Opuscula Math. 45, no. 3 (2025), 339-350
https://doi.org/10.7494/OpMath.2025.45.3.339

 
Opuscula Mathematica

Upper distance-two domination

Jason T. Hedetniemi
Stephen T. Hedetniemi
Thomas M. Lewis

Abstract. Let \(G = (V, E)\) be a graph with vertex set \(V\) and edge set \(E\). A set \(S \subset V\) is a \(2\)-packing in \(G\) if for any two vertices \(u,v \in S\), the distance between them satisfies \(d(u,v) \gt 2\). The upper \(2\)-packing number \(P_2(G)\) is the maximum cardinality of a \(2\)-packing in \(G\). A set \(S \subset V\) is a dominating set for \(G\) if every vertex in \(V - S\) is adjacent to at least one vertex in \(S\). The domination number \(\gamma(G)\) is the minimum cardinality of a dominating set in \(G\). A set \(S \subset V\) is a distance-\(2\) dominating set if for every vertex \(v \in V - S\) there exists a vertex \(u \in S\) such that \(d(u,v) \leq 2\). The upper distance-\(2\) domination number \(\Gamma_{\leq 2}(G)\) is the maximum cardinality of a minimal distance-\(2\) dominating set in \(G\). In this paper we establish two families of graphs \(G\) for which \(P_2(G) = \gamma(G) = \Gamma_{\leq 2}(G)\), which extend several well-known equalities of the form \(P_2(G) = \gamma(G)\).

Keywords: 2-packing, domination, distance-2 domination.

Mathematics Subject Classification: 05C69, 05C85.

Full text (pdf)

  1. B. Brešar, P. Dorbec, W. Goddard, B.L. Hartnell, M.A. Henning, S. Klavžar, D.F. Rall, Vizing's conjecture: a survey and recent results, J. Graph Theory 69 (2012), no. 1, 46-76. https://doi.org/10.1002/jgt.20565
  2. G.S. Domke, S. Hedetniemi, R. Laskar, R. Allan, Generalized packings and coverings of graphs, Congr. Numer. 62 (1988), 259-270, Seventeenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1987).
  3. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208, Marcel Dekker, Inc., New York, 1998.
  4. M.A. Henning, O.R. Oellermann, H.C. Swart, Bounds on distance domination parameters, J. Combin. Inform. System Sci. 16 (1991), 11-18.
  5. A. Meir, J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975), no. 1, 225-233. https://doi.org/10.2140/pjm.1975.61.225
  6. R.R. Rubalcaba, A. Sneider, P.J. Slater, A survey on graphs which have equal domination and closed neighborhood packing numbers, AKCE Int. J. Graphs Comb. 3 (2006), no. 2, 93-114.
  • Jason T. Hedetniemi
  • Florida Atlantic University, Harriet L. Wilkes Honors College, Boca Raton, FL, USA
  • Stephen T. Hedetniemi
  • Clemson University, Emeritus College, Clemson, SC, USA
  • Communicated by Dalibor Fronček.
  • Received: 2023-10-26.
  • Revised: 2025-02-02.
  • Accepted: 2025-02-24.
  • Published online: 2025-05-30.
Opuscula Mathematica - cover

Cite this article as:
Jason T. Hedetniemi, Stephen T. Hedetniemi, Thomas M. Lewis, Upper distance-two domination, Opuscula Math. 45, no. 3 (2025), 339-350, https://doi.org/10.7494/OpMath.2025.45.3.339

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.