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Abstract. Let p ∈ N and q ∈ N ∪ {∞}. We study a dynamic coloring of the
vertices of a graph G that starts with an initial subset S of blue vertices, with all
remaining vertices colored white. If a white vertex v has at least p blue neighbors
and at least one of these blue neighbors of v has at most q white neighbors, then by
the spreading color change rule the vertex v is recolored blue. The initial set S of
blue vertices is a (p, q)-spreading set for G if by repeatedly applying the spreading
color change rule all the vertices of G are eventually colored blue. The (p, q)-spreading
set is a generalization of the well-studied concepts of k-forcing and r-percolating
sets in graphs. For q ≥ 2, a (1, q)-spreading set is exactly a q-forcing set, and the
(1, 1)-spreading set is a 1-forcing set (also called a zero forcing set), while for q = ∞,
a (p, ∞)-spreading set is exactly a p-percolating set. The (p, q)-spreading number,
σ(p,q)(G), of G is the minimum cardinality of a (p, q)-spreading set. In this paper, we
study (p, q)-spreading in claw-free cubic graphs. While the zero-forcing number of
claw-free cubic graphs was studied earlier, for each pair of values p and q that are not
both 1 we either determine the (p, q)-spreading number of a claw-free cubic graph G
or show that σ(p,q)(G) attains one of two possible values.
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1. INTRODUCTION

In this paper we continue the study of dynamic graph colorings and explore the
concept of (p, q)-spreading in claw-free cubic graph. The concept of spreading in
graphs is a generalization of the well-studied concepts of k-forcing and r-percolating
sets in graphs.

Consider a dynamic coloring of the vertices of a graph G that starts with an initial
subset S of blue vertices, with all remaining vertices colored white. For k ∈ N, the
color change rule in k-forcing is defined as follows: if a blue vertex u has at most k
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white neighbors, then all white neighbors of u are recolored blue. In particular, when
k = 1, this is the color change rule for zero forcing in graphs. The initial set S of
blue vertices is a k-forcing set for G if by repeatedly applying the color change rule in
k-forcing all the vertices of G are eventually colored blue. The k-forcing number of G,
denoted Fk(G), is the minimum cardinality among all k-forcing set of G. When k = 1,
the k-forcing number of G is called the zero forcing number and is denoted by Z(G),
and so Z(G) = F1(G).

The concept of bootstrap percolation has a similar definition to that of zero forcing,
yet a different motivation. It was introduced as a simplified model of a magnetic
system in 1979 [10], and was later studied on random graphs and also on deterministic
graphs. In particular, already some early papers considered bootstrap percolation
in grids [7, 8].

As before, we consider a dynamic coloring of the vertices of a graph G that
starts with an initial subset S of blue vertices, with all remaining vertices col-
ored white. We refer to blue vertices as “infected” and white vertices as “unin-
fected”. For r ∈ N, the color change rule in r-percolation is defined as follows: if
a white (uninfected) vertex u has at least r blue (infected) neighbors, then the ver-
tex u is recolored blue. The initial set S of blue vertices is an r-neighbor bootstrap
percolating set, or simply an r-percolating set, of G if by repeatedly applying the
color change rule in r-percolation all the vertices of G are eventually colored blue.
The r-neighbor bootstrap percolation number, or simply the r-percolation number,
of G, denoted m(G, r), is the minimum cardinality among all r-neighbor bootstrap
percolating sets of G.

Motivated by the similarity of the definitions of the above two concepts, a com-
mon generalization of k-forcing and r-bootstrap percolation was introduced in [9].
Let p ∈ N and q ∈ N ∪ {∞}. As before, we consider a dynamic coloring of the
vertices of a graph G that starts with an initial subset S of blue vertices, with all
remaining vertices colored white. The color change rule in (p, q)-spreading is defined
as follows: if a white vertex w has at least p blue neighbors, and one of the blue
neighbors of w has at most q white neighbors, then the vertex w is recolored blue. The
initial set S of blue vertices is a (p, q)-spreading set of G, if by repeatedly applying
the (p, q)-spreading color change rule all the vertices of G are eventually colored
blue. The (p, q)-spreading number, denoted σ(p,q)(G), of a graph G is the minimum
cardinality among all (p, q)-spreading sets.

The (p, q)-spreading set is a generalization of the well-studied concepts of k-forcing
and r-percolating sets in graphs. For q ≥ 2, a (1, q)-spreading set is exactly a q-forcing
set [3], and the (1, 1)-spreading set is a 1-forcing set (also called a zero forc-
ing set [2, 21]), while if q ≥ ∆(G) (including q = ∞), then a (p, q)-spreading set
is exactly a p-percolating set. In the foundational paper [9], the complexity of the
decision version of the (p, q)-spreading number was proved to be NP-complete for all
p and q, while efficient algorithms for determining these numbers were found in trees.
In addition, for almost all values of p and q, the (p, q)-spreading numbers of Cartesian
grids Pn 2 Pm were established in [9].

The following trivial observation will be (at least implicitly) used several times
in the paper.
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Observation 1.1. Let G be a graph, p ≥ 2 and q ∈ N∪{∞}. If P is a (p, q)-spreading
set in G, then P is also a (p, q+1)-spreading set in G as well as a (p−1, q)-spreading set
in G. In particular,

σ(p,q)(G) ≥ σ(p,q+1)(G) and σ(p,q)(G) ≥ σ(p−1,q)(G).

A graph is claw-free if it does not contain K1,3 as an induced subgraph. A cubic
graph (also called a 3-regular graph) is a graph in which every vertex has degree 3.
In this paper we study spreading in claw-free cubic graphs.

1.1. GRAPH THEORY NOTATION AND TERMINOLOGY

For notation and graph theory terminology, we in general follow [17]. Specifically, let G
be a graph with vertex set V (G) and edge set E(G), and of order n(G) = |V (G)| and
size m(G) = |E(G)|. A neighbor of a vertex v in G is a vertex u that is adjacent to v, that
is, uv ∈ E(G). The open neighborhood NG(v) of a vertex v in G is the set of neighbors
of v, while the closed neighborhood of v is the set NG[v] = {v} ∪ N(v). We denote the
degree of v in G by degG(v) = |NG(v)|, and ∆(G) = max{degG(v) : v ∈ V (G)}. For
a set S ⊆ V (G), its open neighborhood is the set NG(S) = ∪v∈SNG(v), and its closed
neighborhood is the set NG[S] = NG(S) ∪ S.

For a set S ⊆ V (G), the subgraph induced by S is denoted by G[S]. Further, the
subgraph of G obtained from G by deleting all vertices in S and all edges incident
with vertices in S is denoted by G − S; that is, G − S = G[V (G) \ S]. If S = {v}, then
we also denote G − S simply by G − v. If F is a graph, then an F -component of G is
a component isomorphic to F . We denote by α(G) the independence number of G,
and so α(G) is the maximum cardinality among all independent sets of G. A vertex
cover of G is a set S of vertices such that every edge of G is incident with at least one
vertex in S. The vertex covering number β(G) (also denoted τ(G) in the literature),
equals the minimum cardinality among all vertex covers of G. By the well-known
Gallai theorem, α(G) + β(G) = n(G) holds in any graph G.

We denote the path, cycle, and complete graph on n vertices by Pn, Cn, and Kn,
respectively, and we denote the complete bipartite graph with partite sets of cardinality n
and m by Kn,m. A triangle in G is a subgraph isomorphic to K3, whereas a diamond
in G is an induced subgraph of G isomorphic to K4 with one edge missing, denoted by
K4 − e. A graph is diamond-free if it does not contain K4 − e as an induced subgraph.
For k ≥ 1 an integer, we use the standard notation [k] = {1, . . . , k}.

1.2. MAIN RESULTS AND ORGANIZATION OF THE PAPER

Davila and Henning studied zero forcing in claw-free cubic graphs [11]. They established
two upper bounds, which are summarized in the following result (for the definition of
diamond-necklace Nk, see Section 2).
Theorem 1.2 ([11]). If G ̸= K4 is a connected, claw-free, cubic graph of order n,
then the following properties hold:
(a) Z(G) ≤ α(G) + 1,
(b) Z(G) ≤ n

3 + 1, unless G = N2 in which case Z(G) = 1
3 (n + 4).
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It is proved in [11] that both upper bounds in Theorem 1.2 are sharp.
He et al. [18] recently characterized the connected, claw-free cubic graphs G for
which Z(G) = α(G) + 1. Notably, there are only three sporadic graphs that attain
this value, namely N2, N3 and the Hamming graph K32K2. Since these graphs have
8, 12 and 6 vertices, respectively, the following result immediately follows.

Theorem 1.3 ([18]). If G ≠ K4 is a connected, claw-free, cubic graph of order at
least 14, then Z(G) ≤ α(G).

Note that Z(G) = σ(1,1)(G), and the mentioned result (Theorem 1.2(a)) is placed
in the (1, 1)-entry of Table 1.

From properties of connected, claw-free, cubic graphs G which we discuss in
Section 2, if G ≠ K4 then there is a unique partition of the vertex set V (G) into
subsets each of which induces either a triangle or a diamond. The number of these
subsets, called units, in G is denoted by u(G). Table 1 summarizes the values of
(p, q)-spreading numbers in claw-free cubic graphs G ≠ K4 for all possible p and q in
terms of the parameters α(G), β(G), u(G) and n(G). Besides the (1, 1)-entry giving
the mentioned upper bound on σ(1,1)(G) all other values in Table 1 are obtained in this
paper. It is easy to see that σ(1,2)(G) = 2 for any claw-free cubic graph G. Indeed, any
adjacent pair of vertices in G is a (1, 2)-spreading set in G. The results σ(1,q)(G) = 1
for any q ≥ 3 and σ(p,q)(G) = n(G) for any p ≥ 4 and any q ∈ N ∪ {∞} are trivial
consequences of definitions.

Table 1
(p, q)-spreading numbers of claw-free cubic graphs G, G ̸= K4

p

q
1 2 ≥ 3

1 ≤ α(G)(+1), n ≥ 14
[Thm. 1.3] ([Thm. 1.2])

2 1

2 u(G) + 1 or u(G) + 2
[Thm. 4.9]

u(G) or u(G) + 1
[Cor. 4.8]

u(G) or u(G) + 1
[Cor. 4.5]

3 β(G) or β(G) + 1
[Prop. 3.12]

β(G)
[Prop. 3.8]

β(G)
[Prop. 3.8]

≥ 4 n(G) n(G) n(G)

The paper is organized as follows. In Section 3, we consider (3, q)-spreading numbers
in claw-free cubic graphs; their values can be found in Line 3 of Table 1. (Note that
3-percolation coincides with (3, q)-spreading when q ≥ ∆(G).) In Section 4, we deal
with (2, q)-spreading numbers of claw-free cubic graphs; see Line 2 in Table 1. In the case
of (2, q)-spreading, where q ≥ 3, σ(2,q)(G) = u(G) + 1 precisely when G is a diamond
necklace Nk, while in all other claw-free cubic graphs σ(2,q)(G) = u(G). Thus, the
2-percolation number of claw-free cubic graphs is fully determined. On the other hand,
when q ≤ 2 a claw-free cubic graph can attain two values: σ(2,2)(G) ∈ {u(G), u(G)+1},
and σ(2,1)(G) ∈ {u(G) + 1, u(G) + 2}, but we have not established exactly which
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claw-free cubic graphs attain which of the two possible values. We conclude the paper
with some open problems that arise from this study.

2. CLAW-FREE CUBIC GRAPHS

The following property of connected, claw-free, cubic graphs is established in [20].
Lemma 2.1 ([20]). If G ≠ K4 is a connected, claw-free, cubic graph of order n,
then the vertex set V (G) can be uniquely partitioned into sets each of which induces
a triangle or a diamond in G.

By Lemma 2.1, the vertex set V (G) of connected, claw-free, cubic graph G ≠ K4
can be uniquely partitioned into sets each of which induce a triangle or a diamond
in G. Following the notation introduced in [20], we refer to such a partition as
a triangle-diamond partition of G, abbreviated ∆-D-partition. We call every triangle
and diamond induced by a set in our ∆-D-partition a unit of the partition. A unit that is
a triangle is called a triangle-unit and a unit that is a diamond is called a diamond-unit.
(We note that a triangle-unit is a triangle that does not belong to a diamond.) Two
units in the ∆-D-partition are adjacent if there is an edge joining a vertex in one
unit to a vertex in the other unit. In what follows, we define several structures in
claw-free, cubic graphs that we will need when proving our main results. Some of these
definitions have already appeared in the literature, see, for example, [4, 5, 20].

For k ≥ 2 an integer, let Nk be the connected cubic graph constructed as follows.
Take k disjoint copies D1, D2, . . . , Dk of a diamond, where V (Di) = {ai, bi, ci, di} and
where aibi is the missing edge in Di. Let Nk be obtained from the disjoint union
of these k diamonds by adding the edges {aibi+1 : i ∈ [k − 1]} and adding the edge
akb1. We call Nk a diamond-necklace with k diamonds. Let Ncubic = {Nk | k ≥ 2}.
The diamond-necklace, N4, with four diamonds is illustrated in Figure 1.

c1

d1

b1 a1

c2

d2

b2 a2

c3

d3

b3 a3

d4

c4

b4 a4

Fig. 1. The diamond-necklace N4

For k ≥ 1 an integer, let F2k be the connected cubic graph constructed as follows.
Take 2k disjoint copies T1, T2, . . . , T2k of a triangle, where V (Ti) = {xi, yi, zi} for
i ∈ [2k]. Let

Ea = {x2i−1x2i : i ∈ [k]},

Eb = {y2i−1y2i : i ∈ [k]},

Ec = {z2iz2i+1 : i ∈ [k]},
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where addition is taken modulo 2k (and so, z1 = z2k+1). Let F2k be obtained from the
disjoint union of these 2k triangles by adding the edges Ea ∪ Eb ∪ Ec. The resulting
graph F2k we call a triangle-necklace with 2k triangles. Let Tcubic = {F2k : k ≥ 1}.
The triangle-necklace F6 is shown in Figure 2.
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z2
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y5

z5

y6

z6
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Fig. 2. The triangle-necklace F6

For k ≥ 2 an integer, take 2k disjoint copies T1, T2, . . . , T2k of a triangle, where
V (Ti) = {xi, yi, zi} for i ∈ [2k], and take k disjoint copies D1, D2, . . . , Dk of a diamond,
where V (Dj) = {aj , bj , cj , dj} and where ajbj is the missing edge in Dj for j ∈ [k]. Let

E1 = {x2i−1ai : i ∈ [k]},

E2 = {x2ibi : i ∈ [k]},

E3 = {y2i−1z2i+1 : i ∈ [k − 1]} ∪ {y2k−1z1},

E4 = {y2iz2i+2 : i ∈ [k − 1]} ∪ {y2kz2}.

Let H2k be obtained from the disjoint union of these 2k triangles and k dia-
monds by adding the edges E1 ∪ E2 ∪ E3 ∪ E4. The resulting graph H2k we call
a triangle-diamond-necklace with k diamonds. Let Hcubic = {H2k : k ≥ 2}. The
triangle-diamond-necklace H6 is shown in Figure 3.
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Fig. 3. The triangle-diamond-necklace H6
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3. 3-PERCOLATION IN CLAW-FREE, CUBIC GRAPHS

In this section, we study 3-percolation in claw-free, cubic graphs. The following lemma
is already known in the literature and follows readily from the definition of r-bootstrap
percolation.

Lemma 3.1 ([19]). For r ≥ 2 if H is a subgraph of a graph G such that every vertex
in H has strictly less than r neighbors in G that belong to V (G) \ V (H), then every
r-percolating set of G contains at least one vertex of H.

As a consequence of Lemma 3.1, we establish a relationship between the
r-percolation number and the independence number of an r-regular graph. Recall that
β(G) is the cardinality of a minimum vertex cover of G.

Proposition 3.2. Let G be an r-regular graph of order n, where r ≥ 2. A set S ⊂ V (G)
is an r-percolating set in G if and only if S is a vertex cover in G. In particular,
m(G, r) = β(G) = n − α(G).

Proof. Let S be an r-percolating set of an r-regular graph G. Suppose that G − S
contains an edge uv. Let H = G[{u, v}], and so H = K2 is a subgraph of G such that
every vertex in H has strictly less than r neighbors in G that belong to V (G) \ V (H).
By Lemma 3.1, we infer that every r-percolating set of G contains at least one vertex
of H, which is a contradiction with our assumption. Thus, S is a vertex cover of G.
Conversely, suppose that S is a vertex cover of G, and let I = V (G)\S. Since the set I
is an independent set of G, every vertex in I has all its r neighbors in the set V (G) \ I.
The set S is therefore an r-percolating set of G. Since m(G, r) is the cardinality
of a minimum r-percolating set, we infer that m(G, r) = β(G). Consequently, by
the famous Gallai theorem (α(G) + β(G) = n(G) in any graph G) we also have
m(G, r) = n − α(G).

Let us recall the statement of the well-known Brooks’ Coloring Theorem.

Theorem 3.3 (Brooks’ Coloring Theorem). If G is a connected graph, which is not
a complete graph or an odd cycle, then χ(G) ≤ ∆(G).

As a consequence of Theorem 3.3, we have the following trivial lower bound on the
independence number of a graph.

Theorem 3.4. If G ≠ Kn is a connected graph of order n with maximum degree ∆ ≥ 3,
then α(G) ≥ n

∆ .

Proof. As a consequence of Theorem 3.3, if G ≠ Kn is a connected graph of order n
with maximum degree ∆ ≥ 3, then the chromatic number of G is at most ∆, that is,
χ(G) ≤ ∆. Alternatively, viewing a ∆-coloring of G as a partitioning of its vertices into
∆ independent sets, called color classes, we infer by the Pigeonhole Principle that G
contains an independent set of cardinality at least n/∆, implying that α(G) ≥ n/∆.

The following upper bound on the independence number of a claw-free graph is
given by several authors.
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Theorem 3.5 ([14, 23]). If G is a claw-free graph of order n with minimum degree δ,
then

α(G) ≤
(

2
δ + 2

)
n.

As a consequence of Theorems 3.4 and 3.5, we have the following bounds on the
independence number of a claw-free graph.
Theorem 3.6. If G ≠ Kn is a connected, claw-free graph of order n with minimum
degree δ and maximum degree ∆ ≥ 3, then

n

∆ ≤ α(G) ≤
(

2
δ + 2

)
n.

As a consequence of Proposition 3.2 and Theorem 3.6, we have the following result.
Theorem 3.7. If G ≠ K4 is a connected, claw-free, cubic graph of order n, then the
following properties hold.
(a) 1

3 n ≤ α(G) ≤ 2
5 n.

(b) 3
5 n ≤ m(G, 3) ≤ 2

3 n.
We show next that the bounds of Theorem 3.7 are tight (in the sense that they

hold for connected graphs of arbitrarily large orders). Suppose that G ∈ Tcubic.
Thus, G is a triangle-necklace F2k for some k ≥ 1, and so G has order n = 6k and
contains 2k vertex disjoint triangles. Moreover, every unit of the (unique) ∆-D-partition
of G is a triangle-unit, implying that α(G) ≤ 1

3 n. By Theorem 3.7(a), α(G) ≥ 1
3 n.

Consequently, α(G) = 1
3 n. For example, the white vertices in the triangle-necklace

F6 of order n = 18 shown in Figure 4 form an α-set of F6 (of cardinality 6 = 1
3 n).

By Proposition 3.2, we infer that m(G, 3) = 2
3 n, and the corresponding set of shaded

vertices in Figure 4 is a β-set of G. This shows that the lower bound of Theorem 3.7(a)
is tight, as is the upper bound of Theorem 3.7(b).

Fig. 4. A β-set in the triangle-necklace F6

Suppose next that G ∈ Hcubic. Thus, G is a triangle-diamond-necklace H2k for some
k ≥ 2, and so G has order n = 10k. We can choose an independent set of G to contain
one vertex from every triangle-unit and two vertices from every diamond-unit, implying
that α(G) ≥ 4k = 2

5 n. For example, the white vertices in the triangle-diamond-necklace
H6 of order n = 30 shown in Figure 5 form an α-set of H6 (of cardinality 12 = 2

5 n).
By Proposition 3.2, we infer that m(G, 3) = 3

5 n, and the corresponding set of shaded
vertices in Figure 5 is a β-set of H6. This shows that the upper bound of Theorem 3.7(a)
is tight, as is the lower bound of Theorem 3.7(b).
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Fig. 5. A β-set in the triangle-diamond-necklace H6

Note that m(G, 3) in (claw-free) cubic graphs coincides with σ(3,q)(G) for all
q ≥ 3, establishing the (3, 3)-entry of Table 1. Hence, by Proposition 3.2, we have
σ(3,q)(G) = m(G, 3) = β(G) = n(G) − α(G) for all q ≥ 3. The result can be extended
to σ(3,2)(G), which yields the following result.

Proposition 3.8. If G is a connected, claw-free cubic graph of order n, then
σ(3,q)(G) = β(G) for every q ≥ 2.

Proof. We have already established that σ(3,q)(G) = β(G) for every q ≥ 3, so it remains
to resolve the case q = 2. Consider a 3-percolating set P of a connected, claw-free cubic
graph G, and color all its vertices blue. By Proposition 3.2, P is a vertex cover and so
V (G) \ P is an independent set in G. Now, since an independent set in G contains
at most one vertex from each triangle, a vertex cover contains at least two vertices
in each triangle. This implies that every vertex in P has a neighbor in P . Therefore,
since degG(x) = 3 for all x ∈ V (G), we infer that every (blue) vertex in P has at most
two (white) neighbors in V (G) \ P . Thus, P is a (3, 2)-spreading set. Since this is true
for every 3-percolating set P of G, we infer that σ(3,2)(G) ≤ m(G, 3) = β(G).

Conversely, by Observation 1.1, σ(3,2)(G) ≥ σ(3,3)(G). Combining the obtained
inequalities, we infer

β(G) ≥ σ(3,2)(G) ≥ σ(3,3)(G) = m(G, 3) = β(G).

We remark that σ(3,1)(G) > β(G) if G ∈ Hcubic is a triangle-diamond necklace.
Indeed, in any vertex cover P of G, every vertex in P has a neighbor in P , and so it
does not have at most one neighbor in V (G) \ P .

Recall that two units in the ∆-D-partition are adjacent if there exists at least one
edge joining a vertex in one unit to a vertex in the other unit. We say that a unit in
the ∆-D-partition of G is infected if all vertices in the unit are infected.

Lemma 3.9. If G is a connected, claw-free cubic graph that contains only triangle-units,
then there exists an independent set in G that contains a vertex from every triangle of G.
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Proof. By supposition, every unit in the ∆-D-partition of the connected, claw-free
cubic G is a triangle-unit. Since G is diamond-free, we note that the triangle-units in
G correspond to the triangles in G. The graph G has order n = 3t where t denotes
the number of triangle-units in G. By Theorem 3.7(a), we have t = 1

3 n ≤ α(G). Since
every independent set in G contains at most one vertex from every triangle-unit in G,
we infer that α(G) ≤ t = 1

3 n. Consequently, α(G) = 1
3 n = t and every maximum

independent set in G contains a vertex from every triangle of G.

Lemma 3.10. If G is a connected, claw-free cubic graph, then there exists an inde-
pendent set in G that contains a vertex from every triangle of G.

Proof. If the connected, claw-free cubic G that contains only triangle-units, then the
result follows from Lemma 3.9. Hence, we may assume that G contains at least one
diamond-unit. We now construct an independent set I of G as follows. Initially, we
set I = ∅. For each diamond-unit D of G, we add to the set I exactly one of the two
vertices of degree 3 in the diamond-unit D. Thereafter, we delete all diamond-units
from the graph G. If G contains only diamond-units, then the resulting set I has the
desired property that it contains a vertex from every triangle of G. Hence, we may
assume that G contains at least one triangle-unit.

Let G′ be the graph obtained by deleting all diamond-units from G. We note that
every component, C, of G1 has the following properties: (1) the component C contains
no diamond, (2) every vertex in C belongs to a triangle in the component C and
(3) the component C has minimum degree 2 (and maximum degree at most 3). We
now select an arbitrary vertex u1 of degree 2 in C, add the vertex u1 to the set I,
and delete the triangle that contains the vertex u1. In the resulting graph G2, once
again properties (1), (2) and (3) hold, and we select an arbitrary vertex u2 of degree 2
in G2, add the vertex u2 to the set I, and delete from G2 the triangle that contains
the vertex u2. Upon completion of this process, the resulting set I is an independent
set in G that contains a vertex from every triangle of G.

We note that the statement in Lemma 3.10 is equivalent to the following statement.

Lemma 3.11. If G is a connected, claw-free cubic graph, then there exists a vertex
cover P such that every triangle of G contains exactly two vertices from P .

Proposition 3.12. If G is a connected, claw-free cubic graph, then

σ(3,1)(G) ≤ β(G) + 1,

and this bound is sharp.

Proof. Let G be a connected, claw-free cubic graph, and let P be a 3-percolating
set of G satisfying |P | = m(G, 3) = β(G). We note that P is a vertex cover of G
and V (G) \ P is a maximum independent set of G. Clearly, every vertex, which is
not in P , has three neighbors in P , and so the first condition of the (3, 1)-spreading
rule is always satisfied with respect to P . In addition, due to Lemma 3.11 we may
assume that P contains exactly two vertices from every triangle in G, or, equivalently,
so that the independent set V (G) \ P contains a vertex from every triangle in G. Now,
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consider an arbitrary triangle T in G, and let P ∗ = P ∪ {v}, where v is the unique
vertex in V (T ) \ P . Let the vertices of P ∗ be initially infected, and note that (with
respect to P ∗) the triangle T is completely infected.

Let u be a vertex that is not yet infected and is adjacent to an infected triangle T ′

(with all three vertices of T ′ infected). In particular, we note that u /∈ P ∗. Suppose
firstly that u is adjacent to two vertices of T ′. Thus, the vertices in V (T ′) ∪ {u} induce
a diamond-unit. In this case, the vertex u immediately becomes infected, since both
of its neighbors in T ′ have no other uninfected neighbor. As a result, the (unique)
triangle containing the vertex u becomes an infected triangle, and so the diamond-unit
containing u is infected. Suppose next that u is adjacent to exactly one vertex w′

of T ′. Once again in this case, the vertex u immediately becomes infected, since its
neighbor w′ in T ′ has no other uninfected neighbor. On the other hand, suppose that
u is infected and is adjacent to an infected triangle T ′ (with all three vertices of T ′

infected), and there exists an uninfected neighbor v of u that belongs to the same unit
as u. Then v becomes infected, because u has only one uninfected neighbor, namely v.

In all of the above cases, the unit, which is adjacent to an infected unit, becomes
infected. Since G is connected, and initially there is a triangle infected (making the
unit in which the triangle lies also infected), we infer that due to the above arguments
all vertices in G become infected. Thus, σ(3,1)(G) ≤ |P ∗| = |P |+1 = β(G)+1, thereby
proving the desired upper bound. The case of a triangle-diamond necklace G ∈ Hcubic
shows that the bound is sharp.

4. 2-PERCOLATION IN CLAW-FREE, CUBIC GRAPHS

In this section, we study 2-percolation in claw-free, cubic graphs. It is easy to see that
m(K4, 2) = 2. In what follows we therefore restrict our attention to 2-percolation in
connected, claw-free, cubic graphs G different from K4. Thus, by Lemma 2.1, such
a graph G has a ∆-D-partition (in which every unit is a triangle-unit or a diamond-unit).
Recall that u(G) is defined as the number of units in this (unique) ∆-D-partition. In
what follows, if D is a diamond-unit in the ∆-D-partition of G, then a dominating
vertex in D is a vertex that is adjacent to the three other vertices in the diamond-unit D.

Proposition 4.1. If G ∈ Ncubic, then m(G, 2) = u(G) + 1.

Proof. Suppose that G ∈ Ncubic, and so G is a diamond-necklace Nk for some k ≥ 2.
Thus, G has u(G) = k units, each of which is a diamond-unit. Let S be a 2-percolating
set of G of minimum cardinality, and so S is an 2-percolating set of G satisfying
|S| = m(G, 2). By Lemma 3.1, we infer that the set S contains at least one vertex
from every diamond-unit of G. Moreover, if D is a diamond-unit of G and the set S
contains exactly one vertex from D, then by Lemma 3.1 we infer that such a vertex of
S is a dominating vertex of D. In particular, since S contains at least one vertex from
every unit in the ∆-D-partition of G, we note that m(G, 2) = |S| ≥ u(G) = k.

Suppose that |S| = k. By our earlier observations, the set S contains exactly
one vertex from every diamond-unit, namely a vertex from each diamond-unit that
dominates that unit. The resulting set S is a 2-packing in G; that is, dG(u, v) ≥ 3 for
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every two distinct vertices u and v that belong to S. Moreover in this case, letting
H = G − S, we note that H is a cycle C3k and every vertex in H has exactly one
neighbor that belongs to V (G) \ V (H) = S. Thus by Lemma 3.1, we infer that every
2-percolating set of G contains at least one vertex of H. However, this contradicts our
supposition that S is a 2-percolating set of G that contains no vertex of H. Hence,
m(G, 2) = |S| ≥ k + 1.

To establish an upper bound on m(G, 2) in this case when G = Nk, if S∗ consists
of a dominating vertex from k − 1 diamond-units and two dominating vertices from
the remaining diamond-unit, then S∗ is a 2-percolating set of G and |S∗| = k + 1. For
example, if G = N4 (here k = 4), then such a set S∗ illustrated in Figure 6 by the
shaded vertices is a 2-percolating set of G and |S∗| = 5.

Fig. 6. The diamond-necklace N4 and a 2-percolating set of size 5

This implies that m(G, 2) ≤ |S∗| = k + 1. Consequently, m(G, 2) = k + 1. Thus in this
case when G ∈ Ncubic, we have shown that m(G, 2) = u(G) + 1.

If two distinct units are joined by at least two edges, then we say that these two
units are double-bonded.

Lemma 4.2. If G ≠ K4 is a connected, claw-free, cubic graph and G /∈ Ncubic, then
there exists a triangle-unit T ′, such that the graph G − T ′ has at most two components.

Proof. Let T be the set of all triangle-units in G. Suppose to the contrary that for every
T ∈ T the graph G − T consists of three components. Let T1 ∈ T be a triangle-unit
such that at least one of the three components of the graph G − T1 does not contain
a triangle-unit. Denote this component by G1 and let D1 be the diamond-unit in G1
adjacent to T1. Then in G1, D1 is adjacent to exactly one diamond-unit D2, which is
in turn adjacent to another diamond-unit D3 and so on, which yields a contradiction
since G is finite. Therefore, G1 contains a triangle-unit T ′ /∈ T , which is the final
contradiction.

The following observation will be necessary for proving the subsequent theorem.

Observation 4.3. Let G ̸= K4 be a connected, claw-free, cubic graph, and U, V
adjacent units in the ∆-D-partition of G. Also, let uv be an edge connecting units
U and V , where u ∈ U and v ∈ V . If u is infected and another vertex v1 ∈ V , where
d(v1, u) = 2, is also infected, then the whole unit V becomes infected.
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Proof. Vertex v has two infected neighbors, namely u and v1. After that, if V is
a triangle unit, the remaining vertex of V is also infected, and if V is a diamond unit,
the remaining two vertices of V become infected after two steps.

Theorem 4.4. If G ̸= K4 is a connected, claw-free, cubic graph of order n that
contains u(G) units, then

m(G, 2) =
{

u(G) + 1, if G ∈ Ncubic,

u(G), otherwise.

Proof. By Lemma 3.1, we infer that every 2-percolating set of G contains at least
one vertex from every triangle-unit and every diamond-unit of G. Moreover, if D is
a diamond-unit of G and a 2-percolating set contains exactly one vertex from D, then
by Lemma 3.1 we infer that such a vertex is a dominating vertex of D. In particular,
since every 2-percolating set of G contains at least one vertex from every unit in the
∆-D-partition of G, we note that m(G, 2) ≥ u(G). If G ∈ Ncubic, then by Proposi-
tion 4.1, m(G, 2) = u(G) + 1. Hence, we may assume that G /∈ Ncubic, for otherwise
the desired result follows.

Since every triangle-unit contributes 3 to the order of the graph and every
diamond-unit contributes 4 to the order of the graph, we observe that if G has order n
with ut triangle-units and ud diamond-units, then u(G) = ut + ud and n = 3ut + 4ud.
By assumption, ut ≥ 1. Thus, since n is even, ut ≥ 2, that is, G contains at least two
triangle-units. According to Lemma 4.2, there exists a triangle-unit T1 of G, where
V (T1) = {t1, t2, t3}, such that G−T1 consists of at most two components. This implies
that at most one of the edges incident with exactly one vertex of T1 is a bridge. Since
G is connected, the triangle-unit T1 is adjacent to at least one other unit. Let U1 be
a unit that is adjacent to T1 such that the edge between U1 and T1 is not a bridge,
or T1 and U1 are double-bonded. Finally denote as G1 the component of G − T1
containing U1.

As observed earlier, m(G, 2) ≥ u(G). Hence, it suffices for us to show that
m(G, 2) ≤ u(G). For this purpose, we construct a 2-percolating set S of G that contains
exactly one vertex from each unit of G. Initially, we let S = ∅. We consider three cases.
First, suppose that the units T1 and U1 are not double-bonded.
Case 1. The unit U1 is a triangle-unit. Let V (U1) = {a1, b1, c1} and where t1c1 is an
edge. In this case, we add to S the vertices t1 and a1, and so S = {t1, a1}. The vertices
in S are indicated by the shaded vertices in Figure 7(a). Due to Observation 4.3, every
vertex in the triangle-unit U1 becomes infected.
Case 2. The unit U1 is a diamond-unit. Let V (U1) = {a1, b1, c1, d1} and where a1b1
is the missing edge in U1 and where t1b1 is an edge of G. In this case, we add to S
the vertices t1 and c1, and so S = {t1, c1}. The vertices in S are indicated by the shaded
vertices in Figure 7(b). Due to Observation 4.3, every vertex in the diamond-unit U1
becomes infected.
Case 3 . The units T1 and U1 are double-bonded. Thus, there is a vertex u ∈ U1 that is
joined to a vertex of T1 different from t1. Renaming the vertices t2 and t3 if necessary,
we may assume that ut2 is such an edge between the units T1 and U1. In particular,
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we note that t2 /∈ S and let S = {t1, u}. The vertices in S are indicated by the shaded
vertices in Figure 7(c). Again, due to Observation 4.3, every vertex in both units T1
and U1 becomes infected. In this case, the set S consists of two vertices, one vertex
from each of the units U1 and T1.

t2

t3

t1

b1

a1

c1
T1

(a)

U1

t2

t3

t1

d1

c1

b1 a1
T1

(b)

U1

t2

t1

t3

u

T1

(c)

U1

Fig. 7. Possible adjacent units in the proof of Theorem 4.4

Cases 1, 2 and 3 occur in Step 1 of our procedure to construct the set S. Thus
after Step 1, the initial set S consists of two vertices, namely a vertex t1 from the
triangle-unit T1 and one vertex from the unit U1 that is adjacent to T1. Moreover
in all three cases, every vertex in the unit U1 becomes infected. We now proceed to
Step 2 of our procedure to construct the set S.

Let U2 be a unit different from T1 that is adjacent to the infected unit U1, and
let uv be an edge that joins a vertex u ∈ U1 and a vertex v ∈ U2. Note that if there
is no such unit U2, then G consist only of units T1 and U1 and is now fully infected,
yielding the desired result. Since U2 ̸= T1, we note that v ≠ t1. In particular, we note
that v /∈ S since at this stage of the construction the set S only contains the vertex t1
and one other vertex, namely a vertex from U1.

Suppose that U2 is a triangle-unit. Let V (U2) = {v, v1, v2}. We now add to the set
S exactly one of the vertices v1 and v2. By symmetry, we may assume that v1 is added
to the set S. Once again, due to Observation 4.3, every vertex in the triangle-unit U2
becomes infected.

Suppose next that U2 is a diamond-unit. Let V (U2) = {v, v1, v2, v3}, where v1
and v2 are the dominating vertices of U2 (and so, vv3 is the missing edge in Dv). We
now add to the set S exactly one of the dominating vertices of U2. By symmetry,
we may assume that dominating vertex v1 of U2 is added to S. We again invoke
Observation 4.3, thus every vertex in the diamond-unit U2 becomes infected.

After Step 2 of our procedure to construct the set S, every vertex in the unit U2
becomes infected, and the set S contains exactly one vertex from each of the units
T1, U1 and U2.

Suppose that i ≥ 2 and after Step i of our procedure to construct the set S, the
units U1, U2, . . . , Ui are all infected, and the set S contains exactly one vertex from
each of the units U1, U2, . . . , Ui. Moreover, if T1 = Uj for some j ∈ [i] \ {1}, then after
Step i we have |S| = i and the set S contains exactly one vertex from each of the units
U1, U2, . . . , Ui, while if T1 ̸= Uj for any j ∈ [i], then |S| = i + 1 and S contains one
vertex from each of the units U1, U2, . . . , Ui, T1.
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In Step i + 1, let Ui+1 be a unit different the units U1, U2, . . . , Ui that is adjacent
to an infected unit Uj for some j ∈ [i], and let uv be an edge that joins a vertex u ∈ Uj

and a vertex v ∈ Ui+1.
Suppose that Ui+1 is a triangle-unit. Let V (Ui+1) = {v, v1, v2}. In this case, either

Ui+1 = T1 and renaming vertices of T1 if necessary we may assume that v1 = t1,
or Ui+1 ̸= T1, and we add to the set S the vertex v1. Suppose next that Ui+1 is
a diamond-unit. Let V (Ui+1) = {v, v1, v2, v3}, where v1 and v2 are the dominating
vertices of Ui+1 (and so, vv3 is the missing edge in Dv). We now add to the set S the
dominating vertex v1 of Ui+1. In either of these cases the vertices u and v1 satisfy
the conditions of Observation 4.3, therefore the whole unit Ui+1 becomes infected.

Continuing in the described way, the above process continues until every unit of G1
and also the unit T1 become infected. If G−T1 is connected, then all vertices of G have
become infected and S contains exactly one vertex from each unit of G, thus the proof
is complete. Otherwise, if G−T1 is not connected, then it has at most two components,
and let G2 be the component of G − T1 different from G1. Let U ′

1 be the unit in G2
that is adjacent to T1, and let v2a be the bridge of G connecting T1 with U ′

1. Now,
adding a dominating vertex b of U ′

1, different from a, we infer that all vertices of U ′
1

become infected (using the analogous arguments as in the previous cases). Now, we
can continue with the same process, continuing by infecting the units U ′

i in G2 that are
adjacent to an already infected unit by adding to S appropriately selected dominating
vertex of U ′

i . Since G2 is connected, we infer that all vertices of G2 become infected,
where we put in S exactly one vertex of each unit. Thus, S is a 2-percolating set of G,
implying that m(G, 2) ≤ u(G). As observed earlier, m(G, 2) ≥ u(G). Consequently,
m(G, 2) = u(G). This completes the proof of Theorem 4.4.

By definition of a (p, q)-spreading set in a graph, if G is cubic graph, then a set
is a (2, 3)-spreading set if and only if it is 2-percolating set, implying that
σ(2,3)(G) = m(G, 2). As an immediate consequence of Theorem 4.4, we infer the
following result.

Corollary 4.5. If G ̸= K4 is a connected, claw-free, cubic graph of order n that
contains u(G) units, then

σ(2,3)(G) =
{

u(G) + 1, if G ∈ Ncubic,

u(G), otherwise.

We are now in a position to establish the following relationships between the
(2, 2)-spreading number and the (2, 3)-spreading number of a connected, claw-free,
cubic graph.

Proposition 4.6. If G = K4 or if G ∈ Ncubic, then σ(2,2)(G) = σ(2,3)(G).

Proof. If G = K4, then σ(2,2)(G) = σ(2,3)(G) = 2. Hence, we may assume that G ≠ K4.
Suppose that G ∈ Ncubic. By Corollary 4.5, we have σ(2,3)(G) = u(G) + 1. Moreover,
as shown in the proof of Proposition 4.1, if G = Nk for some k ≥ 2, then we can
choose the (2, 3)-spreading set S of G to consists of a dominating vertex from k − 1
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diamond-units and two dominating vertices from the remaining diamond-unit in G
(as illustrated in Figure 6 in the case when k = 4). However, such a set S is also
a (2, 2)-spreading set S of G, and so σ(2,2)(G) ≤ |S| = σ(2,3)(G). By Observation 1.1,
σ(2,3)(G) ≤ σ(2,2)(G). Consequently, if G ∈ Ncubic, then σ(2,2)(G) = σ(2,3)(G).

Proposition 4.7. If G is a connected, claw-free, cubic graph, then

σ(2,2)(G) ≤ σ(2,3)(G) + 1.

Proof. Let G be a connected, claw-free, cubic graph. If G = K4 or if G ∈ Ncubic, then by
Proposition 4.6 we have σ(2,2)(G) = σ(2,3)(G). Hence, we may assume that G ≠ K4 and
G /∈ Ncubic. To prove that σ(2,2)(G) ≤ σ(2,3)(G)+1, let S be a (2, 3)-spreading set of G
as constructed in the proof of Theorem 4.4. Adopting the notation from the proof
of Theorem 4.4, in Step 1 of our procedure to construct the set S we add one additional
vertex to the set S as follows. If the unit U1 is a triangle-unit (see Figure 7(a)), then we
add the common neighbor of t1 and a1, namely the vertex c1, to the set S. If the unit
U1 is a diamond-unit (see Figure 7(b)), then we add the common neighbor of t1 and c1,
namely the vertex b1, to the set S. Let S∗ denote the resulting set upon completion of
the construction of the set S, and so |S∗| = |S| + 1 = σ(2,3)(G) + 1. With the addition
of the vertex c1 in Case 1 or the vertex b1 in Case 2, the set S∗ is a (2, 2)-spreading
set S of G, implying that σ(2,2)(G) ≤ |S∗| = |S| + 1 = σ(2,3)(G) + 1.

Every (2, 3)-spreading set of G is by definition also a (2, 2)-spreading set of G, and
so σ(2,3)(G) ≤ σ(2,2)(G). Hence, as a consequence of Proposition 4.7 and applying also
Corollary 4.5, we have the following result.

Corollary 4.8. If G is a connected, claw-free, cubic graph, then

σ(2,3)(G) ≤ σ(2,2)(G) ≤ σ(2,3)(G) + 1.

In addition,

u(G) ≤ σ(2,2)(G) ≤ u(G) + 1.

If G = F2k ∈ Tcubic then it is not difficult to see that S = {zi, : i ∈ [2k−1]}∪{x2k}
is a (2, 2)-spreading set. Notably, the process starts with the infection of vertex x1,
and then continues with y1, y2 and so on. Therefore, σ(2,2)(G) = u(G). On the other
hand, if G ∈ Ncubic, then σ(2,2)(G) = u(G) + 1. In both of these cases it holds that
σ(2,2)(G) = σ(2,3)(G), however this does not hold in general. For instance, see the graph
G in Figure 8 for which we have σ(2,3) = u(G), where the shaded vertices indicated in
the figure form a (2, 3)-spreading set of G. Yet, one can verify that σ(2,2) = u(G) + 1.
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Fig. 8. A graph G with σ(2, 3) = u(G) and σ(2, 2) = u(G) + 1

Finally, we consider (2, 1)-spreading, and bound the corresponding invariant in
claw-free cubic graphs. Again we see that it can achieve only two possible values.

Theorem 4.9. If G ̸= K4 is a connected, claw-free, cubic graph of order n that
contains u(G) units, then

u(G) + 1 ≤ σ(2,1)(G) ≤ u(G) + 2.

Proof. First note that due to Lemma 3.1 a (2, 1)-spreading set S needs to contain at
least one vertex in each unit of G ̸= K4. Now, if S is a set of vertices that contains
exactly one vertex from each unit of G, then every vertex v ∈ S has at least two
neighbors in V (G) \ S, and therefore such a set S cannot be a (2, 1)-spreading set.
Hence, u(G) + 1 ≤ σ(2,1)(G).

We show next that σ(2,1)(G) ≤ u(G) + 2 by constructing a (2, 1)-spreading set S
of G satisfying |S| ≤ u(G) + 2. Let T be an arbitrary triangle in G (that may also be
part of a diamond-unit). Initially, we let S = V (T ), and so the vertices in T form the
set of initially infected vertices. We now enlarge the set S as follows. Suppose that T
belongs to a diamond-unit D. In this case, we let v be the vertex in the diamond-unit
D that is not in T . The vertex v immediately becomes infected in the (2, 1)-spreading
process, since both of its neighbors in T have no other uninfected neighbor. As a result,
all vertices in the diamond-unit D become infected, that is, D becomes an infected
unit. Suppose next that T is a triangle-unit of G. Then T is already an infected unit.

Finally let T ′ be the infected unit containing T (that is, T ′ = D or T ′ = T ). We
now extend the set S in the same manner as in the proof of Theorem 4.4. Let U be
a unit adjacent to T ′. If U is a triangle-unit, then we add to S a vertex in U that is
not adjacent to any vertex in the unit T ′. If U is a diamond-unit, then we add to S
a vertex in U that is a dominating vertex of the unit U . Proceeding analogously as in
the proof of Theorem 4.4, this results in all vertices of the unit U becoming infected
in the (2, 1)-spreading process.

Continuing in this way by considering a vertex not yet infected that is adjacent
to an infected triangle, we obtain a (2, 1)-spreading set S of G starting with the set
V (T ) and adding exactly one vertex from every unit of G that does not contain the
triangle T . Thus, σ(2,1)(G) ≤ |S| = u(G) + 2.
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5. CONCLUDING REMARKS

We end this paper with some remarks concerning the computational complexity of
determining σ(p,q)(G) in claw-free cubic graphs G. We have already mentioned that
it is unclear whether one can determine the zero forcing number of a claw-free cubic
graph efficiently. For some of the values of p and q, where p > 1 or q > 1, there
exists a polynomial-time algorithm to determine σ(p,q)(G). First, determining the
independence number in claw-free graphs can be done in polynomial time (see [24],
where a polynomial-time algorithm is presented even for the weighted version of the
problem). Therefore, the problem of determining σ(3,q)(G) is polynomial in claw-free
cubic graphs G for all q ≥ 2. Similarly, one can efficiently determine the number of
units in a claw-free cubic graph. Thus, the problem of determining σ(2,q)(G) is also
polynomial in claw-free cubic graphs G for any q ≥ 3.

The following problems remain open:
Problem 5.1. Provide a structural characterization of the connected claw-free cubic
graphs G for which σ(2,2) = u(G) (resp., u(G)+1). Is there a polynomial-time algorithm
to recognize the corresponding classes of connected claw-free cubic graphs?
Problem 5.2. Provide a structural characterization of the connected claw-free cubic
graphs G for which σ(2,1) = u(G) + 1 (resp., u(G) + 2). Is there a polynomial-time
algorithm to recognize the corresponding classes of connected claw-free cubic graphs?
Problem 5.3. Provide a structural characterization of the connected claw-free cubic
graphs G for which σ(3,1) = β(G) (resp., β(G) + 1). Is there a polynomial-time
algorithm to recognize the corresponding classes of connected claw-free cubic graphs?
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