Opuscula Math. 44, no. 6 (2024), 789-814
https://doi.org/10.7494/OpMath.2024.44.6.789
Opuscula Mathematica
On a nonlocal p(x)-Laplacian Dirichlet problem involving several critical Sobolev-Hardy exponents
Augusto César dos Reis Costa
Ronaldo Lopes da Silva
Abstract. The aim of this work is to present a result of multiplicity of solutions, in generalized Sobolev spaces, for a non-local elliptic problem with \(p(x)\)-Laplace operator containing \(k\) distinct critical Sobolev-Hardy exponents combined with singularity points \[ \begin{cases} M(\psi(u)) (- \Delta_{p(x)} u + |u|^{p(x)-2} u) = \sum_{i=1}^{k} h_i(x) \dfrac{|u|^{p^*_{s_i}(x)-2} u}{|x|^{s_i(x)}} + f(x,u) &\text{in }\Omega, \\ u=0 &\text{on }\partial \Omega, \end{cases} \] where \(\Omega\subset \mathbb{R}^N\) is a bounded domain with \(0 \in \Omega\) and \(1 \lt p^- \leq p(x) \leq p^+ \lt N\). The real function \(M\) is bounded in \([0, +\infty)\) and the functions \(h_i\) \((i=1, \ldots, k)\) and \(f\) are functions whose properties will be given later. To obtain the result we use the Lions' concentration-compactness principle for critical Sobolev-Hardy exponent in the space \(W^{1,p(x)}_{0}(\Omega)\) due to Yu, Fu and Li, and the Fountain Theorem.
Keywords: generalized Lebesgue-Sobolev spaces, \(p(x)\)-Laplacian nonlocal operator, Sobolev-Hardy critical exponents, concentration-compactness principle for critical Sobolev-Hardy exponent, fountain theorem.
Mathematics Subject Classification: 35J60, 58E05.
- E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
- E. Acerbi, G. Mingione, G.A. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré C Anal. Non Linéaire 21 (2004), no. 1, 25-60. https://doi.org/10.1016/j.anihpc.2002.11.002
- J.F. Bonder, N. Saintier, A. Silva, On the Sobolev trace theorem for variable exponent spaces in the critical range, Ann. Mat. Pura Appl. (4) 193 (2014), no. 6, 1607-1628. https://doi.org/10.1007/s10231-013-0346-6
- J.F. Bonder, N. Saintier, A. Silva, Existence of solution to a critical trace equation with variable exponent, Asymptot. Anal. 93 (2015), no. 1-2, 161-185. https://doi.org/10.3233/asy-151289
- J.F. Bonder, A. Silva, The concentration-compactness principle for variable exponent spaces and applications, Electron. J. Differential Equations 141 (2010), 1-18. https://doi.org/10.48550/arXiv.0906.1922
- D. Cao, P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potencial, J. Differential Equations 205 (2004), no. 2, 521-537. https://doi.org/10.1016/j.jde.2004.03.005
- D. Cao, S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations 193 (2003), no. 2, 424-434. https://doi.org/10.1016/s0022-0396(03)00118-9
- F.J.S.A. Corrêa, A.C.R. Costa, A variational approach for a bi-nonlocal elliptic problem involving the \(p(x)\)-Laplacian and nonlinearity with nonstandard growth, Glasg. Math. J. 56 (2014), 317--333. https://doi.org/10.1017/s001708951300027x
- L. Diening, Riesz potential and Sobolev embeddings on generalized Lesbegue and Sobolev spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Math. Nachr. 268 (2004), 31-43. https://doi.org/10.1002/mana.200310157
- X.L. Fan, Solutions for \(p(x)\)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005), no. 2, 464-477. https://doi.org/10.1016/j.jmaa.2005.03.057
- X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/s0362-546x(02)00150-5
- X.L. Fan, D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
- X.L. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces \(W^{k,p(x)}(\Omega)\), J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618
- A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations 177 (2001), no. 2, 494-522. https://doi.org/10.1006/jdeq.2000.3999
- Y. Fu, The existence of solutions for elliptic systems with nonuniform growth, Studia Math. 151 (2002), 227-246. https://doi.org/10.4064/sm151-3-3
- Y. Fu, The principle of concentration compactness in \(L^{p(x)}\) spaces and its application, Nonlinear Anal. 71 (2009), no. 5-6, 1876-1892. https://doi.org/10.1016/j.na.2009.01.023
- N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5703-5743. https://doi.org/10.1090/s0002-9947-00-02560-5
- E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differential Equations 156 (1999), 407-426. https://doi.org/10.1006/jdeq.1998.3589
- D. Kang, Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term, J. Math. Anal. Appl. 341 (2008), 764-782. https://doi.org/10.1016/j.jmaa.2007.10.058
- D. Kang, S. Peng, Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents, Nonlinear Anal. 56 (2004), 1151-1164. https://doi.org/10.1016/j.na.2003.11.008
- D. Kang, S. Peng, Positive solutions for singular critical elliptic problems, Appl. Math. Lett. 17 (2004), 411-416. https://doi.org/10.1016/s0893-9659(04)90082-1
- D. Kang, S. Peng, Sign-changing solutions for elliptic problems with critical Sobolev-Hardy exponents, J. Math. Anal. Appl. 291 (2004), 488-499. https://doi.org/10.1016/j.jmaa.2003.11.012
- D. Kang, S. Peng, Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential, Appl. Math. Lett. 18 (2005), 1094-1100. https://doi.org/10.1016/j.aml.2004.09.016
- O. Kováčik, J. Rákosník, On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Czechoslovak Math. J. 41 (1991), no. 4, 592-618. https://doi.org/10.21136/cmj.1991.102493
- W. Krawcewicz, W. Marzantowicz, Some remarks on the Lusternik-Schnirelman method for nondifferentiable functionals invariant with respect to a finite group action, Rocky Mountain J. Math. 20 (1990), no. 4, 1041-1049. https://doi.org/10.1216/rmjm/1181073061
- Y.Y. Li, C.S. Lin, A nonlinear elliptic PDE with two Sobolev-Hardy critical exponents, Arch. Ration. Mech. Anal. 203 (2012), 943-968. https://doi.org/10.1007/s00205-011-0467-2
- M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641. https://doi.org/10.1098/rspa.2005.1633
- M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000. https://doi.org/10.1007/BFb0104029
- G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992), no. 1, 25-42. https://doi.org/10.57262/die/1371086979
- Y. Mei, F. Yongqiang, L. Wang, Existence of solutions for the \(p(x)\)-Laplacian problem with the critical Sobolev-Hardy exponent, Abstr. Appl. Anal. 2012 (2012), Article ID 894925. https://doi.org/10.1155/2012/894925
- Augusto César dos Reis Costa
https://orcid.org/0000-0002-9798-5357
- Universidade Federal do Pará (UFPA), Instituto de Ciências Exatas e Naturais, R. Augusto Corrêa, 01 - Guamá, CEP 66075-110, Belém, PA, Brasil
- Ronaldo Lopes da Silva
- Universidade Federal do Pará (UFPA), Instituto de Ciências Exatas e Naturais, R. Augusto Corrêa, 01 - Guamá, CEP 66075-110, Belém, PA, Brasil
- Communicated by Giovany Figueiredo.
- Received: 2024-04-08.
- Revised: 2024-06-27.
- Accepted: 2024-07-02.
- Published online: 2024-10-11.