Opuscula Math. 44, no. 6 (2024), 827-851
https://doi.org/10.7494/OpMath.2024.44.6.827

 
Opuscula Mathematica

Positive solutions of nonpositone sublinear elliptic problems

Tomas Godoy

Abstract. Consider the problem \(-\Delta u=\lambda f(\cdot, u) \) in \(\Omega\), \(u=0\) on \(\partial\Omega\), \(u\gt 0\) in \(\Omega\), where \(\Omega\) is a bounded domain in \(\mathbb{R}^{n}\) with \(C^{2}\) boundary when \(n\geq2\), \(\lambda\gt 0\), and where \(f\in C (\overline{\Omega}\times[0,\infty)) \) satisfies \(\lim_{s\rightarrow\infty}s^{-p}f(\cdot, s) =\gamma\) for some \(p\in(0,1)\) and some \(\gamma\in C(\overline{\Omega}) \) such that \(\gamma\neq 0\) a.e. in \(\Omega\) and, for some positive constants \(c\) and \(c^{\prime}\), \(\gamma^{-}\leq cd_{\Omega}^{\beta}\) for some \(\beta\in (\frac{n-1}{n},\infty)\) and \((-\Delta)^{-1}\gamma\geq c^{\prime}d_{\Omega}\), where \(d_{\Omega}(x):=dist ( x,\partial \Omega) \) and \(\gamma^{-}:=-\min(0,\gamma)\). Under these assumptions we show that for \(\lambda\) large enough, the above problem has a positive weak solution \(u\in C^{1}(\overline{\Omega})\) such that, for some constant \(c^{\prime\prime}\gt 0\), \(u\geq c^{\prime\prime}d_{\Omega}\) in \(\Omega\).

Keywords: elliptic sublinear problems, nonpositone problems, positive solutions, Leray-Schauder degree.

Mathematics Subject Classification: 35J25, 35A01, 35B09, 35J15.

Full text (pdf)

  1. A. Ambrosetti, D. Arcoya, B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations 7 (1994), no. 3-4, 655-663. https://doi.org/10.57262/die/1370267698
  2. I.M. Bachar, H. Mâagli, H. Eltayeb, Nonnegative solutions for a class of semipositone nonlinear elliptic equations in bounded domains of \(\mathbb{R}^{n}\), Opuscula Math. 42 (2022), no. 6, 793-803. https://doi.org/10.7494/opmath.2022.42.6.793
  3. H. Berestycki, I. Capuzzo Dolcetta, L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 59-78. https://doi.org/10.12775/tmna.1994.023
  4. A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Math., vol. 1764, Springer-Verlag, Berlin, 2001. https://doi.org/10.1007/b80865
  5. A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A. 108 (1988), no. 3-4, 291-302. https://doi.org/10.1090/s0002-9939-1989-0949875-3
  6. A. Castro, R. Shivaji, Non-negative solutions for a class of radially symmetric non-positive problems, Proc. Amer. Math. Soc. 106 (1989), no. 3, 735-740. https://doi.org/10.1090/s0002-9939-1989-0949875-3
  7. A. Castro, J.B. Garner, R. Shivaji, Existence results for classes of sublinear semipositone problems, Results Math. 23 (1993), no. 3-4, 214-220. https://doi.org/10.1007/bf03322297
  8. A. Castro, C. Maya, R. Shivaji, Nonlinear eigenvalue problems with semipositone structure, Electron. J. Differential Equations 5 (2000), 33-49.
  9. D.G. Costa, H. Ramos Quoirin, H. Therani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2661-2675. https://doi.org/10.1090/proc/13426
  10. D.G. Costa, H. Tehrani, J. Yang, On a variational approach to existence and multiplicity results for semipositone problems, Electron. J. Differential Equations 2006 (2006), no. 11, 1-10.
  11. E.N. Dancer, J. Shi, Uniqueness and nonexistence of positive solutions to semipositone problems, Bull. Lond. Math. Soc. 38 (2006), no. 6, 1033-1044. https://doi.org/10.1112/s0024609306018984
  12. D.G. De Figueiredo, Positive solutions of semilinear elliptic equations, [in:] Differential Equations, Lecture Notes in Math., vol. 957, 1982, 34-87. https://doi.org/10.1007/bfb0066233
  13. J. Garcia-Melian, I. Iturriaga, H. Ramos Quoirin, A priori bounds and existence of solutions for slightly superlinear elliptic problems, Adv. Nonlinear Stud. 15 (2015), no. 4, 923-938. https://doi.org/10.1515/ans-2015-0409
  14. B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883-901. https://doi.org/10.1080/03605308108820196
  15. T. Godoy, J.P. Gossez, S. Paczka, A minimax formula for the principal eigenvalues of Dirichlet problems and its applications, Electron. J. Differential Equations 16 (2007), 137-154.
  16. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 2001. https://doi.org/10.1007/978-3-642-61798-0
  17. M.W. Hirsch, Differential Topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York-Heidelberg, 1976. https://doi.org/10.1007/978-1-4684-9449-5
  18. U. Kaufmann, H. Ramos Quoirin, Positive solutions of indefinite semipositone problems via sub-super solutions, Differential Integral Equations 31 (2018), no. 7-8, 497-506. https://doi.org/10.57262/die/1526004027
  19. U. Kaufmann, H. Ramos Quoirin, K. Umezu, Uniqueness and sign properties of minimizers in a quasilinear indefinite problem, Commun. Pure Appl. Anal. 20 (2021), no. 6, 2313-2322. https://doi.org/10.3934/cpaa.2021078
  20. J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21752-9_1
  21. E. Lee, R. Shivaji, J. Ye, Subsolutions: a journey from positone to infinite semipositone problems, Electron. J. Differential Equations 17 (2009), 123-131.
  22. R. Ma, Y. Zhang, Y. Zhu, Positive solutions of indefinite semipositone elliptic problems, Qual. Theory Dyn. Syst. 23 (2024), Paper no. 45. https://doi.org/10.1007/s12346-023-00901-0
  23. J. Mawhin, Leray-Schauder degree: a half century of extensions and applications, Topol. Methods Nonlinear Anal. 14 (1999), no. 2, 195-228. https://doi.org/10.12775/tmna.1999.029
  24. N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-03430-6
  25. A. Rhazani, G.M. Figueiredo, Positive solutions for a semipositone anisotropic \(p\)-Laplacian problem, Bound. Value Probl. 2024 (2024), Paper no. 34. https://doi.org/10.1186/s13661-024-01841-7
  26. W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
  27. J.C. Sabina de Lis, Hopf maximum principle revisited, Electron. J. Differential Equations 2015 (2015), no. 115, 1-9.
  28. A. Santos, C.O. Alves, E. Massa, A nonsmooth variational approach to semipositone quasilinear problems in \(\mathbb{R}^{N}\), J. Math. Anal. Appl. 527 (2023), 127432. https://doi.org/10.1016/j.jmaa.2023.127432
  29. E. Zeidler, Nonlinear Functional Analysis and its Applications, Volume 1, Springer-Verlag, New York, 1985. https://doi.org/10.1007/978-1-4612-5020-3
  • Tomas Godoy
  • ORCID iD https://orcid.org/0000-0002-8804-9137
  • Universidad Nacional de Córdoba, Facultad de Matemática, Astronimía, Física y Computación, Av. Medina Allende s.n., Ciudad Universitaria, Córdoba, Argentina
  • Communicated by Giovany Figueiredo.
  • Received: 2024-03-31.
  • Revised: 2024-07-18.
  • Accepted: 2024-07-21.
  • Published online: 2024-10-11.
Opuscula Mathematica - cover

Cite this article as:
Tomas Godoy, Positive solutions of nonpositone sublinear elliptic problems, Opuscula Math. 44, no. 6 (2024), 827-851, https://doi.org/10.7494/OpMath.2024.44.6.827

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.