Opuscula Math. 45, no. 4 (2025), 523-542
https://doi.org/10.7494/OpMath.2025.45.4.523
Opuscula Mathematica
Multiplicity result for mixed local and nonlocal Kirchhoff problems involving critical growth
Abstract. In this paper, we study the multiplicity of nonnegative solutions for the following nonlocal elliptic problem \[\begin{cases}M\Big(\ \int_{\mathbb{R}^N}|\nabla u|^2dx+\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dxdy\Big)\mathcal{L}(u) \\ = \lambda {f(x)}|u|^{p-2}u+|u|^{2^*-2}u &\text{ in }\Omega, \\ u=0 &\text{ on }\mathbb R^N\setminus \Omega, \end{cases}\] where \(\Omega\subset\mathbb{R}^N\) is bounded domain with smooth boundary, \(1\lt p\lt 2\lt 2^*=\frac{2N}{N-2}\), \(N\geq 3\), \(\lambda\gt 0\), \(M\) is a Kirchhoff coefficient and \(\mathcal{L}\) denotes the mixed local and nonlocal operator. The weight function \(f\in L^{\frac{2^*}{2^*-p}}(\Omega)\) is allowed to change sign. By applying variational approach based on constrained minimization argument, we show the existence of at least two nonnegative solutions.
Keywords: mixed local and nonlocal operators, Kirchhoff type problem, critical nonlinearity, Nehari manifold.
Mathematics Subject Classification: 35A01, 35A15, 35B33, 35R11.
- N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal. 53 (2021), 3577-3601. https://doi.org/10.1137/20m1342641
- A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543. https://doi.org/10.1006/jfan.1994.1078
- D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Camb. Stud. Adv. Math., vol. 116, Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/cbo9780511809781
- R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal. 12 (2023), 20220312. https://doi.org/10.1515/anona-2022-0312
- G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015), 699-714. https://doi.org/10.1016/j.na.2015.06.014
- G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations 252 (2012), 6012-6060. https://doi.org/10.1016/j.jde.2012.02.013
- B. Barrios, E. Colorado, A. de Pablo, U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023
- B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), 875-900. https://doi.org/10.1016/j.anihpc.2014.04.003
- S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), 585-629. https://doi.org/10.1080/03605302.2021.1998908
- S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. 150 (2023), 405-448. https://doi.org/10.1007/s11854-023-0272-5
- S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Brezis-Nirenberg type result for mixed local and nonlocal operators, arXiv.2209.07502v1. https://doi.org/10.48550/arXiv.2209.07502
- S. Biagi, D. Mugnai, E. Vecchi, A Brezis-Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math. 26 (2024), 2250057. https://doi.org/10.1142/s0219199722500572
- S. Biagi, E. Vecchi, On the existence of a second positive solution to mixed local-nonlocal concave-convex critical problems, Nonlinear Anal. 256 (2025), 113795. https://doi.org/10.1016/j.na.2025.113795
- H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 (1983), 486-490. https://doi.org/10.1090/s0002-9939-1983-0699419-3
- K.J. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, J. Differential Equations 193 (2003), 481-499. https://doi.org/10.1016/s0022-0396(03)00121-9
- X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23-53. https://doi.org/10.1016/j.anihpc.2013.02.001
- L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260. https://doi.org/10.1080/03605300600987306
- E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal. 199 (2003), 468-507. https://doi.org/10.1016/s0022-1236(02)00101-5
- E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
- S. Dipierro, E. Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128 (2022), 571-594. https://doi.org/10.3233/asy-211718
- S. Dipierro, E. Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 40 (2023), 1093-1166. https://doi.org/10.4171/aihpc/57
- S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Physica A 575 (2021), 126052.
- A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156-170. https://doi.org/10.1016/j.na.2013.08.011
- P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc. 375 (2022), 5393-5423. https://doi.org/10.1090/tran/8621
- P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, Nonlinear Anal. 223 (2022), 113022. https://doi.org/10.1016/j.na.2022.113022
- J. García-Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with non-symmetric term, Trans. Amer. Math. Soc. 323 (1991), 877-895. https://doi.org/10.1090/s0002-9947-1991-1083144-2
- Y. Il'yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, Topol. Methods Nonlinear Anal. 49 (2017), 683-714. https://doi.org/10.12775/tmna.2017.005
- G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
- A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Physica D: Nonlinear Phenomena 98 (1996), 515-522. https://doi.org/10.1016/0167-2789(96)00114-5
- A. Maione, D. Mugnai, E. Vecchi, Variational methods for nonpositive mixed local-nonlocal operators, Fract. Calc. Appl. Anal. 26 (2023), 943-961. https://doi.org/10.1007/s13540-023-00147-2
- P.K. Mishra, V.M. Tripath, Nehari manifold approach for fractional Kirchhoff problems with extremal value of the parameter, Fract. Calc. Appl. Anal. 27 (2024), 919-943. https://doi.org/10.1007/s13540-024-00261-9
- Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. https://doi.org/10.1090/s0002-9947-1960-0111898-8
- Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141-175. https://doi.org/10.1007/bf02559588
- J.M. do Ó, X. He, P.K. Mishra, Fractional Kirchhoff problem with critical indefinite nonlinearity, Math. Nachr. 292 (2019), 615-632. https://doi.org/10.1002/mana.201800044
- P. Pucci, V.D. Rǎdulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal. 186 (2019), 1-5. https://doi.org/10.1016/j.na.2019.02.022
- P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), 27-55. https://doi.org/10.1515/anona-2015-0102
- B. Ricceri, Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions, Adv. Nonlinear Anal. 13 (2024), 20230104. https://doi.org/10.1515/anona-2023-0104
- R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut. 28 (2015), 655-676. https://doi.org/10.1007/s13163-015-0170-1
- R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67-102. https://doi.org/10.1090/s0002-9947-2014-05884-4
- J. da Silva, A. Fiscella, V. Viloria, Mixed local-nonlocal quasilinear problems with critical nonlinearities, J. Differential Equations 408 (2024), 494-536. https://doi.org/10.1016/j.jde.2024.07.028
- K. Silva, A. Macedo, Local minimizer over the Nehari manifold for a class of concave-convex problems with sing changing nonlinearity, J. Differential Equations 265 (2018), 1894-1921. https://doi.org/10.1016/j.jde.2018.04.018
- X. Sun, Y. Fu, S. Liang, Multiplicity and concentration of solutions for Kirchhoff equations with exponential growth, Bull. Math. Sci. 14 (2024), 2450004. https://doi.org/10.1142/s1664360724500048
- E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. 49 (2009), 33-44.
- Y. Wang, S. Huang, H.-R. Sun, Kirchhoff type mixed local and nonlocal elliptic problems with concave-convex and Choquard nonlinearities, J. Pseudo-Differ. Oper. Appl. 15 (2024), Article no. 23. https://doi.org/10.1007/s11868-024-00593-3
- T.-F. Wu, On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function, Commun. Pure Appl. Anal. 7 (2008), 383-405. https://doi.org/10.3934/cpaa.2008.7.383
- Vinayak Mani Tripathi
https://orcid.org/0009-0007-1710-3443
- Indian Institute of Technology Bhilai, Department of Mathematics, 491002, Durg, Chhattisgarh, India
- Communicated by Vicenţiu D. Rădulescu.
- Received: 2025-03-25.
- Revised: 2025-05-19.
- Accepted: 2025-05-20.
- Published online: 2025-07-16.