Opuscula Math. 45, no. 4 (2025), 471-507
https://doi.org/10.7494/OpMath.2025.45.4.471

 
Opuscula Mathematica

Tail probability of the hitting time of Brownian motion to a sphere with fixed hitting sites

Yuji Hamana

Abstract. We consider \(d\)-dimensional Brownian motion \(\{B_\mu(t)\}_{t\geqq0}\) with a drift \(\mu\in\mathbb{R}^d\) and the first hitting time \(\sigma_{r,\mu}^{(d)}\) to the sphere with radius \(r\) centered at the origin. This article deals with asymptotic behavior of the probability that both \(t\lt\sigma_{r,\mu}^{(d)}\lt\infty\) and \(B_\mu(\sigma_{r,\mu}^{(d)})\in A\) occur simultaneously, and we obtain that this probability admits an asymptotic expansion in powers of \(1/t\) if \(d\geqq3\) and in that of \(1/\log t\) if \(d=2\) for large \(t\). Moreover, we investigate the case of Brownian motion with no drift.

Keywords: Brownian motion, hitting times and sites, asymptotic expansion.

Mathematics Subject Classification: 60J65, 60G40, 41A60.

Full text (pdf)

  1. Z. Ciesielski, S.J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434-450. https://doi.org/10.1090/s0002-9947-1962-0143257-8
  2. S. Chiba, Asymptotic expansions for hitting distributions of Bessel process, Master Thesis, Tohoku University (2017) [in Japanese].
  3. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 8th ed., Elsevier, Academic Press, 2015.
  4. Y. Hamana, R. Kaikura, K. Shinozaki, Asymptotic expansions for the first hitting times of Bessel processes, Opuscula Math. 41 (2021), 509-537. https://doi.org/10.7494/opmath.2021.41.4.509
  5. Y. Hamana, H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Industry 4B (2012), 91-95.
  6. Y. Hamana, H. Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), 5237-5257. https://doi.org/10.1090/s0002-9947-2013-05799-6
  7. Y. Hamana, H. Matsumoto, Asymptotics of the probability distributions of the first hitting times of Bessel processes, Electron. Commun. Probab. 19 (2014), 1-5. https://doi.org/10.1214/ecp.v19-3215
  8. Y. Hamana, H. Matsumoto, Hitting times to spheres of Brownian motions with and without drifts, Proc. Amer. Math. Soc. 144 (2016), 5385-5396. https://doi.org/10.1090/proc/13136
  9. Y. Hamana, H. Matsumoto, Brownian hitting to spheres, J. Math. Soc. Japan. 76 (2024), 1307-1319. https://doi.org/10.2969/jmsj/91429142
  10. P. Hsu, Brownian exit distribution from a ball, [in:] Seminar on Stochastic Processes, Progr. Probab. Statist., vol. 12, Birkhäuser Boston, 1985, 108-116. https://doi.org/10.1007/978-1-4684-6748-2_8
  11. J.T. Kent, Eigenvalue expansion for diffusion hitting times, Z. Wahrsch. Verw. Gebiete 52 (1980), 309-319. https://doi.org/10.1007/bf00538895
  12. N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.
  13. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966. https://doi.org/10.1007/978-3-662-11761-3
  14. M. Sasaki, Asymptotic expansion for the tail probability of the hitting time of two dimensional Bessel process, Master Thesis, Kumamoto University (2019) [in Japanese].
  15. C. Yin, The joint distribution of the hitting time and place to a sphere or spherical shell for Brownian motion with drift, Statist. Probab. Lett. 42 (1999), 367-373. https://doi.org/10.1016/s0167-7152(98)00231-4
  16. C. Yin, C. Wang, Hitting time and place of Brownian motion with drift, Open Stat. Prob. J. 1 (2009), 38-42. https://doi.org/10.2174/1876527000901010038
  • Communicated by Palle E.T. Jorgensen.
  • Received: 2025-03-24.
  • Revised: 2025-06-04.
  • Accepted: 2025-06-04.
  • Published online: 2025-07-16.
Opuscula Mathematica - cover

Cite this article as:
Yuji Hamana, Tail probability of the hitting time of Brownian motion to a sphere with fixed hitting sites, Opuscula Math. 45, no. 4 (2025), 471-507, https://doi.org/10.7494/OpMath.2025.45.4.471

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.