Opuscula Math. 45, no. 4 (2025), 559-573
https://doi.org/10.7494/OpMath.2025.45.4.559
Opuscula Mathematica
Nontrivial solutions of discrete Kirchhoff-type problem via bifurcation theory
Abstract. In this paper, we show that the bifurcation points for a discrete Kirchhoff-type problem with only local conditions, and we investigate the existence of positive and negative solutions for the problem when the nonlinear term \(f\) is asymptotically linear at zero and is asymptotically 3-linear at infinity. By using bifurcation techniques and the idea of taking limits of connected branches, under the assumption that \(f\) has some non-zero zeros, some results are also obtained.
Keywords: discrete Kirchhoff-type problem, nontrivial solution, bifurcation, superior limit.
Mathematics Subject Classification: 39A05, 39A28, 34B15.
- H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations 26 (1977), 375-390. https://doi.org/10.1016/0022-0396(77)90086-9
- X. Cao, G. Dai, Spectrum global bifurcation and nodal solutions to Kirchhoff-type equations, Electron. J. Differential Equations 2018 (2018), 1-10.
- O. Chakrone, EL M. Hssini, M. Rahmani, O. Darhouche, Multiplicity results for a \(p\)-Laplacian discrete problems of Kirchhoff type, Appl. Math. Comput. 276 (2016), 310-315. https://doi.org/10.1016/j.amc.2015.11.087
- S. Cordeiro, C. Raposo, J. Ferreira, D. Rocha, M. Shahrouzi, Local existence for a viscoelastic Kirchhoff type equation with the dispersive term, internal damping, and logarithmic nonlinearity, Opuscula Math. 44 (2024), 19-47. https://doi.org/10.7494/opmath.2024.44.1.19
- G. Dai, Some global results for a class of homogeneous nonlocal eigenvalue problems, Commun. Contemp. Math. 21 (2019), 1750093. https://doi.org/10.1142/s0219199717500936
- G. Dai, R. Hao, Existence of solutions for a \(p(x)\)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), 275-284. https://doi.org/10.1016/j.jmaa.2009.05.031
- G. Dai, R. Ma, Solutions for a \(p(x)\)-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal. Real World Appl. 12 (2011), 2666-2680. https://doi.org/10.1016/j.nonrwa.2011.03.013
- G. Dai, J. Wei, Infinitely many non-negative solutions for a \(p(x)\)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), 3420-3430. https://doi.org/10.1016/j.na.2010.07.029
- E.N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 1069-1076. https://doi.org/10.1512/iumj.1974.23.23087
- Y. Gao, X. Luo, M. Zhen, Existence and classification of positive solutions for coupled purelycritical Kirchhoff system, Bull. Math. Sci. 14 (2024), 2450002. https://doi.org/10.1142/s1664360724500024
- C.S. Goodrich, Discrete Kirchhoff equations with sign-changing coefficients, J. Difference Equ. Appl. 27 (2021), 664-685. https://doi.org/10.1080/10236198.2021.1929945
- S. Heidarkhani, G.A. Afrouzi, J. Henderson, S. Moradi, G. Caristi, Variational approaches to \(p\)-Laplacian discrete problems of Kirchhoff-type, J. Difference Equ. Appl. 23 (2017), 917-938. https://doi.org/10.1080/10236198.2017.1306061
- W.G. Kelley, A.C. Peterson, Difference Equations: An Introduction with Applications, 2nd ed., Harcourt/Academic Press, San Diego, 2001.
- G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- B. Kone, I. Nyanquini, S. Ouaro, Weak solutions to discrete nonlinear two-point boundary-value problems of Kirchhoff type, Electron. J. Differential Equations 2015 (2015), no. 10, 1-10.
- Y. Long, Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory, Adv. Nonlinear Anal. 11 (2022), 1352-1364. https://doi.org/10.1515/anona-2022-0251
- Y. Long, X. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett. 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817
- R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal. 71 (2009), 4364-4376. https://doi.org/10.1016/j.na.2009.02.113
- K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ. 221 (2006), 246-255. https://doi.org/10.1016/j.jde.2005.03.006
- P. Řehák, Oscillatory properties of second order half-linear difference equations, Czechoslovak Math. J. 51 (2001), 303-321. https://doi.org/10.1023/a:1013790713905
- B. Ricceri, Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions, Adv. Nonlinear Anal. 13 (2024), 20230104. https://doi.org/10.1515/anona-2023-0104
- G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, NJ, 1958.
- J. Yang, J. Liu, Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups, Adv. Difference Equ. 2013 (2013), Article no. 308. https://doi.org/10.1186/1687-1847-2013-308
- Y. Yang, J.H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett. 23 (2010), 377-380. https://doi.org/10.1016/j.aml.2009.11.001
- F. Ye, X. Han, Global bifurcation result and nodal solutions for Kirchhoff-type equation, AIMS Math. 6 (2021), 8331-8341. https://doi.org/10.3934/math.2021482
- F. Ye, S. Yu, The global interval bifurcation for Kirchhoff type problem with an indefinite weight function, J. Differential Equations 402 (2024), 315-327. https://doi.org/10.1016/j.jde.2024.05.015
- Z. Yücedag, Solutions for a discrete boundary value problem involving Kirchhoff type equation via variational methods, TWMS J. Appl. Eng. Math. 8 (2018), 144-154.
- Fumei Ye
https://orcid.org/0000-0003-1754-308X
- School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 400067, China
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2025-04-21.
- Revised: 2025-05-27.
- Accepted: 2025-05-28.
- Published online: 2025-07-16.