Opuscula Math. 45, no. 3 (2025), 403-416
https://doi.org/10.7494/OpMath.2025.45.3.403
Opuscula Mathematica
Integral representation of solutions to Dirac systems
Abstract. We introduce a novel integral form for a fundamental set of solutions to one-dimensional Dirac systems with an integrable potential and spectral parameter \(\mu \in \mathbb{C}\). This method enables the construction of solutions that are analytic in \(\mu\) within the half-plane \(\operatorname{Im} \mu\gt -r\), \(r\geq 0\) and \(|\mu| \to \infty\). Consequently, we derive estimates for the solutions that remain valid not just within a horizontal strip but throughout the entire half-plane.
Keywords: Dirac system, integrable potential, integral equations, fundamental system of solutions.
Mathematics Subject Classification: 34L40, 45F05.
- S. Albeverio, R. Hryniv, Y. Mykytyuk, Inverse spectral problems for Dirac operators with summable potentials, Russian Journal of Math. Physics 12 (2005), no. 4, 406-423.
- G.D. Birkhoff, R.E. Langer, The boundary problems and developments associated with a system of ordinary differential equations of the first order, Proc. Amer. Acad. Arts Sci. 58 (1923), no. 4, 49-128. https://doi.org/10.2307/20025975
- J.C. Cuenin, P. Siegl, Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications, Letters in Mathematical Physics 108 (2018), 1757-1778. https://doi.org/10.1007/s11005-018-1051-6
- R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin Heidelberg, 1993. https://doi.org/10.1006/jath.1994.1099
- P. Djakov, B. Mityagin, Riesz bases consisting of root functions of \(1D\) Dirac operators, Proc. Amer. Math. Soc. 141 (2013), 1361-1375. https://doi.org/10.1090/s0002-9939-2012-11611-9
- A.M. Gomilko, V.N. Pivovarchik, Asymptotics of solutions of the Sturm-Loiuville equation with respect to a parameter, Ukrainian Math. J. 53 (2001), 866-885. https://doi.org/10.1023/a:1013395700776
- A.M. Gomilko, Ł. Rzepnicki, On asymptotic behaviour of solutions of the Dirac system and applications to the Sturm-Liouville problem with a singular potential, Journal of Spectral Theory 10 (2020), 747-786. https://doi.org/10.4171/jst/311
- B.M. Levitan, I.S. Sargsyan, Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers Group, Dordrecht, 1991. https://doi.org/10.1007/978-94-011-3748-5
- A.A. Lunev, M.M. Malamud, On the asymptotic expansion of the characteristic determinant for a \(2 \times 2\) Dirac type system, Journal of Mathematical Sciences 284 (2024), 795-823. https://doi.org/10.1007/s10958-024-07390-9
- A.A. Lunyov, Criterion of Bari basis property for \(2 \times 2\) Dirac-type operators with strictly regular boundary conditions, Math. Nachr. 296 (2023), 4125-4151. https://doi.org/10.1002/mana.202200095
- A.A. Lunyov, M.M. Malamud, On the Riesz basis property of root vectors system for \(2\times2\) Dirac type operators, J. Math. Anal. Appl. 441 (2016), 57-103. https://doi.org/10.1016/j.jmaa.2016.03.085
- A.A. Lunyov, M.M. Malamud, Stability of spectral characteristics and Bari basis property of boundary value problems for \(2\times2\) Dirac type systems, Journal of Differential Equations 313 (2022), 633-742. https://doi.org/10.1016/j.jde.2021.12.035
- A.A. Lunyov, M.M. Malamud, On the completeness property of root vector systems for \(2\times2\) Dirac type operators with non-regular boundary conditions, J. Math. Anal. Appl. 543 (2025). https://doi.org/10.1016/j.jmaa.2024.128949
- A. Makin, On the completeness of root function system of the Dirac operator with two-point boundary conditions, Math. Nachr. 297 (2024), 2468-2487. https://doi.org/10.1002/mana.202300241
- V.A. Marchenko, Sturm-Liouville Operators and Their Applications, Birkhauser, Basel, 1986. https://doi.org/10.1007/978-3-0348-5485-6_1
- G.V. Radzievskii, Direct and inverse theorems on approximation by root functions of a regular boundary-value problem, Sbornik: Mathematics 197 (2006), 1037-1083. https://doi.org/10.1070/sm2006v197n07abeh003788
- Ł. Rzepnicki, Asymptotic behavior of solutions of the Dirac system with an integrable potential, Integr. Equ. Oper. Theory 93 (2021), 1-24. https://doi.org/10.1007/s00020-021-02670-4
- A.M. Savchuk, I.V. Sadovnichaya, Asymptotic formulas for fundamental solutions of the Dirac system with complex-valued integrable potential, Differential Equations 49 (2013), 545-556. https://doi.org/10.1134/s0012266113050030
- A.M. Savchuk, A.A. Shkalikov, Dirac operator with complex-valued summable potential, Math. Notes 96 (2014), 777-810. https://doi.org/10.1134/s0001434614110169
- A. Zettl, Sturm-Liouville theory, American Mathematical Society, Providence, 2005.
- Łukasz Rzepnicki
https://orcid.org/0000-0001-8532-6680
- Nicolaus Copernicus University in Toruń, Faculty of Mathematics and Computer Science, Chopina 12/18, 87-100 Toruń, Poland
- Communicated by P.A. Cojuhari.
- Received: 2025-02-25.
- Revised: 2025-04-29.
- Accepted: 2025-05-02.
- Published online: 2025-05-30.