Opuscula Math. 45, no. 4 (2025), 523-542
https://doi.org/10.7494/OpMath.2025.45.4.523

 
Opuscula Mathematica

Multiplicity result for mixed local and nonlocal Kirchhoff problems involving critical growth

Vinayak Mani Tripathi

Abstract. In this paper, we study the multiplicity of nonnegative solutions for the following nonlocal elliptic problem \[\begin{cases}M\Big(\ \int_{\mathbb{R}^N}|\nabla u|^2dx+\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dxdy\Big)\mathcal{L}(u) \\ = \lambda {f(x)}|u|^{p-2}u+|u|^{2^*-2}u &\text{ in }\Omega, \\ u=0 &\text{ on }\mathbb R^N\setminus \Omega, \end{cases}\] where \(\Omega\subset\mathbb{R}^N\) is bounded domain with smooth boundary, \(1\lt p\lt 2\lt 2^*=\frac{2N}{N-2}\), \(N\geq 3\), \(\lambda\gt 0\), \(M\) is a Kirchhoff coefficient and \(\mathcal{L}\) denotes the mixed local and nonlocal operator. The weight function \(f\in L^{\frac{2^*}{2^*-p}}(\Omega)\) is allowed to change sign. By applying variational approach based on constrained minimization argument, we show the existence of at least two nonnegative solutions.

Keywords: mixed local and nonlocal operators, Kirchhoff type problem, critical nonlinearity, Nehari manifold.

Mathematics Subject Classification: 35A01, 35A15, 35B33, 35R11.

Full text (pdf)

  1. N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal. 53 (2021), 3577-3601. https://doi.org/10.1137/20m1342641
  2. A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543. https://doi.org/10.1006/jfan.1994.1078
  3. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Camb. Stud. Adv. Math., vol. 116, Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/cbo9780511809781
  4. R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal. 12 (2023), 20220312. https://doi.org/10.1515/anona-2022-0312
  5. G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015), 699-714. https://doi.org/10.1016/j.na.2015.06.014
  6. G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations 252 (2012), 6012-6060. https://doi.org/10.1016/j.jde.2012.02.013
  7. B. Barrios, E. Colorado, A. de Pablo, U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023
  8. B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), 875-900. https://doi.org/10.1016/j.anihpc.2014.04.003
  9. S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), 585-629. https://doi.org/10.1080/03605302.2021.1998908
  10. S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. 150 (2023), 405-448. https://doi.org/10.1007/s11854-023-0272-5
  11. S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Brezis-Nirenberg type result for mixed local and nonlocal operators, arXiv.2209.07502v1. https://doi.org/10.48550/arXiv.2209.07502
  12. S. Biagi, D. Mugnai, E. Vecchi, A Brezis-Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math. 26 (2024), 2250057. https://doi.org/10.1142/s0219199722500572
  13. S. Biagi, E. Vecchi, On the existence of a second positive solution to mixed local-nonlocal concave-convex critical problems, Nonlinear Anal. 256 (2025), 113795. https://doi.org/10.1016/j.na.2025.113795
  14. H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 (1983), 486-490. https://doi.org/10.1090/s0002-9939-1983-0699419-3
  15. K.J. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, J. Differential Equations 193 (2003), 481-499. https://doi.org/10.1016/s0022-0396(03)00121-9
  16. X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23-53. https://doi.org/10.1016/j.anihpc.2013.02.001
  17. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260. https://doi.org/10.1080/03605300600987306
  18. E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal. 199 (2003), 468-507. https://doi.org/10.1016/s0022-1236(02)00101-5
  19. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
  20. S. Dipierro, E. Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128 (2022), 571-594. https://doi.org/10.3233/asy-211718
  21. S. Dipierro, E. Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 40 (2023), 1093-1166. https://doi.org/10.4171/aihpc/57
  22. S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Physica A 575 (2021), 126052.
  23. A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156-170. https://doi.org/10.1016/j.na.2013.08.011
  24. P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc. 375 (2022), 5393-5423. https://doi.org/10.1090/tran/8621
  25. P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, Nonlinear Anal. 223 (2022), 113022. https://doi.org/10.1016/j.na.2022.113022
  26. J. García-Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with non-symmetric term, Trans. Amer. Math. Soc. 323 (1991), 877-895. https://doi.org/10.1090/s0002-9947-1991-1083144-2
  27. Y. Il'yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, Topol. Methods Nonlinear Anal. 49 (2017), 683-714. https://doi.org/10.12775/tmna.2017.005
  28. G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
  29. A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Physica D: Nonlinear Phenomena 98 (1996), 515-522. https://doi.org/10.1016/0167-2789(96)00114-5
  30. A. Maione, D. Mugnai, E. Vecchi, Variational methods for nonpositive mixed local-nonlocal operators, Fract. Calc. Appl. Anal. 26 (2023), 943-961. https://doi.org/10.1007/s13540-023-00147-2
  31. P.K. Mishra, V.M. Tripath, Nehari manifold approach for fractional Kirchhoff problems with extremal value of the parameter, Fract. Calc. Appl. Anal. 27 (2024), 919-943. https://doi.org/10.1007/s13540-024-00261-9
  32. Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. https://doi.org/10.1090/s0002-9947-1960-0111898-8
  33. Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141-175. https://doi.org/10.1007/bf02559588
  34. J.M. do Ó, X. He, P.K. Mishra, Fractional Kirchhoff problem with critical indefinite nonlinearity, Math. Nachr. 292 (2019), 615-632. https://doi.org/10.1002/mana.201800044
  35. P. Pucci, V.D. Rǎdulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal. 186 (2019), 1-5. https://doi.org/10.1016/j.na.2019.02.022
  36. P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), 27-55. https://doi.org/10.1515/anona-2015-0102
  37. B. Ricceri, Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions, Adv. Nonlinear Anal. 13 (2024), 20230104. https://doi.org/10.1515/anona-2023-0104
  38. R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut. 28 (2015), 655-676. https://doi.org/10.1007/s13163-015-0170-1
  39. R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67-102. https://doi.org/10.1090/s0002-9947-2014-05884-4
  40. J. da Silva, A. Fiscella, V. Viloria, Mixed local-nonlocal quasilinear problems with critical nonlinearities, J. Differential Equations 408 (2024), 494-536. https://doi.org/10.1016/j.jde.2024.07.028
  41. K. Silva, A. Macedo, Local minimizer over the Nehari manifold for a class of concave-convex problems with sing changing nonlinearity, J. Differential Equations 265 (2018), 1894-1921. https://doi.org/10.1016/j.jde.2018.04.018
  42. X. Sun, Y. Fu, S. Liang, Multiplicity and concentration of solutions for Kirchhoff equations with exponential growth, Bull. Math. Sci. 14 (2024), 2450004. https://doi.org/10.1142/s1664360724500048
  43. E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. 49 (2009), 33-44.
  44. Y. Wang, S. Huang, H.-R. Sun, Kirchhoff type mixed local and nonlocal elliptic problems with concave-convex and Choquard nonlinearities, J. Pseudo-Differ. Oper. Appl. 15 (2024), Article no. 23. https://doi.org/10.1007/s11868-024-00593-3
  45. T.-F. Wu, On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function, Commun. Pure Appl. Anal. 7 (2008), 383-405. https://doi.org/10.3934/cpaa.2008.7.383
  • Communicated by Vicenţiu D. Rădulescu.
  • Received: 2025-03-25.
  • Revised: 2025-05-19.
  • Accepted: 2025-05-20.
  • Published online: 2025-07-16.
Opuscula Mathematica - cover

Cite this article as:
Vinayak Mani Tripathi, Multiplicity result for mixed local and nonlocal Kirchhoff problems involving critical growth, Opuscula Math. 45, no. 4 (2025), 523-542, https://doi.org/10.7494/OpMath.2025.45.4.523

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.