
(1.3)

where λ ∈ R. If (1.3) has a nontrivial weak solution u ∈ X, that is

1
2

∫∫

Q

Jp(u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dxdy = λ

∫

Ω

|u|p−2uvdx

for all v ∈ X, we say that λ is an eigenvalue of (−∆)s
p with p-Neumann boundary

condition and u is an associated eigenfunction. We denote the set of all the eigenvalues
of (−∆)s

p in X by σ(s, p). As in [25] (the definitions therein were slightly different),
there is a sequence of eigenvalues defined by

λm := inf
{

sup
u∈A

1
2

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy : A ⊆ Σ, A is symmetric,

nonempty, closed and i(A) ≥ m

}
,

(1.4)

where i is the Z2-cohomological index of Fadell and Rabinowitz, see [14], and

Σ :=
{

u ∈ X :
∫

Ω

|u|pdx = 1
}

.

It should be pointed out that λ1 = 0 is the first (simple) eigenvalue, see [25], with
associated eigenspace made of constant functions. Finally, as in [24], for every m ∈ N,
we introduce the following two cones

C−
m :=

{
u ∈ X : 1

2

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy ≤ λm

∫

Ω

|u|pdx

}
, (1.5)

C+
m :=

{
u ∈ X : 1

2

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy ≥ λm+1

∫

Ω

|u|pdx

}
. (1.6)

In recent years, fractional problems have been widely investigated, mainly under
Dirichlet, but also with Neumann or Robin boundary conditions, see, for instance,
[1–4, 6–8, 10, 11, 13, 16–18, 22–25, 27–31], in which the authors studied regularity
issues, as well as existence and multiplicity results. In particular, if λ < 0, by using the
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Mountain Pass Theorem, in [25] the existence of nontrivial solutions for problem (1.1)
is found. On the other hand, if λ = 0, problem (1.1) is simplified as

{
(−∆)s

pu = f(x, u) in Ω,

Ns,pu = 0 in RN \ Ω,
(1.7)

and by applying the Weierstrass Theorem, in [24, Theorem 4.1] the following result
was proved:
Theorem 1.2. Suppose that f(x, t) satisfies the following conditions.

(H0) There exist a1 ∈ L
p

p−1 (Ω) and b1 ∈ R such that

|f(x, t)| ≤ a1(x) + b1|t|p−1

for all t ∈ R and a.e. x ∈ Ω.
(H1)

γ(x) := lim sup
|t|→∞

f(x, t)
|t|p−2t

< λ1 = 0.

Then problem (1.7) admits a weak solution.

In addition, in [24, Theorem 3.4] the existence of a nontrivial weak solution for
problem (1.1) is given under the Ambrosetti–Rabinowitz condition (AR) generalized
with the one introduced in [20]:
(H2) there exist µ > p and R0 ≥ 0 such that

0 < µF (x, t) ≤ f(x, t)t (1.8)

for every |t| > R0 and a.e. x ∈ Ω, and there exist µ̃ > p, b2 > 0 and a2 ∈ L1(Ω)
such that

F (x, t) ≥ b2|t|µ̃ − a2(x) (1.9)
for every t ∈ R and a.e. x ∈ Ω.

When the (AR) condition is not satisfied, by applying linking over cones introduced
in [9], in [24, Theorem 3.7] the existence of nontrivial solutions for problem (1.1)
is proved under (H5)–(H7) below and the following quasi-monotonocity condition
introduced in [25] as a slight improvement of the one given in [21]:
(H3) there exist ϑ ≥ 1 and β∗ ∈ L1(Ω), β∗ ≥ 0 such that

F
(
x, t1

)
≤ ϑF

(
x, t2

)
+ β∗(x)

for a.e. x ∈ Ω and all 0 ≤ t1 ≤ t2 or t2 ≤ t1 ≤ 0, where

F(x, t) := f(x, t)t − pF (x, t). (1.10)

Here, motivated by [24, 25], we are interested in the existence of multiple nontrivial
solutions for problem (1.1) by more general conditions. Now, we state our main results.
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Theorem 1.3. If hypotheses (H0), (H1) and
(H4) there exists ρ > 0 such that

F (x, t) ≥ 0 for every |t| ≤ ρ and a.e. x ∈ Ω,

are satisfied, then problem (1.7) admits at least two nontrivial solutions in RN , one
being nonnegative and the other being nonpositive.
Remark 1.4. Without further assumptions, we do not know whether the weak
solution obtained by Theorem 1.2 is nontrivial. However, by adding condition (H4),
we get at least two nontrivial solutions in RN for problem (1.7). So, Theorem 1.3 is
a remarkable improvement of Theorem 1.2. Moreover, we have the following result.
Theorem 1.5. Suppose that the following conditions hold:
(H5) f(x, 0) = 0 and there exist constants b3, b4 > 0 and q ∈

(
p, p∗

s

)
such that

|f(x, t)| ≤ b3 + b4|t|q−1

for every t ∈ R and a.e. x ∈ Ω;
(H6)

lim
t→±∞

F (x, t)
|t|p = +∞ uniformly for a.e. x ∈ Ω;

(H7)

lim
t→0

f(x, t)
|t|p−2t

= 0 uniformly for a.e. x ∈ Ω;

(H8)
F (x, t) ≥ 1

p
|t|p for all t ∈ R and a.e. x ∈ Ω;

(H9) there exist positive constants R1 and θ > 0, κ > max
{

1, N
ps

}
and a nonnegative

function W (x) ∈ L1(Ω) such that
(

F (x, t)
|t|p

)κ

≤ θF(x, t) + W (x)

for all |t| ≥ R1 and a.e. x ∈ Ω, where F is the function defined in (1.10).
Then problem (1.1) admits one nontrivial solution for every λ ∈ R.
Remark 1.6. We anticipate that in Section 2 we prove that under assumption (H5),
condition (H2) implies (H6) and (H9), while under assumptions (H5) and (H6), condi-
tion (H3) implies (H9). Hence, Theorem 1.5 extends the setting of both Theorem 3.4
and Theorem 3.7 in [24].

There are functions that satisfy our conditions but they do not satisfy (H2) and (H3).
For example, let N = p2,

f(x, t) =





p|t|p−2t
∫ |t|

1
g(τ)dτ+|t|p−1tg(|t|)

(
ln |t|+1

) 1
p

− |t|p−2t
∫ |t|

1
g(τ)dτ

p(ln |t|+1)1+ 1
p

+ |t|p−2t, |t| ≥ 1, x ∈ Ω,

|t|p−2t, |t| ≤ 1, x ∈ Ω,
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where g : (−∞, −1] ∪ [1, +∞) → R is defined by

g(t) =
{

n3
(

1
n2 −

∣∣|t| − n
∣∣
)

+ 1
t , n − 1

n2 ≤ |t| ≤ n + 1
n2 , n = 2, 3, 4, . . . ,

1
t , |t| < n − 1

n2 or |t| > n + 1
n2 , n = 2, 3, 4, . . . .

Then, f(x, t) satisfies conditions of Theorem 1.5. As a matter of fact, by straightforward
calculation, we have

g(n) = n + 1
n

, g

(
n + 1

n2

)
= 1

n + 1
n2

, n = 2, 3, 4, . . . ,

F (x, t) =





|t|p
∫ |t|

1
g(τ)dτ

(
ln |t|+1

) 1
p

+ 1
p |t|p, |t| ≥ 1, x ∈ Ω,

1
p |t|p, |t| ≤ 1, x ∈ Ω,

and

F(x, t) := f(x, t)t − pF (x, t) =





|t|p+1g(|t|)(
ln |t|+1

) 1
p

− |t|p
∫ |t|

1
g(τ)dτ

p
(

ln |t|+1
)1+ 1

p
, |t| ≥ 1, x ∈ Ω,

0, |t| ≤ 1, x ∈ Ω.

It is obvious that f(x, t) satisfies conditions (H5)–(H8). Now, we only verify that (H9)
holds for any κ ∈ (p, p + 1). On the one hand, for |t| ≥ R1(≥ n + 1

n2 ), we have
(

F (x, t)
|t|p

)κ

=
(

ln |t|
(ln |t| + 1)

1
p

+ 1
p

)κ

<

(
ln |t|

(ln |t| + 1)
1
p

+ 1
)κ

<

(
ln |t| + 1

(ln |t| + 1)
1
p

+ ln |t| + 1
(ln |t| + 1)

1
p

)κ

< 2p+1
(

ln |t| + 1
)p− 1

p

for κ ∈ (p, p + 1). On the other hand, we obtain

θF(x, t) + W (x) = θ

(
|t|p+1 1

|t|

(ln |t| + 1)
1
p

− |t|p ln |t|
p(ln |t| + 1)1+ 1

p

)
+ W (x)

≥ θ

(
|t|p

(ln |t| + 1)
1
p

− |t|p

p(ln |t| + 1)
1
p

)
+ W (x)

≥ θ

(
p − 1

p
(ln |t| + 1)p− 1

p

)
+ W (x).
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Hence, we can easily get that

2p+1(ln |t| + 1)p− 1
p ≤ θ

(
p − 1

p
(ln |t| + 1)p− 1

p

)
+ W (x)

for θ = 2p+1p
p−1 > 0 and a nonnegative function W (x) = x2 ∈ L1(Ω).

However, f(x, t) does not satisfy condition (H3). Actually, for t1 := n, t2 := n + 1
n2 ,

we have

F(x, t1) = F(x, n)

= np+1g(n)
(

ln n + 1
) 1

p

− np
∫ n

1 g(τ)dτ

p
(

ln n + 1
)1+ 1

p

= np+2 + np

(
ln n + 1

) 1
p

− np
∫ n

1 g(τ)dτ

p
(

ln n + 1
)1+ 1

p

and

ϑF(x, t2) = ϑF
(

x, n + 1
n2

)

=
ϑ
(

n + 1
n2

)p+1
g
(

n + 1
n2

)

(
ln
(

n + 1
n2

)
+ 1
) 1

p

−
ϑ
(

n + 1
n2

)p ∫ n+ 1
n2

1 g(τ)dτ

p
(

ln
(

n + 1
n2

)
+ 1
)1+ 1

p

=
ϑ
(

n + 1
n2

)p

(
ln
(

n + 1
n2

)
+ 1
) 1

p

−
ϑ
(

n + 1
n2

)p ∫ n+ 1
n2

1 g(τ)dτ

p
(

ln
(

n + 1
n2

)
+ 1
)1+ 1

p

.

Then, it is easy to get that

F(x, t1) − ϑF(x, t2) → +∞ as n → ∞.

Hence, we can not find constants ϑ ≥ 1, β∗(x) > 0 such that (H3) holds. f(x, t) does
not satisfy condition (H2) as well.

2. PRELIMINARY RESULTS

we recall an abstract critical point theorem which is based on the deformation lemma
and a general linking structure. The deformation lemma is guaranteed by a compactness
condition, the Palais–Smale condition or the Cerami condition – (PS) or (C) condition
for short, while the geometrical structure is obtained by the notion of linking sets
through the Alexander–Spanier cohomology, see [9, 15].
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Definition 2.1. Let D, S, A, B be four subsets of a metric space X with S ⊆ D and
B ⊆ A. We say that (D, S) links (A, B) if S∩A = B∩D = ∅ and, for every deformation
η : D × [0, 1] → X \ B with η(S × [0, 1]) ∩ A = ∅, we have that η(D × 1) ∩ A ≠ ∅.
If B = ∅, we simply say that (D, S) links A.

Definition 2.2. Let Φ : X → R be a C1 functional defined on a Banach space X.
We say that Φ satisfies:

– the Palais–Smale condition at level c ∈ R (PS)c, if for every {un}n such that
Φ(un) → c and Φ′(un) → 0 in X ′, then, up to a subsequence, un converges
strongly in X,

– the Cerami condition at level c ∈ R (C)c, if for every {un}n such that Φ(un) → c and
(1+∥un∥)Φ′(un) → 0 in X ′, then, up to a subsequence, un converges strongly in X.

Theorem 2.3. Let X be a complete Finsler manifold of class C1 and let Φ : X → R
be a function of class C1. Let D, S, A, B be four subsets of X, with S ⊆ D and B ⊆ A,
such that (D, S) links (A, B) and

sup
S

Φ < inf
A

Φ, sup
D

Φ < inf
B

Φ

(with sup ∅ = −∞ and inf ∅ = +∞). Define

c = inf
η∈N

sup Φ(η(D × {1})),

where N is the set of deformations η : D × [0, 1] → X \ B with η(S × [0, 1]) ∩ A = ∅.
Then we have

inf
A

Φ ≤ c ≤ sup
D

Φ.

Moreover, if Φ satisfies (PS)c (or (C)c), then c is a critical value of Φ.

Theorem 2.4 (Mountain Pass Lemma). Let
(
X, ∥ · ∥

)
be a Banach space, and let

Φ ∈ C1(X,R) satisfy the (PS) condition. Suppose that Φ(0) = 0 and:

(P1) there exist positive constants ϱ and α such that Φ(u) ≥ α > 0 for all u ∈ X with
∥u∥ = ϱ,

(P2) there exists e ∈ X with ∥e∥ > ϱ such that Φ(e) < 0.

Then Φ possesses a critical value c ≥ α given by

c := inf
ζ∈Γ

sup
s∈[0,1]

Φ(ζ(s)),

where
Γ := {ζ ∈ C([0, 1], X) : ζ(0) = 0, ζ(1) = e}.

As shown in [5], the deformation lemma holds also replacing the usual (PS) condi-
tion with the weaker (C) condition. So, Theorem 2.3 holds with the (PS)c condition
(as in the original [9, Theorem 2.2]), but also with the (C)c condition, for instance
see [19, Theorem 5.40].
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Definition 2.5. Let D, S, A, B be four subsets of a metric space X with S ⊆ D and
B ⊆ A; let m be a nonnegative integer and K be a field. We say that (D, S) links
(A, B) cohomologically in dimension m over K if S ∩A = B ∩D = ∅ and the restriction
homomorphism Hm(X \ B, X \ A;K) → Hm(D, S;K) is not identically zero. If B = ∅,
we simply say that (D, S) links A cohomologically in dimension m over K.

Theorem 2.6 (Theorem 2.8, [9]). Let X be a real normed space and let C−, C+ be
two cones such that C+ is closed in X, C− ∩ C+ = {0} and

(
X, C− \ {0}

)
links C+

cohomologically in dimension m over K. Let r−, r+ > 0 and let

D− =
{

u ∈ C− : ∥u∥ ≤ r−
}

, S− =
{

u ∈ C− : ∥u∥ = r−
}

,
D+ =

{
u ∈ C+ : ∥u∥ ≤ r+

}
, S+ =

{
u ∈ C+ : ∥u∥ = r+

}
.

Then the following facts hold:

(d1) (D−, S−) links C+ cohomologically in dimension m over K.
(d2) (D−, S−) links

(
D+, S+

)
cohomologically in dimension m over K.

Moreover, let e ∈ X with −e /∈ C−, r− > r+ and

Q =
{

u + te : u ∈ C−, t ≥ 0, ∥u + te∥ ≤ r−
}

,

H =
{

u + te : u ∈ C−, t ≥ 0, ∥u + te∥ = r−
}

,

then the following facts hold:
(d3)

(
Q, D− ∪ H

)
links S+ cohomologically in dimension m + 1 over K.

(d4) D− ∪ H links
(
D+, S+

)
cohomologically in dimension m over K.

Corollary 2.7 ([9, Corollary 2.9]). Let X be a real normed space and C−, C+ be two
symmetric cones in X such that C+ is closed in X, C− ∩ C+ = {0} and such that

i(C− \ {0}
)

= i
(
X \ C+) < ∞.

Then the facts (d1)–(d4) of Theorem 2.6 hold for m = i
(
C− \ {0}

)
and K = Z2.

Proposition 2.8 ([9, Proposition 2.4]). If (D, S) links (A, B) cohomologically (in
some dimension), then (D, S) links (A, B).

According to (1.5) and (1.6), we know that C−
m, C+

m are two cones and satisfy the
following identity.

Lemma 2.9 ([24, Theorem 2.6]). Let m ≥ 1 be such that λm < λm+1, then we have

i(C−
m \ {0}) = i(X \ C+

m) = m.

We are now ready to prove that our assumptions are more general than the ones
in [24].

Lemma 2.10. Under condition (H5), condition (H2) implies conditions (H6)
and (H9).



632 Chun Li, Dimitri Mugnai, and Tai-Jin Zhao

Proof. It is obvious that (H6) holds due to (1.9) in (H2). Besides, since q ∈ (p, p∗
s),

one can easily get that q
q−p > N

ps . Then for any κ ∈
(

N
ps , q

q−p

)
, by straightforward

calculation, we obtain
q <

pκ

κ − 1 . (2.1)

By integrating (H5), we get that

lim
|t|→∞

F (x, t)
|t| pκ

κ−1
= 0 uniformly for a.e. x ∈ Ω. (2.2)

From (1.8) and (2.2), there exists a constant R2 ≥ R0 such that

0 <
F (x, t)
|t| pκ

κ−1
≤ (µ − p) 1

κ−1 (2.3)

for |t| ≥ R2 and a.e. x ∈ Ω. By taking the power κ − 1 in (2.3) and using (1.8),
we immediately find that

(
F (x, t)

|t|p
)κ

≤ (µ − p)F (x, t) ≤ f(x, t)t − pF (x, t) = F(x, t).

for |t| ≥ R2 and a.e. x ∈ Ω. So, condition (H9) holds with θ = 1 and W = 0.

Lemma 2.11. Under conditions (H5)–(H6), condition (H3) implies condition (H9).

Proof. From assumptions (H5) and (H6), it follows that there exists a positive constant
R3 > 1 such that

F (x, t)
|t|q ≤ b4

q
+ 1 (2.4)

and
F (x, t)

|t|p > 0 (2.5)

for all |t| ≥ R3 and a.e. x ∈ Ω. By (2.1), we obtain p > q(κ − 1)/κ, and since
κ < q/(q − p), we finally get p > (κ − 1)

(
q − p

)
. Setting ξ = p − (κ − 1)(q − p), then

one has ξ > 0. Now, let us consider the case of t ≥ R3, the case of t ≤ −R3 being
analogous. In view of (2.4) and (H3), it turns out that

(
F (x, t)

tp

)κ

−
(

F (x, R3)
R3

p

)κ

=
t∫

R3

d

ds

[(
F (x, s)

|s|p
)κ]

ds

=
t∫

R3

κ

(
F (x, s)

|s|p
)κ−1

f(x, s)s − pF (x, s)
|s|ps

ds
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=
t∫

R3

κ

(
F (x, s)

|s|q
)κ−1 F(x, s)

sξ+1 ds

≤ κ

(
b4
q

+ 1
)κ−1 t∫

R3

F(x, s)
sξ+1 ds

≤ κ

(
b4
q

+ 1
)κ−1

(ϑF(x, t) + β∗)
t∫

R3

1
sξ+1 ds

≤ κ

(
b4
q

+ 1
)κ−1

(ϑF(x, t) + β∗) 1
ξR3

ξ
,

that is
(

F (x, t)
tp

)κ

≤
(

b4
q

+ 1
)κ−1

κϑ

ξR3
ξ
F(x, t) +

(
b4
q

+ 1
)κ−1

κβ∗

ξR3
ξ

+
(

F (x, R3)
R3

p

)κ

for all t ≥ R3 and a.e. x ∈ Ω. Then, we have
(

F (x, t)
tp

)κ

≤ θF(x, t) + W (x) (2.6)

for all t ≥ R3 and a.e. x ∈ Ω, where

θ =
(

b4
q

+ 1
)κ−1

κϑ

ξR3
ξ
,

and

W (x) =
(

b4
q

+ 1
)κ−1

κβ∗

ξR3
ξ

+
(

F (x, R3)
R3

p

)κ

is a nonnegative function according to (2.5). Analogously, it is easy to verify that
inequality (2.6) holds for t ≤ −R3 and a.e. x ∈ Ω. Hence, condition (H9) holds.

In order to obtain multiple solutions for problem (1.7), we consider a truncated
problem, that is {

(−∆)s
pu = f(x, u±) in Ω,

Ns,pu = 0 in RN \ Ω.
(2.7)

Signed solutions of (2.7) are the critical points of the C1 functional I± on X defined by

I±(u) = 1
2p

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1
p

∫

Ω

|u|pdx

− 1
p

∫

Ω

∣∣u±∣∣pdx −
∫

Ω

F (x, u±)dx,

(2.8)
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where F (x, t±) =
∫ t

0 f(x, s±)ds, u+ := max{u, 0}, u− := max{−u, 0}, u = u+ − u−

and |u| = u+ + u−. From (2.8) we get that

〈
I ′

±(u), v
〉

= 1
2

∫∫

Q

Jp(un(x) − un(y))(v(x) − v(y))
|x − y|N+ps

dxdy +
∫

Ω

|u|p−2uvdx

−
∫

Ω

|u±|p−2u±vdx −
∫

Ω

f(x, u±)vdx

for all u, v ∈ X. We will prove that I+ admits a nonnegative critical point, which
is a nonnegative solution of (2.7), and so of (1.7), as well. In the same way, I− admits
a nonpositive solution, which provides the second nontrivial solution to (1.7). In the
following, we only consider I+, the approach for I− being similar. We also recall
the following fact, to be used later on:

Lemma 2.12 ([24, Equation (15)]). For any x, y ∈ R, the following inequality holds:
∣∣x− − y−∣∣p ≤ |x − y|p−2(x − y)

(
y− − x−). (2.9)

Now, we are ready to prove our results.

3. PROOF OF THEOREM 1.3

We will divide the proof into three steps.
Step 1. Under conditions (H0) and (H1), we prove that I+ is coercive, i.e., I+(u) → ∞
as ∥u∥ → ∞.

By (H1), for every ε > 0, there exists M1 > 0 such that

f(x, t+)
|t|p−2t

< γ(x) + ε

for all |t| ≥ M1 and a.e. x ∈ Ω. By simple calculations, one has

F (x, t+) ≤ γ(x) + ε

p
(|t|p − M1

p) + max{F (x, M1), F (x, −M1)}

for all |t| ≥ M1 and a.e. x ∈ Ω. Hence, it holds that

lim sup
|t|→∞

F (x, t+)
|t|p ≤ γ(x)

p
. (3.1)

Next, we show that

lim inf
∥u∥→∞

I+(u)
∥u∥p

> 0. (3.2)
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For this, let us choose any unbounded sequence {un}; by setting zn := un

∥un∥ , then
{zn}n is bounded and there exists a z ∈ X such that, up to a subsequence,





zn ⇀ z in X,

zn → z in Lν(Ω), ν ∈ [1, p∗
s),

zn → z a.e. in Ω.

(3.3)

By (H0), we immediately find that

F (x, u+
n )

∥un∥p
≤

a1(x)|un| + b1
p |un|p

∥un∥p
→ b1

p
|z|p a.e. in Ω,

as n → ∞. It turns out from the Generalized Fatou Lemma that

lim sup
n→∞

∫

Ω

F (x, u+
n )

∥un∥p
dx ≤

∫

Ω

lim sup
n→∞

F (x, u+
n )

∥un∥p
dx.

If x is such that {|un(x)|} is bounded, so that z(x) = 0, one has

lim sup
n→∞

F (x, u+
n )

∥un∥p
= 0.

If {|un(x)|} is unbounded, one deduces from (3.1) that

lim sup
n→∞

F (x, u+
n )

∥un∥p
= lim sup

n→∞

F (x, u+
n )

|un|p
|un|p
∥un∥p

≤ γ(x)
p

|z|p.

In conclusion, considering the points where {|un(x)|} is bounded or unbounded, we have

lim sup
n→∞

∫

Ω

F (x, u+
n )

∥un∥p
dx ≤

∫

Ω

γ(x)
p

|z|p ≤ 0. (3.4)

Notice that
I+(un)
∥un∥p

= 1
p

− 1
p

∫

Ω

|u+
n |p

∥un∥p
dx −

∫

Ω

F (x, u+
n )

∥un∥p
dx.

So, we find

lim inf
n→∞

I+(un)
∥un∥p

≥ lim inf
n→∞

(
1
p

− 1
p

∫

Ω

|un|p
∥un∥p

dx −
∫

Ω

F (x, u+
n )

∥un∥p
dx

)
.

By (3.4), we get

lim inf
n→∞

I+(un)
∥un∥p

≥

1 −
∫

Ω

(
γ(x) + 1

)
|z|pdx

p
.
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If z = 0, the lim inf is at least 1
p . If z ̸= 0, then the measure of the set where z ̸= 0

has positive measure. Thus, since γ(x) < 0 for a.e. x ∈ Ω, by the weak semicontinuity
of the norm in X, we find that

lim inf
n→∞

I+(un)
∥un∥p

>

1 −
∫

Ω

|z|pdx

p
≥

∥z∥p −
∫

Ω

|z|pdx

p
= [z]p

p
≥ 0.

This fact being true for any diverging sequence {un}, we get that (3.2) is satisfied,
and so I+ is coercive.
Step 2. I+ has a minimum point ū.

Indeed, I+ is sequentially lower semicontinuous with respect to the weak conver-
gence, since the norm is sequentially lower semicontinuous with respect to the weak
convergence, while

∫
Ω |u+|pdx and

∫
Ω F (x, u)dx are continuous.

Thus, by the Weierstrass Theorem I+ has a minimum point ū.
Step 3. ū is nonnegative and nontrivial.

Let us start showing that, under conditions (H0) and (H4), 0 is not an isolated
minimizer of I+. Indeed, from assumption (H4), for t ∈ (0, ρ), one has

F (x, t+) = F (x, t) ≥ 0.

Choose ϕ1 > 0 in Ω be a λ1-eigenfunction, that is ϕ1 is a constant (see [25]), for
instance let us fix ϕ1 = 1. Hence, taking τ ∈ (0, ρ), it holds that

I+(τ) = I+(τϕ1) = τp

2p

∫∫

Q

|ϕ1(x) − ϕ1(y)|p
|x − y|N+ps

dxdy + 1
p

∫

Ω

|τϕ1|pdx

− 1
p

∫

Ω

|τϕ+
1 |pdx −

∫

Ω

F (x, τϕ+
1 )dx

= −
∫

Ω

F (x, τϕ+
1 )dx ≤ 0 = I+(0).

Therefore, 0 is not an isolated minimizer of I+.
Conclusion. Finally, assume that u is a critical point of I+, so that, in particular,
⟨I ′

+(u), −u−⟩ = 0, that is

0 = −1
2

∫∫

Q

Jp(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+ps

dxdy −
∫

Ω

|u|p−2uu−dx

+
∫

Ω

|u+|p−2u+u−dx +
∫

Ω

f(x, u+)u−dx

= 1
2

∫∫

Q

Jp(u(x) − u(y))(u−(y) − u−(x))
|x − y|N+ps

dxdy +
∫

Ω

(u−)pdx,
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since f(x, u+)u− = 0 in Ω. By (2.9), we find

1
2

∫∫

Q

|u−(x) − u−(y)|p
|x − y|N+ps

dxdy +
∫

Ω

(u−)pdx ≤ 0.

So, u− = 0 in X. Being u ≥ 0 a critical point of I+, then it is also a critical point of I.
By Step 2, I+ has a nonnegative minimizer ū ∈ X, that is

I+(ū) = inf
u∈X

I+(u).

By Step 3, 0 is not an isolated minimizer of I+. So, if ū is an isolated critical point
of I+, we have ū ≠ 0. Therefore, ū is a nonzero critical point of I, and thus a nontrivial
nonnegative solution of (1.7). On the other hand, if ū is not an isolated critical point
of I+, then I already has infinitely many nontrivial critical points; in any case we find
a nontrivial solution. By applying the same reasoning to I−, one can find a nonpositive
critical point of I, say u ̸= 0. Hence, ū and u are two nontrivial signed solutions of
problem (1.7).

4. PROOF OF THEOREM 1.5

In order to get a nontrivial solution to (1.1), we introduce the related functional

Φ(u) = 1
2p

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1
p

∫

Ω

|u|pdx

− λ + 1
p

∫

Ω

|u|pdx −
∫

Ω

F (x, u)dx

= 1
p

∥u∥p − λ + 1
p

∫

Ω

|u|pdx −
∫

Ω

F (x, u)dx.

We will divide the proof into two steps.
Step 1. We show that Φ satisfies the (C)c condition for every c ∈ R. Let {un} ⊂ X be
a (C)c sequence for Φ, that is

(1 + ∥un∥)Φ′(un) → 0, (4.1)

and
Φ(un) → c ∈ R as n → ∞. (4.2)

We want to prove that {un} admits a strongly convergent subsequence. By standard
argument due to the reflexivity of X and the compact embedding of X into Lebesgue
spaces of order less than p∗, in order to prove that {un} admits a strongly convergent
subsequence, it is enough to prove that {un} is bounded.
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Now, assume by contradiction that {un} is unbounded. Up to a subsequence,
we can assume that ∥un∥ → +∞ as n → ∞ and that there exists w ∈ X such that,
set wn = un

∥un∥ , we have




wn ⇀ w in X,

wn → w in Lν(Ω), ν ∈ [1, p∗
s),

wn → w a.e. in Ω.

Define the set
Ω ̸= := {x ∈ Ω : w(x) ̸= 0}.

If |Ω ̸=| > 0, then one has

|un(x)| → +∞ for a.e. x ∈ Ω̸= as n → ∞.

Therefore, by (H6), we have

lim
n→∞

F (x, un)
∥un∥p

= lim
n→∞

F (x, un)
|un|p |wn|p = +∞ for a.e. x ∈ Ω̸=.

Again by (H6) we can invoke Fatou’s Lemma, obtaining
∫

Ω

lim inf
n→∞

F (x, un)
∥un∥p

dx ≤ lim inf
n→∞

∫

Ω

F (x, un)
∥un∥p

dx,

which leads to
lim

n→∞

∫

Ω

F (x, un)
∥un∥p

dx = +∞. (4.3)

From (4.2), one knows that there exists M2 ∈ R such that

− 1
2p

[un]p − 1
p

∫

Ω

|un|pdx + λ + 1
p

∫

Ω

|un|pdx +
∫

Ω

F (x, un)dx ≤ M2 for all n ∈ N.

So there exists some M3 = M3(λ) > 0 such that
∫

Ω

F (x, un)dx ≤ M2 + M3∥un∥p.

The above inequality implies that

lim sup
n→∞

∫

Ω

F (x, un)
∥un∥p

dx ≤ M3,

which contradicts with (4.3). Hence, |Ω̸=| = 0, namely w = 0 a.e. in Ω. Thus, we have
that

wn → 0 in Lν(Ω) for all ν ∈ [1, p∗
s). (4.4)
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From (H5) we know that if M4 > R1, then

|f(x, t)| ≤ b3 + b4Mq−1
4

for all (x, t) ∈ Ω × [−M4, M4]. So it is easy to get that

|F (x, t)| ≤ M5 (4.5)

for all (x, t) ∈ Ω × [−M4, M4] and M5 = b3M4 + b4
q Mq

4 , which implies that there exists
M6 > 0 such that

|F(x, t)| = |f(x, t)t − pF (x, t)| ≤ M6 (4.6)
for all (x, t) ∈ Ω × [−M4, M4]. Set

Ωn := {x ∈ Ω : |un(x)| ≥ M4}.

Then, from (4.2), (4.5), the Hölder inequality and (H9), we find that

1
p

− Φ(un)
∥un∥p

= 1
p

− c + o(1)
∥un∥p

=
∫

Ω

F (x, un)
∥un∥p

dx + λ + 1
p

∫

Ω

|un|p
∥un∥p

dx

=
∫

Ωn

F (x, un)
∥un∥p

dx +
∫

Ω\Ωn

F (x, un)
∥un∥p

dx + λ + 1
p

∫

Ω

|wn|pdx

≤
∫

Ωn

F (x, un)
|un|p |wn|pdx + M5|Ω|

∥un∥p
+ λ + 1

p

∫

Ω

|wn|pdx

≤
[ ∫

Ωn

(
F (x, un)

|un|p
)κ

dx

] 1
κ
[ ∫

Ωn

|wn| pκ
κ−1 dx

]κ−1
κ

+ M5|Ω|
∥un∥p

+ λ + 1
p

∥wn∥p
p

≤
[ ∫

Ωn

(θF(x, un) + W (x))dx

] 1
κ

∥wn∥p
pκ

κ−1
+ M5|Ω|

∥un∥p
+ λ + 1

p
∥wn∥p

p.

Writing
∫

Ωn
=
∫

Ω −
∫

Ω\Ωn
, by (4.6) we can estimate the previous quantity with

≤
[
θ(pΦ(un) − ⟨Φ′(un), un⟩) + θM6|Ω| + ∥W∥1

] 1
κ

∥wn∥p
pκ

κ−1

+ M5|Ω|
∥un∥p

+ λ + 1
p

∥wn∥p
p.

Since {un} is a Cerami sequence, we have that

{Φ(un)} is bounded and ⟨Φ′(un), un⟩ → 0 as n → ∞.
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Hence, from the previous inequalities we are finally led to

1
p

− c + o(1)
∥un∥p

≤ cn∥wn∥p
pκ

κ−1
+ o(1),

where cn is a bounded sequence of real numbers and o(1) → 0 as n → ∞. Since
κ > max{1, N

ps }, one has pκ
κ−1 ∈ (1, p∗

s) and so from (4.4), by letting n → ∞ in the
inequality above, we finally have

1
p

≤ 0.

This is an obvious contradiction. So, {un} is bounded and Φ satisfies the (C)c condition.
Step 2. Let {λm} be the sequence defined in (1.4), then either λ + 1 < λ1 = 0 or there
exists m ≥ 1 such that

λm ≤ λ + 1 < λm+1. (4.7)
First case: λ + 1 < λ1. By assumptions (H5) and (H7), for a fixed ε > 0, there exists
Mε > 0 such that

|F (x, t)| ≤ ε

p
|t|p + Mε|t|q

for a.e. x ∈ Ω and all t ∈ R. Let us choose ε such that λ + 1 + ε < 0. Then, for any
u ∈ X, we get by (1.2) that

Φ(u) ≥ 1
p

∥u∥p − λ + 1
p

∫

Ω

|u|pdx − ε

p

∫

Ω

|u|pdx − −Mε

∫

Ω

|u|qdx

≥ 1
p

∥u∥p − λ + 1 + ε

p

∫

Ω

|u|pdx − −Mq
0 Mε∥u∥q

≥ 1
p

∥u∥p − Mq
0 Mε∥u∥q = ∥u∥p

(
1
p

− Mq
0 Mε∥u∥q−p

)
.

Since q > p, we set

ϱ :=
(

1
2pMq

0 Mε

) 1
q−p

> 0,

and
α := ϱp

2p
> 0,

so that Φ(u) ≥ α for ∥u∥ = ϱ.
Now, take u ̸= 0 and t > 0; by (H6) we have

Φ(tu) = tp

p
∥u∥p − λ + 1

p
tp

∫

Ω

|u|pdx −
∫

Ω

F (x, tu)dx

≥ tp∥u∥p

(
1
p

−
∫

Ω

F (x, tu)
tp|u|p

|u|p
∥u∥p

dx

)
→ −∞,

as t → +∞.
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Hence, there exists t̄ > ϱ such that

Φ(t̄u) < 0.

Hence, by Theorem 2.4, there exists a critical point ū of Φ such that Φ(ū) > 0,
so that ū ̸= 0.
Second case: (4.7) holds.

By assumptions (H5) and (H7), fixed ε > 0 with λ + 1 + ε < λm+1, there exists
Mε > 0 such that

|F (x, t)| ≤ ε

p
|t|p + Mε|t|q

for a.e. x ∈ Ω and all t ∈ R. Now, let C−
m and C+

m be as in (1.5) and (1.6). So, for each
u ∈ C+

m, we get by (1.2) that

Φ(u) ≥ 1
p

∥u∥p − λ + 1
p

∫

Ω

|u|pdx − ε

p

∫

Ω

|u|pdx − −Mε

∫

Ω

|u|qdx

≥ 1
p

∥u∥p − 1
pλm+1

(λ + 1 + ε)[u]p − −Mε

∫

Ω

|u|qdx

≥ 1
p

(
1 − λ + 1 + ε

λm+1

)
∥u∥p − −Mq

0 Mε∥u∥q.

Since q > p, we set

r+ :=
[

1
2pMq

0 Mε

(
1 − λ + 1 + ε

λm+1

)] 1
q−p

> 0,

and

α :=
[

1
2p

(
1 − λ + 1 + ε

λm+1

)] q
q−p

(
1

Mq
0 Mε

) p
q−p

> 0,

so that Φ(u) ≥ α for ∥u∥ = r+.
From (H8) and (4.7), for all u ∈ C−

m, we have

Φ(u) ≤ 1
2p

∫∫

Q

|u(x) − u(y)|p
|x − y|N+ps

dxdy + 1
p

∫

Ω

|u|pdx

− λm

p

∫

Ω

|u|pdx − 1
p

∫

Ω

|u|pdx ≤ 0.

(4.8)

Now, take e ∈ X \ C−
m, so that for each u ∈ C−

m and t > 0, by (H6) we have

Φ(u + te) = 1
2p

∥u + te∥p − λ + 1
p

∫

Ω

|u + te|pdx −
∫

Ω

F (x, u + te)dx

≤ 1
2p

∥u + te∥p

(
1 − p

∫

Ω

F (x, u + te)
|u + te|p

|u + te|p
∥u + te∥p

dx

)
→ −∞,
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as t → +∞. Thus, for every u ∈ C−
m with ∥u∥ = 1, there is ru such that Φ(tu) ≤ 0 for

all t > ru. On the other hand, being C−
m ∩ S1

2) a compact set, in which all norms are
equivalent, it is easy to prove that ru depends continuously on u, so that there exists
r− > r+ such that

Φ(u + te) < 0 (4.9)

for all u ∈ C−
m ∩ S1 and all t ≥ r−.

Now, choose

D− = {u ∈ C−
m : ∥u∥ ≤ r−},

S+ = {u ∈ C+
m : ∥u∥ = r+},

Q = {u + te : u ∈ C−
m, t > 0, ∥u + te∥ ≤ r−},

H = {u + te : u ∈ C−
m, t > 0, ∥u + te∥ = r−}.

By the definitions of C−
m and C+

m, it follows from Lemma 2.9 that

i(C−
m \ {0}) = i(X \ C+

m) = m.

By Corollary 2.7, we know that point (d3) of Theorem 2.6 holds, namely, (Q, D− ∪ H)
links S+ cohomologically in dimension m+1 over Z2. In particular, (Q, D−∪H) links S+
thanks to Proposition 2.8. Moreover, by (4.8) and (4.9), together with the fact that Q
is compact, one has

sup
D−∪H

Φ < inf
S+

Φ, sup
Q

Φ < +∞.

Furthermore, by Step 1, the (C)c condition holds. Setting D = Q, S = D− ∪H, B = ∅,
A = S+, by Theorem 2.3, we have that Φ has a critical value c ≥ α. Hence, Φ has
a nontrivial critical point u∗ such that Φ(u∗) > 0.
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