Opuscula Math. 45, no. 4 (2025), 471-507
https://doi.org/10.7494/OpMath.2025.45.4.471
Opuscula Mathematica
Tail probability of the hitting time of Brownian motion to a sphere with fixed hitting sites
Abstract. We consider \(d\)-dimensional Brownian motion \(\{B_\mu(t)\}_{t\geqq0}\) with a drift \(\mu\in\mathbb{R}^d\) and the first hitting time \(\sigma_{r,\mu}^{(d)}\) to the sphere with radius \(r\) centered at the origin. This article deals with asymptotic behavior of the probability that both \(t\lt\sigma_{r,\mu}^{(d)}\lt\infty\) and \(B_\mu(\sigma_{r,\mu}^{(d)})\in A\) occur simultaneously, and we obtain that this probability admits an asymptotic expansion in powers of \(1/t\) if \(d\geqq3\) and in that of \(1/\log t\) if \(d=2\) for large \(t\). Moreover, we investigate the case of Brownian motion with no drift.
Keywords: Brownian motion, hitting times and sites, asymptotic expansion.
Mathematics Subject Classification: 60J65, 60G40, 41A60.
- Z. Ciesielski, S.J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434-450. https://doi.org/10.1090/s0002-9947-1962-0143257-8
- S. Chiba, Asymptotic expansions for hitting distributions of Bessel process, Master Thesis, Tohoku University (2017) [in Japanese].
- I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 8th ed., Elsevier, Academic Press, 2015.
- Y. Hamana, R. Kaikura, K. Shinozaki, Asymptotic expansions for the first hitting times of Bessel processes, Opuscula Math. 41 (2021), 509-537. https://doi.org/10.7494/opmath.2021.41.4.509
- Y. Hamana, H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Industry 4B (2012), 91-95.
- Y. Hamana, H. Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), 5237-5257. https://doi.org/10.1090/s0002-9947-2013-05799-6
- Y. Hamana, H. Matsumoto, Asymptotics of the probability distributions of the first hitting times of Bessel processes, Electron. Commun. Probab. 19 (2014), 1-5. https://doi.org/10.1214/ecp.v19-3215
- Y. Hamana, H. Matsumoto, Hitting times to spheres of Brownian motions with and without drifts, Proc. Amer. Math. Soc. 144 (2016), 5385-5396. https://doi.org/10.1090/proc/13136
- Y. Hamana, H. Matsumoto, Brownian hitting to spheres, J. Math. Soc. Japan. 76 (2024), 1307-1319. https://doi.org/10.2969/jmsj/91429142
- P. Hsu, Brownian exit distribution from a ball, [in:] Seminar on Stochastic Processes, Progr. Probab. Statist., vol. 12, Birkhäuser Boston, 1985, 108-116. https://doi.org/10.1007/978-1-4684-6748-2_8
- J.T. Kent, Eigenvalue expansion for diffusion hitting times, Z. Wahrsch. Verw. Gebiete 52 (1980), 309-319. https://doi.org/10.1007/bf00538895
- N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.
- W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966. https://doi.org/10.1007/978-3-662-11761-3
- M. Sasaki, Asymptotic expansion for the tail probability of the hitting time of two dimensional Bessel process, Master Thesis, Kumamoto University (2019) [in Japanese].
- C. Yin, The joint distribution of the hitting time and place to a sphere or spherical shell for Brownian motion with drift, Statist. Probab. Lett. 42 (1999), 367-373. https://doi.org/10.1016/s0167-7152(98)00231-4
- C. Yin, C. Wang, Hitting time and place of Brownian motion with drift, Open Stat. Prob. J. 1 (2009), 38-42. https://doi.org/10.2174/1876527000901010038
- Yuji Hamana
https://orcid.org/0000-0002-9997-3114
- University of Tsukuba, Department of Mathematics, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
- Communicated by Palle E.T. Jorgensen.
- Received: 2025-03-24.
- Revised: 2025-06-04.
- Accepted: 2025-06-04.
- Published online: 2025-07-16.