Opuscula Math. 45, no. 4 (2025), 523-542
https: //doi.org/10.7494/OpMath.2025.45.4.523 OPUSCULA MATHEMATICA

MULTIPLICITY RESULT
FOR MIXED LOCAL AND NONLOCAL
KIRCHHOFF PROBLEMS
INVOLVING CRITICAL GROWTH

Vinayak Mani Tripathi

Communicated by Vicentiu D. Radulescu

Abstract. In this paper, we study the multiplicity of nonnegative solutions for the
following nonlocal elliptic problem

U(T)—u(? 2
M( Jan [VulPde + [[gon %dmdy)ﬁ(u)
= M (x)|u|P~2u + [u* ~2u in Q,
u=0 on RV \ Q,
where Q C RY is bounded domain with smooth boundary, 1 < p < 2 < 2* = 1371_\12,
N > 3, A > 0, M is a Kirchhoff coefficient and £ denotes the mixed local and

nonlocal operator. The weight function f € L7 () is allowed to change sign. By
applying variational approach based on constrained minimization argument, we show
the existence of at least two nonnegative solutions.
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1. INTRODUCTION
We study the following mixed local and nonlocal Kirchhoff problem
M (fon IV + [ o FEm 0 dady ) £(u)

= M (@) |ulP~2u 4 |[u]? ~2u in Q, (Px)
u=0 on RN\ Q,

where, QO € RY is bounded domain with smooth boundary, 1 < p < 2 < 2* = ﬁ,
N >3, A > 0 and £ denotes the mixed local and nonlocal operator

L(u) :=—Au+ (—A)°u, se€(0,1).
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The weight function f € L™ () is allowed to change sign. The fractional Laplacian
operator (—A)® is defined, up to a normalization constant, as

(—A)qu(x) — / 2¢)(CU) — d)('z;\_,fgs_ (]5(1’ — y) dy, = RN,

RN

for any ¢ € C§°(Q) (see, [19] for more details). The continuous map M : [0, c0) — [0, 00)
is defined by
M(t) =a+0bt""", (1.1)

where 6 € [1, 27), a>0andb>0.
The above class of problems can be seen as stationary state of the following problem

uy — M ([ |Vul?dz) Au= F(z,u) inQ,
u=20 on 0,

which was initially introduced by Kirchhoff to deal with free transversal oscillations of
elastic strings (see [28]). The term M measures the stress in the string resulting from
a change in its length during vibration and is directly proportional to the Sobolev norm
of the string displacement. Nonlocal diffusion problems have received a lot of attention
in the recent past, especially those that are driven by the fractional Laplace operator.
A potential reason for this is that the fractional operator naturally arises in a number
of physical phenomena including population dynamics, geophysical fluid dynamics,
flame propagation and liquid chemical reactions. Furthermore, in probability theory, it
provides a basic model to explain specific jump Lévy processes (see, [3, 29, 43]). The
study of a fractional Kirchhoff model arising from the analysis of string vibrations has
been discussed in [23]. For recent advances in nonlocal Kirchhoff problems, we suggest
interested readers to the survey [35].

After the pioneering work of Ambrosetti et al. in [2], many researchers have shown
their interest in the particular class of nonlinearity that is the subject of this study,
known as concave-convex nonlinearity. The existence and multiplicity of solutions
dealing with nonlinearity, as involved in the problem (Py), have been studied in
extensive detail for both local and nonlocal elliptic problems. For p-Laplacian and
fractional operator we refer interested readers to see the work in [8, 18, 26] and the
references therein, where the authors have studied such class of problems. There are
numerous papers dealing with Kirchhoff-type nonlocal problems involving fractional
Laplacian. In [34, 45] authors have considered semilinear and fractional Kirchhoff
problems with concave-convex critical nonlinearity involving sign changing weight.
Using the Nehari manifold idea (see [32, 33]) authors proved the existence of at least
two positive solutions for a suitable choice of parameter A involved in the problem. In
the same direction, the Kirchhoff-type equations have also been studied for the double
phase problems when the nonlinearity combines the singular and the subcritical terms
(see [4]). Recently, in [37], the author has discussed a new approach to obtain a unique
solution for the nonlocal problems with discontinuous Kirchhoff functions. We refer
the reader to [42] for the existence, multiplicity and the concentration of solutions to



Multiplicity result for mixed local and nonlocal Kirchhoff problems. . . 525

fractional p-Laplace Kirchhoff equations with exponential growth. With no attempt to
provide the complete list of references, we cite [5, 7, 16, 17, 23, 36, 38, 39] and references
therein for problems involving fractional Laplacian and fractional Kirchhoff operator.

The mixed operator has been the subject of the study in the recent past. This
naturally arises from the superposition of two different-scale stochastic processes:
a Lévy flight and a classical random walk. For instance, about the study of the best
foraging techniques and the spread of biological species [22], the species survival
problem [21], and so on. Inspired by the interesting application of mixed local and
nonlocal problems the following class of problem is addressed in the literature for the
analysis of several qualitative properties of solutions

—Agu+ (-A)ju=f inQ,

where s € (0,1),q € (1,00),—A, and (—=A); denotes g-Laplacian and fractional
g-Laplacian, respectively. In case ¢ = 2, we refer interested readers to see the works in
[1, 6, 9] wherein the authors have shown the existence of weak solutions, the strong
maximum principle, local boundedness, interior Sobolev and Lipschitz regularity. By
using variational techniques, authors in [30] exhibited the existence of a weak solution
when f has the most linear growth. Boundedness and strong maximum principle for the
inhomogeneous case has been proved in [12]. In the case ¢ € (1,00) and f = 0, the local
boundedness of weak subsolutions, local Hélder continuity of weak solutions, Harnack
inequality for weak solutions and weak Harnack inequality for weak supersolutions
has been established in [24]. Recently, in [44] authors proved the existence result for
Kirchhoff type mixed local and nonlocal elliptic problem with the concave-convex and
Choquard nonlinearities in a modified supercritical range. To obtain the result authors
have used the nonsmooth variational principle. Additionally, we suggest interested
readers view the results in [10, 13, 20, 25, 40] and the references therein for problems
related to mixed local and nonlocal operators.

In this paper, we aim to show multiplicity results for the problem (Py). The major
challenge here is to show the existence of a second solution for (Py) as the optimal
constant in mixed type Sobolev inequality is not achieved (see, [11]). By using Talenti
functions, Brezis—Lieb result, and estimates from [11], we have ensured the existence of
a second solution under some restriction on dimension and on the fractional parameter.
To the best of our knowledge, this is the first attempt to study the concave-convex class
of problems for mixed local and nonlocal operators using the Nehari manifold idea.

This work is organized into the following sections. In Section 2 we recall all the
relevant notation, definitions and preliminary results used throughout this work. In
Section 3 we have provided the framework of the Nehari setup and some technical
results. We have shown the existence of minimizers for the energy functional in
Sections 4 and 5. We conclude this section by stating the main results of our work.

Theorem 1.1. There exists Ag > 0 such that the problem (Py) has a nontrivial
nonnegative solution for all X € (0, Ag).



526 Vinayak Mani Tripathi

Theorem 1.2. Let N +4s < 6, then there exists 0 < Agg < Ag, such that the problem
(Py\) has at least two nontrivial nonnegative solutions for all A € (0,Ago) and for
sufficiently small values of b in (1.1).

Remark 1.3. As N +4s < 6 in Theorem 1.2, we emphasize that the results hold only
in dimension 3, 4 and 5, under certain restriction on the fractional exponent.

2. PRELIMINARIES

Let s € (0,1). If u : RN — R is a measurable function, then we define

o ([t )

|z — y[N+2s

the so called the Gagliardo semi norm of u of order s. Let Q C R” is an open set (with
Lipschitz boundary), not necessarily bounded. We denote X'1:2(Q) as the completion
of C§°(€2) with respect to the following global norm

1

plu) 1= (IVulfeny + [W)2) ", we CE(9).

Remark 2.1. A few remarks are in order concerning the space X12(Q).
(1) The norm p(u) is induced by the scalar product

ity ([ w0 o [ M0 o), ),

|z —y[N+2s
R2N

where - denotes the usual scalar product on the Euclidean space RY and X12(Q) is
a Hilbert space.

(2) Despite of u € C§°(£2) the L? —norm of Vu is considered on the whole space. This
is to emphasize that elements in X'*2(Q) are functions defined on the entire space R
and not only in . The benefit of having this global functional setting is that these
functions can be globally approximated on RY (with respect to the norm p(-)) by
smooth functions with compact support in Q.

In particular when € # RY, we can see that this global definition of p(-), implies
that the functions in X%2(Q) naturally satisfy the nonlocal Dirichlet condition specified
in problem (Py), that is,

u =0 ae. in RV \ Q for every u € X1?(Q). (2.1)

For detail understanding of nature of the space X1'?(Q) and the validity of (2.1),
we refer interested readers to see Remark 2.1 in [11, 13].
(3) The embedding X12(Q) — L"(Q) is compact for every r € [1,2%).
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The meaning of solution of the underline problem is stated as follows.

Definition 2.2. A function v € X12(Q) is said to be a (weak) solution of the
problem (Py) if

M(p(u)?)(u, 6}, = A / FlulP~2ug dz + / ul? ~2ug da,
Q Q
for all ¢ € X12(Q).

To study the problem (Py) via variational methods, we define the associated energy
functional Jy : X12(Q2) — R by

Talw) = V(o)) ~ / fluPdz — / uf?” da

= Lo+ o / fludz — = / uf?" da,

nO |

where

t

b
/M ds:at+0t9
0

One can see that Jy is of class C'' and in light of Definition 2.2 the critical points
of Jy corresponds to the solutions of (P)). Let us recall that for any arbitrary open
set Q C RV, the sharp constant for the embedding H{ () into L?" () is given by

Jo IVul?dz

SN = 1
ueH} (2)\{0} (fQ \u

2
2

2% d.%') *

Also, the sharp constant for a mixed type Sobolev inequality is given by

2
Sn.s(Q) = inf %. (2.2)
ueH} (2)\{0} (fQ \u Q*dx)?

In [11], the authors proved that the best constant in the natural mixed Sobolev
inequality is never attained, and it coincides with the one coming from the purely
local one, i.e., Sy = Sy s(Q).

3. NEHARI MANIFOLD AND FIBERING MAPS

To study the minimizers of the energy functional Jy, it is necessary that Jy be bounded
from below on the space X12(Q), which is not the case in our setting. A natural
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constraint for studying the minimization problem is the Nehari manifold. The Nehari
set associated with problem (Py) is given by

Ny = {u € xH23(Q)\ {0} : Dy Jx(u)u = 0}.

Observe that the set A contains all the critical points of J). For a fixed
ue XH2(Q)\ {0}, we introduce the fibering map my, : (0,00) — R given as
my(t) = Ja(tu). It is easy to see that u € Ny if and only if m/ (1) = 0. More
generally, tu € N, if and only if m) ,(t) = 0. It is evident that we can split the set
N, the following disjoint subsets:

NY ={ueNy:m} (1) >0},

Ny ={ueN,: m'/\’)u(l) <0},

N ={ueNy:my,(1) =0},
which correspond to ¢ = 1 as local minimum, maximum and the inflection point of the
fibering map. In order to study minimization problem over the Nehari decompositions,
we aim to show these sets are nonempty. Observe that for any u € X12(Q) \ {0}, with

Jo flul?dz > 0, t(u)u € NY if the pair (t = t(u), A\ = A(u)) is unique solution of the
system

at®p(u)? 4 bt*° p(u)?® — )\tp/f\u|pdm — ¥ / lul?” =0,
) )

(3.1)
2at? p(u)? 4 200t%° p(u)?’ — )\ptp/f\u|pdx — 257 / lu* =o.
Q Q

The uniqueness of A\(u) follows from uniqueness of ¢(u) as nontrivial zero of the
following scalar equation:

) = a(2 = DI p(? + 5026 — D p(w — (2" = p) [ Jul?
Q

To show the uniqueness of t(u), we define

mu(t) = a(2 = p)p(u)® +b(20 — p)t**2p(u)* — (2* = p)t* 72 / Jul* da,
Q

where h, (t) = t>m,(t). Since

m!, (t) = b(20 — 2)(20 — p)t** ' p(u)*’ — (27 — p)(2" — 2) / Jul* da,
Q

m.,(t) has a unique critical point

. ([ b(20—2)(20 — p)p(u)?? B
A
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Moreover, as m/,(t) > 0 ast — 0% and m/,(t) < 0 as t — +00, and we can conclude that
m., (t) has a unique zero t(u) > t* > 0. Consequently, h,(t) has a unique nontrivial zero.

Solving the above system (3.1), we have following implicit form of the nonlinear
generalized Rayleigh quotient A(u):

a(2* — 2)t(u)?>"Pp(u)? + b(2* — 20)t(u)?~Pp(u)??
(2*—p) fQ f|u\de .

From expression of A(u) it is clear that A(u) is 0-homogeneous and t(u) is
(—1)-homogeneous. Note that while dealing with degenerate local or nonlocal Kirchhoff
problems with such class of nonlinearity, we have explicit representations for A(u) (see,
for instance, [31]).

We define the extremal value for the Nehari manifold method (see [27]) by

Au) =

N = inf /\u:/ ulPdx >0
P (u) / flul

In order to study the minimization problem, we show in the following proposition
that the decompositions of the Nehari manifold are nonempty.
Proposition 3.1. Given u € X%%(Q)\ {0}. There are two possibilities:

(a) if [, flulPdx > 0, then there exists two critical points t(u),t™ (u) of the fibering
map my ., such that t{ (u)u € Ny and t~(u)u € Ny . Moreover, ¢, is decreasing
in (0,t7(u)] and [t~ (u),00) and increasing in [t (u),t™(u)] for any X € (0, A(u)),
(b) if [ flulPdz < 0, then there exists unique t* such that t*u € Ny for any A > 0.

Proof. For a fixed u € X12(Q) \ {0}, define a map ®, : (0,00) — R by

B, (t) = at> Pp(u)? + bt>Pp(u)? — 2 P / lu|? d.

Then it is clear that tu € N, if and only if ¢ is root of the scalar equation

(t) = )\/f|u|pdx.
Q

We have ®@,,(t) > 0" as t — 01 and ®(t) - —o0 as t — oo. Using

/() = a(2 = p)t'Pp(u)? +b(20 — p)*' P p(w)* — (27 —p)e* P /

9

one can observe that m¥,, (1) = t*~'®(t), where @ (t) = t~'"Ph,(t). Thus, it
is enough to analyze the nature of h,(t). We already know that h,(¢) has unique
zero at t(u), therefore, ®,(t) has a global maximum at ¢(u) in light of &/ (¢) >
0 when ¢ — 0% and ®/,(t) < 0 for large t. Consequently, when A < A(u), using
the relation mf ,, (1) = t?~'®(t), there exists t*(u) satisfying (a). In case when
Jo flu[Pdz < 0 from the above analysis of the map ®,,, we can conclude the case (b).
This completes the proof. O
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The following remark is a direct consequence of Proposition 3.1. Moreover, as
a consequence of implicit function theorem, the set Ay is a manifold.

Remark 3.2. For all A > 0, N # (. Moreover, N = () for all A < \*.

3.1. AN ESTIMATE OF EXTREMAL VALUE A\*:
Let u € X%2(Q) \ {0} be fixed and for ¢ > 0, define the map

B (t) = b2 P p(u)?? — 2P / lu|?" d.
Q
Then, we have max;~q i’u(t) = fi)u(fmax), where

1

e = (2RO DI(? NTI (W20 =p) g 002 \T L g
t"‘“_(@*—p) fQ|u|2*dx> 2((2*@ S s(©) ) =1

Therefore, as ®, is increasing from [0, fax], We get

max By (1) > Bu (i) > (2 - 29) (“29 - ‘"”’) T (S (@) F ) E p(u).

t>0 20 —p 2* —p
Thus, if
25— 20\ [b(20—p)\ 2000 Sn(Q)%
- - - 2| 20-p s
rehs < 20 —p > < 2 —zf ) (S )57 |f|]|VL7(2**p<m7
it holds

By (10) > A / flul’, YA€ (0,A).
Q

Consequently, for every u € X12(Q) \ {0}, t*(u)u € NiF and N = 0. Thus, \* > A;.
We have following observation on J).

Lemma 3.3. The energy functional Jy is coercive and bounded below on N.

Proof. Take 0 # u € Nx. We have

_a 2 ﬂ 29_&/ p _i/ 2*
Talu) = Go(? + oo =2 [ flupde — o [ jul?"de
Q Q

1 1 1 1
> (= - = 20 - = P
> (g5 ) = (5 - 57) [ flraa
Q

1 1 1 1
> <2€ B 2) bp(u)’ — A ( B 2) Sns (T RpwP| £l e

P LT (@)
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which implies that Jy is coercive. Define the map
1 1 1 1
=(=— =]t =X === ) Sns(Q)P?> . )
o= (55-3:) 2 =2 (5 = 5 ) Sxa @O e,

One can observe that g(t) is bounded from below. In fact, it follows that there exists
C > 0 such that Jy(u) > —C. This completes the proof. O

The following lemma ensures that the local minimizers of the energy functional J
on N, are critical points for Jy (see [15, Theorem 2.3]).

Lemma 3.4. If u is a local minimizer of Jy in Ny and u ¢ Nf\), Then u is a critical
point for J.

Now we are ready to introduce the minimization problem. Define
Jy =inf{Jy(u) : u € Ny},
JF =inf{Jy(u) 1 u e NYY},
Jy =inf{Jy(u) 1 u € Ny }.
In the upcoming lemmas and proposition, we prove several technical results neces-
sary for the analysis of the above minimization problems.

Lemma 3.5. There exists 6 > 0 such that p(u) > ¢ for u € N, . Moreover, Ny is
closed in the topology of X*2(Q) for A € (0,\*).

Proof. If u € N, then

(20~ P < (2 =) [ [ do < (27 = p)Sya() > o)
Q

which implies that

1 20 —p =
p(u) > (SN’S(Q)Q*/Q 5 p) .

Thus, p(u) > ¢ for some § > 0. To prove the remaining part, consider a sequence
{ug} C Ny such that uy — w in XH?(Q). Then u € Ny U {0} as N? = 0, for
A € (0,A%). Since p(u) = limg_, o0 p(ug) > 9, we get u # 0 and u € N . O

Lemma 3.6. For each uw € N and X € (0,A1), there exists € > 0 and a differentiable
map & : B(0,¢) C X12(Q) — R such that £(v)(u —v) € Ny and

2(u,v), — A [ flulP~2uvd — 2* [, [u* “2uvdzx
(2=p)p(u)? — (2* = p) [o [u*"dz

Proof. Fix u € Ny and define the map F, : Rt x X12(Q) — R by

(€(0),0) = (3-2)

Fu(tw):tzp(u—y)Q—)\tp/f|u—v\pdx—t2*/\u—v|2*dac.
Q Q
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Then F,(1,0) =0 and aéi“ (1,0) # 0 for A € (0,A1). Using implicit function theorem,

there exists € > 0 and a differentiable functional ¢ : B(0,&) € X12(Q2) — R such that
£(0) =1, (3.2) holds and F,(£(v),v) =0 for all v € B(0,¢). Hence, £(v)(u — v) € Nj.
O

From Lemma 3.3, we know that Jy is bounded below in N,. Therefore, for any
X € (0,A1) by the Ekeland variational principle, there exists a minimizing sequence
{ur} C N, such that

1 1
In(ug) < Iy + Z and  Jy(ug) < Ja(v) + %p(uk — ) for all v € Nj.

The following result is a consequence of the Ekeland variational principle and the
Lemma 3.6. The idea of the proof is similar to [34, Proposition 3.8], and for this reason
it has been omitted here.

Lemma 3.7. Let A\ € (0,A1). Then there exists a minimizing sequence {u} C Ny
such that

In(ug) = Jn + Ok(l) and J;\(uk) = Ok(l).

The next result ensures that the compactness of Jy can be recovered below a suit-
able value.

Proposition 3.8. Let {uy} be a sequence in X12(Q) such that
In(ug) = ¢, Ji(ug) — 0 in (XH2(Q)* as k — oo, (3.3)

where

20

20—p
2* —p)Sn,s() -
T T (29—p> (( PSS ”f”Lz*usz))
2*p26 ((2* — 20)b) 77

Y

1
c<cy = N(aSN,S(Q))

then {uy} possesses a strongly convergent subsequence.

Proof. Let {u} be a sequence of bounded functions in X*2(£2) (as .Jy is bounded below
and coercive in NVy). Then, by using compact embedding of X1:2(Q) < L"(Q2) for
r € [1,2%), there exists ug € X*2(Q) such that, up to a subsequence again denoted by
{ur}, up — ug in X12(Q), pluk) = p, up — ug in L™(Q) for r € [1,2%), ug(z) — ug(z)
a.e. in Q. If = 0, then it follows that uz, — 0 in X%2(Q). Thus assume p > 0. By the
Brezis-Lieb lemma [14], we have

p(ur)? = plur — o) + pluo)? + ok (1),
/|uk|2*dm:/‘uk_uo‘Q*dl"’_/‘u0|2*daj+0k(1), (3.4)

Q Q Q
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Testing (2.2) with (ur — uo) and using (3.4), we have

ox(1) = (a + b(p(uk)29_2))< /Vu;c - V(ug — ug)de

() — () (o — w0)() — (s~ w0)()
] R i)

R2N

— )\/f\uk|p_2uk(uk — ug)dx — / |uk|2*_2uk(uk — ug)dx
Q Q

= (a+bp® ) (1 — p(uo)?) — )\/f\uk|p_2u;€(uk —up) —/\uk|2*d$ +/u%*dx
Q Q Q

= (a +bu??72) leIEO plug, —up)? — )\/f|uk|p_2uk(uk — ug)dx —/\uk — uo|?d.
Q Q

Therefore,

(a+bp*0=2) lim p(us — ug)®> = X lim /f|uk|p72uk(uk. — ug)dx
k—r o0 k— o0
Q

(3.5)
+ lim / lug, — uo)? d.
k—o0
Q
Applying the Lebesgue dominated convergence theorem, we obtain
(a+bu?~2) klim plu, —up)? =177, (3.6)
—00

where we denote limg o0 [, [k — uo|? dz = 1?". From (3.5) we can conclude that
[ >0.If ] =0, we have uy, — ug, and we are done in this case. Suppose the case
when [ > 0. From (2.2) we get

plug —ug)? > Sn.o(Q)I2. (3.7)
Using (3.6) and (3.7), we obtain
1272 > Sy () (a + bu?72). (3.8)
Also, note that from (3.6), we have
(a+ b 2) (2 — puo)?) < 2. (3.9)
Using (3.8) and (3.9), we obtain

2> Sy s(Q)F a7, (3.10)
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For any ¢ € X%2(2), denote

H(u0) = (0 + w2 [ T o

RN
i [[ =l 0t )
R?N

- )\/f|uk|p72uk¢dl' - / Jup|* Pugpda.
Q Q
Using the Hélder inequality, we have

(3.11)

A(3 - 5 ) S @ F A e, ol

p 2* - (Q)
Now define
2R 11 . )
Fy(t) = <29 2*) bt* — A (p 2*> Sn.s(2) Hf”mi‘lp(g)t .

Then, a straightforward computation implies that

20

—p 20—p
- (220) (@ -nsxe@Finl e, )
((2* — 20)b) ™= |
Taking limit & — oo in (3.11), together with (3.3) and (3.10), we get

260

20—p
2 —p)Sns ()|l 2o
2*p20 ((2* — 20)b) 75

This leads to a contradiction with the assumption, completing the proof. O

c> %(aSN,S(Q))

4. EXISTENCE OF FIRST SOLUTION IN N5

In this section, using the standard minimization argument, we prove the existence of
first solution of the problem (Py) in N, ;r . We start by proving that the energy level is
negative in Ny .
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Lemma 4.1. For A > 0, we have that J;© = inf{Jy(u) : u € N}'} <0.
Proof. Let 0 # u € Ny} C N, we have

) = (; - 21) ap(u)” + (219 - 21) bp(u)?’ — A (; - 21) Q/f|u|pdx
< (37wt + (55— 37 oo™
(L) (B2t + B )

2 —-2/1 1 , 2—20/1 1 o0
= - —— =)0 0
5 (2 p) plu)” + — (29 p) p(u)* <0,

and as J,(0) = 0, we get m{ < 0. O
Choose Ay > 0 such that

260

N
2

20—p
Sn o) )
’ L2 =7 (Q) 1
P S AT aS s Q

((2* _ 29)[)) 26—p N( N, ( ))

Proof of Theorem 1.1. Considering Ag = min{A;, A2} and using Proposition 3.7,
we get a minimizing Palais-Smale sequence {ux} C N} such that {u;} is bounded
in X12(Q) and Jy(ug) — m. Also, from Lemma 4.1, we have J; < 0. In view of the
Proposition 3.8, there exists ug € X12(Q) such that up — ug in X12(Q). Thus, g
is a minimizer of Jy in N, for all A € (0, A1) since Jy(ug) < 0, we have that ug # 0.
Next, we claim that ug € Ny If not then ug € MY which is not possible as NY = ()
for all A € (0,Ag) (see Remark 3.2). Therefore, ug € Ny . Using Lemma 3.4, we can
conclude that the obtained minimizer ug € N. /\+ is a critical point and equivalently the
solution of the problem (P}).

Next, it remains to show that obtained solution is nonnegative. It is required to
be verified due to presence of nonlocal fractional operator, we have p(u) # p(|u|)
in X12(Q) and thus Jy(u) # Jx(Jul). To overcome this difficulty, we consider positive
part of the problem and the corresponding energy functional as follows

T () = LN (plu / Pt yPar — oo [ dr,
Q

AT (29 p) <(2* ~?)

2 2*p26

where vt := max{u, 0} is the positive part of u. Then it is easy to see that the critical
points of Jy are also critical points of J;r. Thus,

M (p(uo ) / Vuo - Vioda-+ [ L0l = lsOle) — 80) 1,

|z — y|N+2s
R2N (4.1)

:)\Q/f(u “odr +/( 5 oda

Q
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for all ¢ € X12(Q). Testing (4.1) by ¢ = u~ and using the inequality

(uo (@) — uo(y))(ug (x) — ug (y)) = —ug (x)ug (y) — ug (2)ug (y) — (ug (z) — ug (¥))*

< —Jug () —ug (),

we have p(ug ) = 0, thus g is nonnegative solution of the problem (Py). This completes
the proof. O

5. EXISTENCE OF SECOND SOLUTION IN N,

To show the existence of the second solution to the problem (Py), we have followed the
idea and the estimates from [11, 45]. Consider the test function 1 € C§°(2) such that

0<n(x) <1inQ, n(z)=1inBg(0), andn(z)=0in (B,(0)),

for p sufficiently small. For € > 0, let

(N=2)
ue(z) = S v and  uc, = (@) .
(|x|2+€2) p) ||7IUe||L2*(Q)

Consider the following sets:

U, = {u € X12(Q)\ {0} : ﬁt’ (pg‘u)) > 1} U {0},
Uy = {u € X12(Q)\ {0} : ﬁt_ (p(“u)) < 1},

where ¢t~ is as in Proposition 3.1. Then

u

Ny = {u cx2(Q)\ {0}: ﬁt’ (p(u)> = 1}

is a connected component of U; and U,. Also, one can observe that N /{F c Uy, and
thus ug € U;. We now provide the subsequent technical lemma. The idea of its proof
is similar to [45].

Lemma 5.1. Let A € (0,A0) and ug be a local minimizer for the functional J)
in X12(Q) obtained in Theorem 1.1. Then, for any € > 0 and n defined above, there
exists lo > 0 such that ug + lote, € Us.

Proposition 5.2. Let A € (0,Aq) and let ug be the local minimizer achieved in
last case for the functional Jy in XV2(Q). Then, for any r > 0 and n there exists
€0 = €(r,N) and Ag > 0 such that Jx(ug + rucy) < cx for any € € (0,€0) and
A € (O,mil’l{Ao,Ag}).
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Proof. We have

Ia(uo + rtte ) = 9p(uo)2 + %r%o(ue’,,)2 + ar( / Vug - Vue pdx (5.1)

2
// uo(x) — uo(y ))(1@1(25) “fm(y))dxdy>

b
20( (up)® +r p(ue,, —|—2r/Vu0 Ve
RN

R2N

A 1 .
— 5/f|u0 + rUe y[Pdr — > / |uo + TUGWP dx.
Q Q

In order to estimate terms in the above expression, we have used the following
inequalities:

(a+B)9 < 29*1(a9+50) < a9+09(a9+ﬁ0)+9049715, for any a, 8> 0,0 > 1, (5.2)

(a+B)P —aPl —pP —paP~13 > CiapP~t, forany o, 3 >0,p > 2, (5.3)

where Cy > 0 depending on 6 and C; > 0. Using Young’s inequality, for some Dy > 0,
we get

b b
29 (p(uo + ruc,)*) < @P(UO)% +bCo(p(ug))*® + bDgr (p(ue,y))?

+ b(p(uo))292r< / Vug - Ve pda
RN

n / / (uo(x) — uOiy)_)(ytTerr(;) —uen(¥)) ;. dy>.

R2N

Since ug is a solution, (5.1) reduces to
a
2

Ia(uo + ren) < JIx(uo) +
A p p p—1
_ ; f ((uo + ruem)dx — Uy — Pruy ug,n)
Q

r?(p(uen))® + 0Cs(p(u0))** + bDgr? (p(uc,y))*”

1 .
~ o / ((uo + ru? )dm — 2 —2%rud 71%6,77) .
)
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Denote p(ug) = R. Using f > 0 in the support of u. , and the inequalities (5.2), (5.3),
we can conclude that

a
Ia(uo + rueyn) < Ja(ug) + §r2(p(u€,n))2 +bCyR? + ngTQa(p(uem))z‘g

1 o« x x .
- 2—*7"2 /uindz —Oyr? 71/uf,n71dx. (5.4)
Q Q
Considering the estimates used in [11] and taking b = €? with ¢ > N — 2, we get
a
Ia(uo + rtte ) < ErQ(SN,S(Q) + O(eF= M) 4 Cye
r?
N2 T o 1 (N=2)/2
9 ’
where ks vy = min{N — 2,2 — 2s}. Next, we define

G(t) = 5(S,(5) + O(eh=)) =

By noting that G(t) — —oco as t — oo and G(t) — 07 as t — 0, one can ensure that
there exists ¢ such that £G(t)|;=;. = 0 and G(t.) = sup;>o G(t). Also, G'(t.) = 0,
implies there exists v > 0 such that ¢t > v > 0. Using the fact inf J, = m}f < 0in N;,
we get

¥ .

a0 + 1) < S (Sws () + O(FV)) = T = Cut? 1N =2/ 4 Gyl

o

+ C5eN 72 — CgeN =272,

t
< SH(Sws () + O(FY)) — o

where C5, Cg > 0 are positive constants independent of e, \. Since, the map
¥

2*

a
2

is increasing in [0, (a(Sn,s(2) + Cek-*vN))ﬁ), we have

t—

t2(Sws(Q) + O(e")) —

1 1 2*
Ia(uo + rue) < (2 - ) (a(Sn.s(Q) + O(F=™))) 772 4 C5eN 72 — CpeN2/2
1

(aSN’S(Q))% + C76min{N_2’2_28} _ C6€¥,

where C7; > 0 and e is sufficiently small. Choosing 0 < € < ¢; sufficiently small
such that
Cpemin{N=2,2-2s} _ C56¥ <0.

Therefore, taking A € (0, As), where A3 satisfies the following inequality

260

20—p

*—p)Sns(Q)F -

A7 (29_1’) ((2 P)S.q(8) ||f|L2*—2<Q>)
2*p26 ((2* — 20)b) 7+

N-2 .
_— min{N—2,2—2s
< Cse 2 —(Cre { },
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we have Jy(ug + rue) < cx, where ¢y is defined in Proposition 3.8. This com-
pletes the proof. O

Proof of Theorem 1.2. Assume that Ay and A3 are as in Section 4, Proposition 5.2,
and fix A < Ago := min{Ag, As}. Also, as we have ug € Uy and uo + louc,, € Us,
we can define a continuous path connecting Uy and Us as t — y(t) := ug + tloue -
Therefore, there exists ¢ € (0,1) such that v(t) € N and consequently

my = inf Jy(u) < J\(v(1))
ueNy

Furthermore, from Proposition 5.2, we get J, < ¢y for A < Agp. Now using Lemma 3.7,
we can ensure existence of a minimizing Palais—-Smale sequence {u,} C N, such
that Jy(ug) — m; . Since Jy < ¢y, consequently, from Proposition 3.8 there exists
up € XH2(Q) such that uyp — uy in XH2(Q). Therefore, u; is a minimizer of Jy.
As from Lemma 3.5, N is closed we have that u; € Ny for all A € (0,Aq). Since
NFNN; = 0, we can conclude that ug, uq are distinct. This completes the proof of the
Theorem 1.2. Following the arguments as in the proof of Theorem 1.1, we can conclude
that w1 is a nonnegative solution of the problem (Py). This ends the proof. O

Remark 5.3. We believe that in case the sublinear term in the problem (Py) get per-
turbed with subcritical growth then using compact embedding X12(Q) < L"(Q) for
every r € [1,2%) we can establish the multiplicity result in (0, A*), where

N L ala— 2P + blg — 20)Hw) 7 p(w)
fr— 1 )
x12@)n [ flulrdz>0 (¢ —p) Jo flulpdz

for 1 <p<2<q<2,0¢c]l)andqc (20,2%). Precisely, in this case we do
not required, the Proposition 3.8. Moreover, following the idea in [31, 41], one can
ensure the multiplicity when A € (0, A* + €), for some € > 0. Note that, when A > A*,
the Nehari set A, is no longer a manifold.
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