Opuscula Math. 45, no. 5 (2025), 581-600
https://doi.org/10.7494/OpMath.2025.45.5.581
Opuscula Mathematica
Spreading in claw-free cubic graphs
Boštjan Brešar
Jaka Hedžet
Michael A. Henning
Abstract. Let \(p \in \mathbb{N}\) and \(q \in \mathbb{N} \cup \lbrace \infty \rbrace\). We study a dynamic coloring of the vertices of a graph \(G\) that starts with an initial subset \(S\) of blue vertices, with all remaining vertices colored white. If a white vertex \(v\) has at least \(p\) blue neighbors and at least one of these blue neighbors of \(v\) has at most \(q\) white neighbors, then by the spreading color change rule the vertex \(v\) is recolored blue. The initial set \(S\) of blue vertices is a \((p,q)\)-spreading set for \(G\) if by repeatedly applying the spreading color change rule all the vertices of \(G\) are eventually colored blue. The \((p,q)\)-spreading set is a generalization of the well-studied concepts of \(k\)-forcing and \(r\)-percolating sets in graphs. For \(q \geq 2\), a \((1,q)\)-spreading set is exactly a \(q\)-forcing set, and the \((1,1)\)-spreading set is a \(1\)-forcing set (also called a zero forcing set), while for \(q = \infty\), a \((p,\infty)\)-spreading set is exactly a \(p\)-percolating set. The \((p,q)\)-spreading number, \(\sigma_{(p,q)}(G)\), of \(G\) is the minimum cardinality of a \((p,q)\)-spreading set. In this paper, we study \((p,q)\)-spreading in claw-free cubic graphs. While the zero-forcing number of claw-free cubic graphs was studied earlier, for each pair of values \(p\) and \(q\) that are not both \(1\) we either determine the \((p,q)\)-spreading number of a claw-free cubic graph \(G\) or show that \(\sigma_{(p,q)}(G)\) attains one of two possible values.
Keywords: bootstrap percolation, zero forcing set, \(k\)-forcing set, spreading.
Mathematics Subject Classification: 05C35, 05C75.
- A. Aazami, Hardness results and approximation algorithms for some problems on graphs, ProQuest LLC, Ann Arbor, MI, 2009, Thesis (Ph.D.), University of Waterloo (Canada).
- AIM Minimum Rank - Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008), 1628-1648. https://doi.org/10.1016/j.laa.2007.10.009
- D. Amos, Y. Caro, R. Davila, R. Pepper, Upper bounds on the \(k\)-forcing number of a graph, Discrete Appl. Math. 181 (2015), 1-10. https://doi.org/10.1016/j.dam.2014.08.029
- A. Babikir, M.A. Henning, Triangles and (total) domination in subcubic graphs, Graphs Combin. 38 (2022), Paper no. 28, 17 pp. https://doi.org/10.1007/s00373-021-02438-y
- A. Babikir, M.A. Henning, Upper total domination in claw-free cubic graphs, Graphs Combin. 38 (2022), Paper no. 172, 15 pp. https://doi.org/10.1007/s00373-022-02581-0
- J. Balogh, B. Bollobás, Bootstrap percolation on the hypercube, Probab. Theory Related Fields 134 (2006), 624-648. https://doi.org/10.1007/s00440-005-0451-6
- J. Balogh, G. Pete, Random disease on the square grid, Random Str. Alg. 13 (1998), 409-422. https://doi.org/10.1002/(sici)1098-2418(199810/12)13:3/4<409::aid-rsa11>3.3.co;2-5
- B. Bollobás, The Art of Mathematics: Coffee Time in Memphis, Cambridge Univ. Press, New York, 2006. https://doi.org/10.1017/cbo9780511816574
- B. Brešar, T. Dravec, A. Erey, J. Hedžet, Spreading in graphs, Discrete Appl. Math. 353 (2024), 139-150. https://doi.org/10.1016/j.dam.2024.04.019
- J. Chalupa, P.L. Leath, G.R. Reich, Bootstrap percolation on a Bethe lattice, J. Physics C: Solid State Physics 12 (1979), L31. https://doi.org/10.1088/0022-3719/12/1/008
- R. Davila, M.A. Henning, Zero forcing in claw-free cubic graphs, Bull. Malays. Math. Sci. Soc. 43 (2020), 673-688. https://doi.org/10.1007/s40840-018-00705-5
- P.J. Dukes, J.A. Noel, A.E. Romer, Extremal bounds for 3-neighbour bootstrap percolation in dimensions two and three, arXiv:2209.07594 19 Sep 2022. https://doi.org/10.1137/22m1534195
- S.M. Fallat, L. Hogben, The minimum rank of symmetric matrices described by a graph: a survey, Linear Algebra Appl. 426 (2007) 558-582. https://doi.org/10.1016/j.laa.2007.05.036
- R.J. Faudree, R.J. Gould, M.S. Jacobson, L.M. Lesniak, T.E. Lindquester, On independent generalized degrees and independence numbers in \(K(1,m)\)-free graphs, Discrete Math. 103 (1992), 17-24. https://doi.org/10.1016/0012-365x(92)90035-e
- D. Ferrero, L. Hogben, F. Kenter, M. Young, The relationship between \(k\)-forcing and \(k\)-power domination, Discrete Math. 341 (2018) 1789-1797. https://doi.org/10.1016/j.disc.2017.10.031
- M. Gentner, L. Penso, D. Rautenbach, U. Souza, Extremal values and bounds for the zero forcing number, Discrete Appl. Math. 214 (2016), 196-200. https://doi.org/10.1016/j.dam.2016.06.004
- T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Domination in Graphs: Core Concepts, Series: Springer Monographs in Mathematics, Springer, Cham, 2023.
- M. He, H. Li, N. Song, S. Ji, The zero forcing number of claw-free cubic graphs, Discrete Appl. Math. 359 (2024), 321-330. https://doi.org/10.1016/j.dam.2024.08.011
- J. Hedžet, M.A. Henning, 3-neighbor bootstrap percolation on grids, Discuss. Math. Graph Theory 45 (2025), 283-310. https://doi.org/10.7151/dmgt.2531
- M.A. Henning, C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. 312 (2012), 3107-3116. https://doi.org/10.1016/j.disc.2012.06.024
- L. Hogben, J.C.-H. Lin, B.L. Shader, Inverse problems and zero forcing for graphs, Mathematical Surveys and Monographs 270, American Mathematical Society, Providence, 2022. https://doi.org/10.1090/surv/270
- T. Kalinowski, N. Kamčev, B. Sudakov, The zero forcing number of graphs, SIAM J. Discrete Math. 33 (2019), 95-115. https://doi.org/10.1137/17m1133051
- H. Li, C. Virlouvet, Neighborhood conditions for claw-free Hamiltonian graphs, Twelfth British Combinatorial Conference (Norwich, 1989), Ars Combin. 29 (1990), 109-116.
- G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory Ser. B 28 (1980), 284-304. https://doi.org/10.1016/0095-8956(80)90074-x
- E. Riedl, Largest and smallest minimal percolating sets in trees, Electron. J. Combin. 19 (2012), #P64. https://doi.org/10.37236/2152
- A.E. Romer, Tight bounds on \(3\)-neighbor bootstrap percolation, Master's Thesis, University of Victoria, Victoria, Canada, 2022.
- Boštjan Brešar (corresponding author)
https://orcid.org/0000-0001-8471-4796- University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
- Jaka Hedžet
https://orcid.org/0009-0009-5723-8603- University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
- Michael A. Henning
https://orcid.org/0000-0001-8185-067X- University of Johannesburg, Department of Mathematics and Applied Mathematics, Johannesburg, South Africa
- Communicated by Dalibor Fronček.
- Received: 2024-12-18.
- Revised: 2025-07-06.
- Accepted: 2025-07-11.
- Published online: 2025-09-13.

