Opuscula Math. 45, no. 4 (2025), 559-573
https://doi.org/10.7494/OpMath.2025.45.4.559

 
Opuscula Mathematica

Nontrivial solutions of discrete Kirchhoff-type problem via bifurcation theory

Fumei Ye

Abstract. In this paper, we show that the bifurcation points for a discrete Kirchhoff-type problem with only local conditions, and we investigate the existence of positive and negative solutions for the problem when the nonlinear term \(f\) is asymptotically linear at zero and is asymptotically 3-linear at infinity. By using bifurcation techniques and the idea of taking limits of connected branches, under the assumption that \(f\) has some non-zero zeros, some results are also obtained.

Keywords: discrete Kirchhoff-type problem, nontrivial solution, bifurcation, superior limit.

Mathematics Subject Classification: 39A05, 39A28, 34B15.

Full text (pdf)

  1. H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations 26 (1977), 375-390. https://doi.org/10.1016/0022-0396(77)90086-9
  2. X. Cao, G. Dai, Spectrum global bifurcation and nodal solutions to Kirchhoff-type equations, Electron. J. Differential Equations 2018 (2018), 1-10.
  3. O. Chakrone, EL M. Hssini, M. Rahmani, O. Darhouche, Multiplicity results for a \(p\)-Laplacian discrete problems of Kirchhoff type, Appl. Math. Comput. 276 (2016), 310-315. https://doi.org/10.1016/j.amc.2015.11.087
  4. S. Cordeiro, C. Raposo, J. Ferreira, D. Rocha, M. Shahrouzi, Local existence for a viscoelastic Kirchhoff type equation with the dispersive term, internal damping, and logarithmic nonlinearity, Opuscula Math. 44 (2024), 19-47. https://doi.org/10.7494/opmath.2024.44.1.19
  5. G. Dai, Some global results for a class of homogeneous nonlocal eigenvalue problems, Commun. Contemp. Math. 21 (2019), 1750093. https://doi.org/10.1142/s0219199717500936
  6. G. Dai, R. Hao, Existence of solutions for a \(p(x)\)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), 275-284. https://doi.org/10.1016/j.jmaa.2009.05.031
  7. G. Dai, R. Ma, Solutions for a \(p(x)\)-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal. Real World Appl. 12 (2011), 2666-2680. https://doi.org/10.1016/j.nonrwa.2011.03.013
  8. G. Dai, J. Wei, Infinitely many non-negative solutions for a \(p(x)\)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), 3420-3430. https://doi.org/10.1016/j.na.2010.07.029
  9. E.N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 1069-1076. https://doi.org/10.1512/iumj.1974.23.23087
  10. Y. Gao, X. Luo, M. Zhen, Existence and classification of positive solutions for coupled purelycritical Kirchhoff system, Bull. Math. Sci. 14 (2024), 2450002. https://doi.org/10.1142/s1664360724500024
  11. C.S. Goodrich, Discrete Kirchhoff equations with sign-changing coefficients, J. Difference Equ. Appl. 27 (2021), 664-685. https://doi.org/10.1080/10236198.2021.1929945
  12. S. Heidarkhani, G.A. Afrouzi, J. Henderson, S. Moradi, G. Caristi, Variational approaches to \(p\)-Laplacian discrete problems of Kirchhoff-type, J. Difference Equ. Appl. 23 (2017), 917-938. https://doi.org/10.1080/10236198.2017.1306061
  13. W.G. Kelley, A.C. Peterson, Difference Equations: An Introduction with Applications, 2nd ed., Harcourt/Academic Press, San Diego, 2001.
  14. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  15. B. Kone, I. Nyanquini, S. Ouaro, Weak solutions to discrete nonlinear two-point boundary-value problems of Kirchhoff type, Electron. J. Differential Equations 2015 (2015), no. 10, 1-10.
  16. Y. Long, Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory, Adv. Nonlinear Anal. 11 (2022), 1352-1364. https://doi.org/10.1515/anona-2022-0251
  17. Y. Long, X. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett. 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817
  18. R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal. 71 (2009), 4364-4376. https://doi.org/10.1016/j.na.2009.02.113
  19. K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ. 221 (2006), 246-255. https://doi.org/10.1016/j.jde.2005.03.006
  20. P. Řehák, Oscillatory properties of second order half-linear difference equations, Czechoslovak Math. J. 51 (2001), 303-321. https://doi.org/10.1023/a:1013790713905
  21. B. Ricceri, Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions, Adv. Nonlinear Anal. 13 (2024), 20230104. https://doi.org/10.1515/anona-2023-0104
  22. G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, NJ, 1958.
  23. J. Yang, J. Liu, Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups, Adv. Difference Equ. 2013 (2013), Article no. 308. https://doi.org/10.1186/1687-1847-2013-308
  24. Y. Yang, J.H. Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett. 23 (2010), 377-380. https://doi.org/10.1016/j.aml.2009.11.001
  25. F. Ye, X. Han, Global bifurcation result and nodal solutions for Kirchhoff-type equation, AIMS Math. 6 (2021), 8331-8341. https://doi.org/10.3934/math.2021482
  26. F. Ye, S. Yu, The global interval bifurcation for Kirchhoff type problem with an indefinite weight function, J. Differential Equations 402 (2024), 315-327. https://doi.org/10.1016/j.jde.2024.05.015
  27. Z. Yücedag, Solutions for a discrete boundary value problem involving Kirchhoff type equation via variational methods, TWMS J. Appl. Eng. Math. 8 (2018), 144-154.
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2025-04-21.
  • Revised: 2025-05-27.
  • Accepted: 2025-05-28.
  • Published online: 2025-07-16.
Opuscula Mathematica - cover

Cite this article as:
Fumei Ye, Nontrivial solutions of discrete Kirchhoff-type problem via bifurcation theory, Opuscula Math. 45, no. 4 (2025), 559-573, https://doi.org/10.7494/OpMath.2025.45.4.559

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.