Opuscula Math. 45, no. 5 (2025), 581-600
https://doi.org/10.7494/OpMath.2025.45.5.581

 
Opuscula Mathematica

Spreading in claw-free cubic graphs

Boštjan Brešar
Jaka Hedžet
Michael A. Henning

Abstract. Let \(p \in \mathbb{N}\) and \(q \in \mathbb{N} \cup \lbrace \infty \rbrace\). We study a dynamic coloring of the vertices of a graph \(G\) that starts with an initial subset \(S\) of blue vertices, with all remaining vertices colored white. If a white vertex \(v\) has at least \(p\) blue neighbors and at least one of these blue neighbors of \(v\) has at most \(q\) white neighbors, then by the spreading color change rule the vertex \(v\) is recolored blue. The initial set \(S\) of blue vertices is a \((p,q)\)-spreading set for \(G\) if by repeatedly applying the spreading color change rule all the vertices of \(G\) are eventually colored blue. The \((p,q)\)-spreading set is a generalization of the well-studied concepts of \(k\)-forcing and \(r\)-percolating sets in graphs. For \(q \geq 2\), a \((1,q)\)-spreading set is exactly a \(q\)-forcing set, and the \((1,1)\)-spreading set is a \(1\)-forcing set (also called a zero forcing set), while for \(q = \infty\), a \((p,\infty)\)-spreading set is exactly a \(p\)-percolating set. The \((p,q)\)-spreading number, \(\sigma_{(p,q)}(G)\), of \(G\) is the minimum cardinality of a \((p,q)\)-spreading set. In this paper, we study \((p,q)\)-spreading in claw-free cubic graphs. While the zero-forcing number of claw-free cubic graphs was studied earlier, for each pair of values \(p\) and \(q\) that are not both \(1\) we either determine the \((p,q)\)-spreading number of a claw-free cubic graph \(G\) or show that \(\sigma_{(p,q)}(G)\) attains one of two possible values.

Keywords: bootstrap percolation, zero forcing set, \(k\)-forcing set, spreading.

Mathematics Subject Classification: 05C35, 05C75.

Full text (pdf)

  1. A. Aazami, Hardness results and approximation algorithms for some problems on graphs, ProQuest LLC, Ann Arbor, MI, 2009, Thesis (Ph.D.), University of Waterloo (Canada).
  2. AIM Minimum Rank - Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008), 1628-1648. https://doi.org/10.1016/j.laa.2007.10.009
  3. D. Amos, Y. Caro, R. Davila, R. Pepper, Upper bounds on the \(k\)-forcing number of a graph, Discrete Appl. Math. 181 (2015), 1-10. https://doi.org/10.1016/j.dam.2014.08.029
  4. A. Babikir, M.A. Henning, Triangles and (total) domination in subcubic graphs, Graphs Combin. 38 (2022), Paper no. 28, 17 pp. https://doi.org/10.1007/s00373-021-02438-y
  5. A. Babikir, M.A. Henning, Upper total domination in claw-free cubic graphs, Graphs Combin. 38 (2022), Paper no. 172, 15 pp. https://doi.org/10.1007/s00373-022-02581-0
  6. J. Balogh, B. Bollobás, Bootstrap percolation on the hypercube, Probab. Theory Related Fields 134 (2006), 624-648. https://doi.org/10.1007/s00440-005-0451-6
  7. J. Balogh, G. Pete, Random disease on the square grid, Random Str. Alg. 13 (1998), 409-422. https://doi.org/10.1002/(sici)1098-2418(199810/12)13:3/4<409::aid-rsa11>3.3.co;2-5
  8. B. Bollobás, The Art of Mathematics: Coffee Time in Memphis, Cambridge Univ. Press, New York, 2006. https://doi.org/10.1017/cbo9780511816574
  9. B. Brešar, T. Dravec, A. Erey, J. Hedžet, Spreading in graphs, Discrete Appl. Math. 353 (2024), 139-150. https://doi.org/10.1016/j.dam.2024.04.019
  10. J. Chalupa, P.L. Leath, G.R. Reich, Bootstrap percolation on a Bethe lattice, J. Physics C: Solid State Physics 12 (1979), L31. https://doi.org/10.1088/0022-3719/12/1/008
  11. R. Davila, M.A. Henning, Zero forcing in claw-free cubic graphs, Bull. Malays. Math. Sci. Soc. 43 (2020), 673-688. https://doi.org/10.1007/s40840-018-00705-5
  12. P.J. Dukes, J.A. Noel, A.E. Romer, Extremal bounds for 3-neighbour bootstrap percolation in dimensions two and three, arXiv:2209.07594 19 Sep 2022. https://doi.org/10.1137/22m1534195
  13. S.M. Fallat, L. Hogben, The minimum rank of symmetric matrices described by a graph: a survey, Linear Algebra Appl. 426 (2007) 558-582. https://doi.org/10.1016/j.laa.2007.05.036
  14. R.J. Faudree, R.J. Gould, M.S. Jacobson, L.M. Lesniak, T.E. Lindquester, On independent generalized degrees and independence numbers in \(K(1,m)\)-free graphs, Discrete Math. 103 (1992), 17-24. https://doi.org/10.1016/0012-365x(92)90035-e
  15. D. Ferrero, L. Hogben, F. Kenter, M. Young, The relationship between \(k\)-forcing and \(k\)-power domination, Discrete Math. 341 (2018) 1789-1797. https://doi.org/10.1016/j.disc.2017.10.031
  16. M. Gentner, L. Penso, D. Rautenbach, U. Souza, Extremal values and bounds for the zero forcing number, Discrete Appl. Math. 214 (2016), 196-200. https://doi.org/10.1016/j.dam.2016.06.004
  17. T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Domination in Graphs: Core Concepts, Series: Springer Monographs in Mathematics, Springer, Cham, 2023.
  18. M. He, H. Li, N. Song, S. Ji, The zero forcing number of claw-free cubic graphs, Discrete Appl. Math. 359 (2024), 321-330. https://doi.org/10.1016/j.dam.2024.08.011
  19. J. Hedžet, M.A. Henning, 3-neighbor bootstrap percolation on grids, Discuss. Math. Graph Theory 45 (2025), 283-310. https://doi.org/10.7151/dmgt.2531
  20. M.A. Henning, C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. 312 (2012), 3107-3116. https://doi.org/10.1016/j.disc.2012.06.024
  21. L. Hogben, J.C.-H. Lin, B.L. Shader, Inverse problems and zero forcing for graphs, Mathematical Surveys and Monographs 270, American Mathematical Society, Providence, 2022. https://doi.org/10.1090/surv/270
  22. T. Kalinowski, N. Kamčev, B. Sudakov, The zero forcing number of graphs, SIAM J. Discrete Math. 33 (2019), 95-115. https://doi.org/10.1137/17m1133051
  23. H. Li, C. Virlouvet, Neighborhood conditions for claw-free Hamiltonian graphs, Twelfth British Combinatorial Conference (Norwich, 1989), Ars Combin. 29 (1990), 109-116.
  24. G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory Ser. B 28 (1980), 284-304. https://doi.org/10.1016/0095-8956(80)90074-x
  25. E. Riedl, Largest and smallest minimal percolating sets in trees, Electron. J. Combin. 19 (2012), #P64. https://doi.org/10.37236/2152
  26. A.E. Romer, Tight bounds on \(3\)-neighbor bootstrap percolation, Master's Thesis, University of Victoria, Victoria, Canada, 2022.
  • Boštjan Brešar (corresponding author)
  • ORCID iD https://orcid.org/0000-0001-8471-4796
  • University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
  • Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
  • Jaka Hedžet
  • ORCID iD https://orcid.org/0009-0009-5723-8603
  • University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
  • Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
  • Communicated by Dalibor Fronček.
  • Received: 2024-12-18.
  • Revised: 2025-07-06.
  • Accepted: 2025-07-11.
  • Published online: 2025-09-13.
Opuscula Mathematica - cover

Cite this article as:
Boštjan Brešar, Jaka Hedžet, Michael A. Henning, Spreading in claw-free cubic graphs, Opuscula Math. 45, no. 5 (2025), 581-600, https://doi.org/10.7494/OpMath.2025.45.5.581

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.