Opuscula Math. 44, no. 6 (2024), 827-851
https://doi.org/10.7494/OpMath.2024.44.6.827
Opuscula Mathematica
Positive solutions of nonpositone sublinear elliptic problems
Abstract. Consider the problem \(-\Delta u=\lambda f(\cdot, u) \) in \(\Omega\), \(u=0\) on \(\partial\Omega\), \(u\gt 0\) in \(\Omega\), where \(\Omega\) is a bounded domain in \(\mathbb{R}^{n}\) with \(C^{2}\) boundary when \(n\geq2\), \(\lambda\gt 0\), and where \(f\in C (\overline{\Omega}\times[0,\infty)) \) satisfies \(\lim_{s\rightarrow\infty}s^{-p}f(\cdot, s) =\gamma\) for some \(p\in(0,1)\) and some \(\gamma\in C(\overline{\Omega}) \) such that \(\gamma\neq 0\) a.e. in \(\Omega\) and, for some positive constants \(c\) and \(c^{\prime}\), \(\gamma^{-}\leq cd_{\Omega}^{\beta}\) for some \(\beta\in (\frac{n-1}{n},\infty)\) and \((-\Delta)^{-1}\gamma\geq c^{\prime}d_{\Omega}\), where \(d_{\Omega}(x):=dist ( x,\partial \Omega) \) and \(\gamma^{-}:=-\min(0,\gamma)\). Under these assumptions we show that for \(\lambda\) large enough, the above problem has a positive weak solution \(u\in C^{1}(\overline{\Omega})\) such that, for some constant \(c^{\prime\prime}\gt 0\), \(u\geq c^{\prime\prime}d_{\Omega}\) in \(\Omega\).
Keywords: elliptic sublinear problems, nonpositone problems, positive solutions, Leray-Schauder degree.
Mathematics Subject Classification: 35J25, 35A01, 35B09, 35J15.
- A. Ambrosetti, D. Arcoya, B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations 7 (1994), no. 3-4, 655-663. https://doi.org/10.57262/die/1370267698
- I.M. Bachar, H. Mâagli, H. Eltayeb, Nonnegative solutions for a class of semipositone nonlinear elliptic equations in bounded domains of \(\mathbb{R}^{n}\), Opuscula Math. 42 (2022), no. 6, 793-803. https://doi.org/10.7494/opmath.2022.42.6.793
- H. Berestycki, I. Capuzzo Dolcetta, L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 59-78. https://doi.org/10.12775/tmna.1994.023
- A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Math., vol. 1764, Springer-Verlag, Berlin, 2001. https://doi.org/10.1007/b80865
- A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A. 108 (1988), no. 3-4, 291-302. https://doi.org/10.1090/s0002-9939-1989-0949875-3
- A. Castro, R. Shivaji, Non-negative solutions for a class of radially symmetric non-positive problems, Proc. Amer. Math. Soc. 106 (1989), no. 3, 735-740. https://doi.org/10.1090/s0002-9939-1989-0949875-3
- A. Castro, J.B. Garner, R. Shivaji, Existence results for classes of sublinear semipositone problems, Results Math. 23 (1993), no. 3-4, 214-220. https://doi.org/10.1007/bf03322297
- A. Castro, C. Maya, R. Shivaji, Nonlinear eigenvalue problems with semipositone structure, Electron. J. Differential Equations 5 (2000), 33-49.
- D.G. Costa, H. Ramos Quoirin, H. Therani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2661-2675. https://doi.org/10.1090/proc/13426
- D.G. Costa, H. Tehrani, J. Yang, On a variational approach to existence and multiplicity results for semipositone problems, Electron. J. Differential Equations 2006 (2006), no. 11, 1-10.
- E.N. Dancer, J. Shi, Uniqueness and nonexistence of positive solutions to semipositone problems, Bull. Lond. Math. Soc. 38 (2006), no. 6, 1033-1044. https://doi.org/10.1112/s0024609306018984
- D.G. De Figueiredo, Positive solutions of semilinear elliptic equations, [in:] Differential Equations, Lecture Notes in Math., vol. 957, 1982, 34-87. https://doi.org/10.1007/bfb0066233
- J. Garcia-Melian, I. Iturriaga, H. Ramos Quoirin, A priori bounds and existence of solutions for slightly superlinear elliptic problems, Adv. Nonlinear Stud. 15 (2015), no. 4, 923-938. https://doi.org/10.1515/ans-2015-0409
- B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883-901. https://doi.org/10.1080/03605308108820196
- T. Godoy, J.P. Gossez, S. Paczka, A minimax formula for the principal eigenvalues of Dirichlet problems and its applications, Electron. J. Differential Equations 16 (2007), 137-154.
- D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 2001. https://doi.org/10.1007/978-3-642-61798-0
- M.W. Hirsch, Differential Topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York-Heidelberg, 1976. https://doi.org/10.1007/978-1-4684-9449-5
- U. Kaufmann, H. Ramos Quoirin, Positive solutions of indefinite semipositone problems via sub-super solutions, Differential Integral Equations 31 (2018), no. 7-8, 497-506. https://doi.org/10.57262/die/1526004027
- U. Kaufmann, H. Ramos Quoirin, K. Umezu, Uniqueness and sign properties of minimizers in a quasilinear indefinite problem, Commun. Pure Appl. Anal. 20 (2021), no. 6, 2313-2322. https://doi.org/10.3934/cpaa.2021078
- J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21752-9_1
- E. Lee, R. Shivaji, J. Ye, Subsolutions: a journey from positone to infinite semipositone problems, Electron. J. Differential Equations 17 (2009), 123-131.
- R. Ma, Y. Zhang, Y. Zhu, Positive solutions of indefinite semipositone elliptic problems, Qual. Theory Dyn. Syst. 23 (2024), Paper no. 45. https://doi.org/10.1007/s12346-023-00901-0
- J. Mawhin, Leray-Schauder degree: a half century of extensions and applications, Topol. Methods Nonlinear Anal. 14 (1999), no. 2, 195-228. https://doi.org/10.12775/tmna.1999.029
- N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-03430-6
- A. Rhazani, G.M. Figueiredo, Positive solutions for a semipositone anisotropic \(p\)-Laplacian problem, Bound. Value Probl. 2024 (2024), Paper no. 34. https://doi.org/10.1186/s13661-024-01841-7
- W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
- J.C. Sabina de Lis, Hopf maximum principle revisited, Electron. J. Differential Equations 2015 (2015), no. 115, 1-9.
- A. Santos, C.O. Alves, E. Massa, A nonsmooth variational approach to semipositone quasilinear problems in \(\mathbb{R}^{N}\), J. Math. Anal. Appl. 527 (2023), 127432. https://doi.org/10.1016/j.jmaa.2023.127432
- E. Zeidler, Nonlinear Functional Analysis and its Applications, Volume 1, Springer-Verlag, New York, 1985. https://doi.org/10.1007/978-1-4612-5020-3
- Tomas Godoy
https://orcid.org/0000-0002-8804-9137
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronimía, Física y Computación, Av. Medina Allende s.n., Ciudad Universitaria, Córdoba, Argentina
- Communicated by Giovany Figueiredo.
- Received: 2024-03-31.
- Revised: 2024-07-18.
- Accepted: 2024-07-21.
- Published online: 2024-10-11.