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ON A NONLOCAL p(z)-LAPLACIAN DIRICHLET PROBLEM
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Abstract. The aim of this work is to present a result of multiplicity of solutions,
in generalized Sobolev spaces, for a non-local elliptic problem with p(z)-Laplace oper-
ator containing k distinct critical Sobolev—Hardy exponents combined with singularity
points

“ (o
‘upsi(l) 2,

M((u) (= Apgyu + [uP®—2u) = S hi(x)w + f(z,u) inQ,
u=0 on 012,

where Q C RY is a bounded domain with 0 € Q and 1 < p~ < p(x) < p™ < N.
The real function M is bounded in [0, +00) and the functions h; (i = 1,...,k) and
f are functions whose properties will be given later. To obtain the result we use the
Lions’ concentration-compactness principle for critical Sobolev—Hardy exponent in the

space W, ") () due to Yu, Fu and Li, and the Fountain Theorem.
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1. INTRODUCTION

In this paper we study the following class of p(z)-Laplacian equations coupled with
the homogeneous Dirichlet boundary conditions given by

. u ps,(@)=2,

M (3h(w)) (= Apayu + [u[P~2u) = 377, hi(x)w + flz,u) inQ

u=0 on 01,

(1.1)
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where Q C RY(N > 2) is a bounded domain with 0 € Q. Furthermore, the variable
exponent p(x) is Lipschitz continuous and radially symmetric on  with the growth
condition
1 <p :=minp(r) < p(z) < maxp(r) = p" < N,
e €

while s1(x),...,s,(r) are Lipschitz continuous, radially symmetric on € such
that 0 < s;(z) < p(z) for all ¢ € {1,...,k}, where s;(z) < p(z) denotes the fact that
inf(p(z) — s;(xz)) > 0, with

Hx € Q:s;(x) =sj(x) for all i # j}| =0,

where | - | denotes the Lebesgue measure. The critical Sobolev—Hardy exponent for
each i =1,...,k is defined by

p(x) - (N = s4(2))
N —p(z)

ps,(x) =

Note that N
pil) = s = (@)

is the critical Sobolev exponent. The p(z)-Laplace operator A, given by

N
0 ou
Aty = div(| a2 vu) = 37 = (wp(””’” )
p(x) ; o, Ty

is a natural extension of the p-Laplace operator. We define

(u) = / ]ﬁoww + [uP@) da
Q

and M : RT — R where RT = [0, +00) is a class of continuous functions satisfying
the following growth condition:

(Mg) mo < M(1) < my for all 7 > 0,

where mg and my are positive constants.
Every real function h; is continuous on €2 and satisfy:

hi(z) = hi(|z]) >0, Ve € Q — {0} and h;(0) =0, (1.2)
and )
lim h;(z) - ———= = +o0, Vie{l,...,k}. (1.3)
=0 || i(=)
A typical example for functions h;’s can be given by ¢(z) = “nl‘wll if z # 0,

and ¢(z) =0if x = 0.
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We assume the following hypotheses for the function f: Q x R — R:

(f1) f satisfies the Carathéodory condition;

(f2) There are constants ¢, ¢ such that | f(z,t)| < 1 + co[t|?®) =1, where ¢ : @ — R
is a measurable Lebesgue function such that p(z) < ¢(z) < pi (z) for all
i€{1,...,k} and for all z € Q,

(f3) f(z,t) = f(|z|,t) for all (z,t) € Q x R,

(fa) f(z,t) = —f(z,—t) for all (z,t) € @ x R.

This problem is an extension of the application, of the presented result by Yu, Fu
and Li in [30], where they presented a version of the Lions’ concentration-compactness
principle for the critical Sobolev—Hardy exponent in VVO1 P(@) (), in order to solve the
p(z)-Laplacian problem with only one Sobolev—Hardy critical term

P () =2y,

—div(|Vul|P®)=2Vu) + |u[P®) =2y = h(z) FES) + f(z,u) in Q,
=z

u=20 on 0,

where 2 is bounded in RY such that 0 € €2, p(z), s(z) are Lipschitz continuous and
radially symmetric on Q with 1 < p~ < p(z) < pt < N, and 0 < s(z) < p(z), h and f
satisfy the same conditions as this paper.

Singularity problems with critical exponents of the Sobolev—Hardy type have been
studied frequently in recent years, starting when p(x) is a constant function p. This is
the case, for p = 2, of the singular critical problem with the usual Laplace operator
given by

2% (s)—2
—Au — ,ui = M + Aul""2u  in Q,
|z |z]*

u=20 on 0f),

(1.4)

with Q@ ¢ RY (N > 3) bounded and smooth; 0 € 2, 0 < 5 < 2, 2%(s) = Q%V:;),

2<r<2 A>0and 0 < pu < u:= (#)2 The works of Jannelli [18], Ferrero and
Gazzola [14] and Cao and Peng [7] show the existence of solutions for problem (1.4)
when s = 0 and r = 2 using local compactness arguments and min-max principles.

If s varies in the interval [0,2) many interesting results for (1.4) due to Kang and
Peng have been obtained. For example, in [21] they conclude that (1.4) has a positive
solution in H}(Q) under certain assumptions for r, u and A, applying the Mountain
Pass Theorem. In [22], with A\;(u) being the first eigenvalue of the operator —A —u/|z|?
in Hi(Q) and N > 7, they guarantee the existence of at least one pair of sign-changing
solutions, as r = 2,0 < p < —4 and 0 < A < A;(u). On the other hand, in [20]
they prove the existence of sign-changing solutions in the range 2 < r < 2* and A > 0,
employing the technique used in [17] and [29].

A particular case of equations (1.4) when r = 2, where Q@ C RY (N > 5) is an open
bounded domain and 0 < p < iz — (%)2, is investigated by Cao and Han in [6] and
again by Kang and Peng in [23], where they prove at least one non-trivial solution
in H}(Q) for a certain range of energy level and with the critical Sobolev—Hardy growth.
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The authors Li and Lin through [26] studied the Laplacian problem generated by
two terms with critical Sobolev-Hardy exponents, that is, the problem

u2*(sl)—1 u2*(32)—1

Au+ A + =0 in €,
|z|*1 ||*>

u(z) >0 in 0,

u(z) =0 on 012,

where Q C RV (N > 3) bounded and smooth and 0 € 9, 0 < 55 < 51 <2,0# A € R.
In this paper they first show the existence of a least-energy solution, and then prove
the existence of positive integer solutions under Q2 = Rf with certain conditions
for s1, so and A.

In [19], Kang presents the p-Laplacian version of (1.4) with arbitrary p such that
1 <p< N (N > 3) in its singular quasilinear form

wuP~1 P (-1

—Apu— :U'W = W +da(x)u™"1  in RV,

u€ DYRY), u>0 in RV,

(1.5)

P
considering 0 < s < p, 1 <r <p*(s), A >0and 0 < p < 1 = (%) with

a(z) € CRN)N L#= (RM) and a(0) > 0. He obtains the existence of non-trivial
solutions to (1.5) via mountain pass arguments and analysis techniques.

In addition to mathematical motivations, the interest in elliptic equations of
the p(x)-Laplacian nature has motivations in the context of physical applications,
such as, for example, in the field of nonlinear elastic mechanics and in dynamic
models of electrorheological fluids that allow changing the mechanical properties of
these fluids when exposed to electromagnetic fields external (see [1, 2, 27] and the
references therein). In [28], Ruzicka presents another physical implication for this type
of equations through image processing.

Motivated by the problems mentioned above, and inspired by [30], we study the
problem (1.1) establishing the following theorem as the main result of this paper:

Theorem 1.1. Assume that (My), (1.2), (1.3) and (f1)—(fs) hold. Moreover,
assume m;ler <p;i~ forallie{l,...,k}. Then, the problem (1.1) has a sequence

(0]
(un) C Wol’p(z)(ﬂ) of solutions such that, for its energy functional J : Wol’p(z) Q) = R,
we have J(u,) — +00, as n — +oo.

Our result shows that there are infinitely many solutions, for example, for the
following problem, naturally with the hypotheses of Theorem 1.1, given by

k p;‘.i(r)*2u .
(2 sin( () (= Ay [ulP) ") = 33 hio) M o+ flaw) i €,
1=

u=0 on 0f).
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Problems in the form (1.1) are associated with the energy functional

— hi(z) |ulPs® hy(x) |ulPor®)
) = M) ~ [ p£<<x)> afr@ @ -/ p.’;i((x)) |x|8k<r> o
Q@ § (1.6)
—/F(gc,u) dz,
Q

for all u € Wol’p(z)(Q)7 where

t ¢
F(x,t) z/f(x,s)ds and M /M
0 0

This functional is differentiable and its Fréchet derivative is given by

J’(u)v:M(w(u))/<|Vu|p(”’)_2Vqu+\u|p<x)_2uv) dx
‘u|p 1 (@)=2,, |u|Ps,C (z)-2,,
/ M e / D) ey

—/f(x,u)v dz,
Q

for all u,v € W™ (Q). Then u € Wy*™(Q) is a weak solution of problem (1.1)
if and only if w is a critical point of J.

This paper is organized as follows: in Section 2 we introduce a summary on
Sobolev—Lebesgue spaces of variable exponents, and in Section 3 we prove Theorem 1.1.

2. PRELIMINARIES ON VARIABLE EXPONENT SPACES

In this paper we consider
Ct () ={heC@Q):h(z)>1foralzecQ}
and for each h € C*(Q) we define

hT == maxh(r) and h~ :=minh(x).
o) )

We denote by M(€) the set of real measurable functions defined on €.

Definition 2.1. Let p(x) € C* (). The variable exponent Lebesgue space LP(*) ()
is defined by

LP@Q) = ue M(Q /|u )P de < +oo p . (2.1)
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LP®)(Q) is a Banach space equipped with the Luxemburg norm defined as

u(z) p(x)

i\ dr <1

\u|p(w) =inf< A>0: /
Q

For all p(z) € C*(Q), we define L?' ®)(2), the dual space of LP(*)(£2), where

1,1
p(x)  p'(z)

)

for all 2 € Q.

The proofs of the following propositions and theorems can be found in Kovacik and
Réakosnik [24], Fan, Shen and Zhao [13], Fan and Zhao [12], Fu [15], Fan and Zhang [11],
Diening [9], Bonder and Silva [5], Corréa and Costa [8] and Bonder, Saintier and
Silva [3, 4.

Proposition 2.2. Let

() = / (@)@ d.

Q
For all u,u, € LP®)(Q), we have:

(i) foru #0, |ulp) = A if and only if p, (%) =1,
(i) |ulp@) < 1(=1;> 1) if and only if pp(u) < 1(=1;> 1),
e . - +
(iii) of |ulpz) > 1, then |u|§£r$) < pp(u) < |u\§(}),
(iv) zf [u|pz) < 1, then |u|5(x) < pp(u) S Mi(w),
(v) limy, 400 |Un|pzy = 0 if and only if limy, s y oo pp(un) =0,
(vi) limp 4 o0 [Un|p@) = +00 if and only if lim,, s {0 pp(tn) = +00.

Proposition 2.3. If u € LP(*)(Q) and v € L' *)(Q), then

1 1
u(z)-v(x) de| < —l—)um-v/z.
[ o) o) ] < (S = Yl el

Q

Proposition 2.4. If |Q| < 400 and p,q € CT(Q) such that p(z) < q(x) for all z € Q,
then we have continuous embedding L) (Q) < LP®) ().

Definition 2.5. Let Q C RY be an open set, m € Z%, a € NV and p(z) € CT(Q).
The generalized Lebesgue-Sobolev space W™P(#) () is defined by

wmrE)(Q) = {u e LP@(Q) : D € LP™)(Q), where |a| < m} .
W) (Q) is a Banach space with the norm

”uHm,p(z): Z |Dau‘p(m)'

la|<m
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We define W) (Q) as being the closure of C§°(€) in W) () with respect to
the norm | - [|1 ,(4). The space Wol’p(m)(Q) is Banach.
The spaces LP(®)(Q), W) (Q) and Wol’p(x)(Q) are reflexive and separable Banach

spaces.
In the space W1P(@) () there is an equivalent norm for || - [|;

p(x)

Vu(z)

p(z)
llu|lwipe ==1inf ¢ A >0 /‘ 3 de <1
Q

A

for all u € WHP()(Q). In fact, we have

1
5 (IVtlp@) + [ulp@) < llullwrse <2 (Ve + lulpe)

Proposition 2.6 (Poincaré inequality). If u € Wol’p(z)(Q), then
[tlp@) < ClVulpea),
where C' is a constant that does not depend on u.

Note that, by the Poincaré inequality, the norms || - [|1 p(z) and |u| = [Vu|y,) are

equivalent in Wy ™ (Q). From now on we will work in W, *")(Q) with the norm
[ull = [Vulpa)-

Proposition 2.7. Consider

o () = [ (IVa@P@ +[u@]®) de, ue W' (g)
Q

For all w,u,, € WHP@)(Q), we have:

(1) Nullip@) < 1(= 1> 1) if and only if p1 py(u) < 1(=1;> 1),

e . N +

(u) Zf Hu||17p(w) > 17 th@n ||UH€,p(:E) S pl,p(w)(u) S ||u||11),p(z)’

e . + -

(iii) if [Jull1,p@) < 1, then ||“Hf,p(z) < P1p(a) (u) < ”u”f,p(w)’

(iV) lim, 4o “un”l,p(ac) =0 if and only if lim,— y P1,p(z) (u") =0,
(v)

Theorem 2.8. Let Q be a bounded in RN, p € C(Q) with 1 < p~ < pt < +oco. Then
for any measurable function q(x) with 1 < q(z) < p*(x), there is a compact embedding
Whr@)(Q) < LI®)(Q).

V) limy oo [Unll1,pe) = +00 if and only if limy, 4 o0 1 p(z)(Un) = +00.
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Theorem 2.9. Ifp: Q — R is Lipschitz continuous and 1 < p~ < pt < 400, then
for any measurable function q(x) with p(z) < q(z) < p*(x), there is a continuous
embedding WHP) (Q) < L1®)(Q).

Proposition 2.10 (Fan and Zhang [11]). Let Ly, : Wol’p(z)(Q) — (Wol’p(z)(Q))’
be such that

Ly (u)(v) = / |VulP@) =2y Vo do,  u,v € WeP™(Q).
Q
Then:

(i) Ly : Wol’p(w)(ﬂ) — (Wol’p(z) () is a continuous, bounded and strictly mono-
tone operator,
(ii) Ly is a mapping of type Sy, i.e. if u, — u in Wol’p(z)(ﬂ) and

lim sup (Lo (z) (un) — LP(I)(U), Up —u) <0,

then w, — u in Wol’p(x)(Q),
(iii) Lp) : W&’p(m)(Q) — (Wol’p(m)(Q))' is a homeomorphism.
Theorem 2.11. Let Q C RY be a measurable subset. Suppose that f : Q x R — R is

a Carathéodory function and satisfies

p1(z)
f(@,t)] < alz) + Bt =@, YreQteR,

where p1(z), pa(x) > 1 for all x € Q, a(z) € LP2@)(Q) such that a(z) > 0,2 € Q and
B >0 is a constant. Then the Nemytskii operator from LP*(*)(Q) to LP>(*)(Q) defined
by (Nju)(z) = f(z,u(x)) is a continuous and bounded operator.

Definition 2.12 (Yu, Fu and Li [30]). Let Q@ C RY be an open set, p(z) € C*(Q) and
a(z) a real measurable function with a(z) > 0 for all € 2. We define the space

L)(©) = § u e M(Q) /a(x)IU(z)lp(“") dr < +00 § . (2.2)
Q
LZ&%(Q) is a Banach space with the norm

u ) p(x)

Tx dr<1%. (2.3)

[Ulp(z),a(z) = nf ¢ A >0 /a(x)
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Theorem 2.13. Let
pral) = [ al)u() o

Q

If u,u, € P (), then:

a(z)

. ) ) u
(i) foru#0, [ulp),a@) = A if and only if pp.a (X) =L

(i) |ulp@),a@) < 1(=1;> 1) if and only if ppa(u) < 1(=1;> 1),
. . + -
(1v) if |ulp),a@) <1 then |U|Z(m)7a(m) < pp.a(u) < |U|Z(I),a(z):

V) limy sy oo |Unlp(e),a(@) = 0 if and only if limy, 4 o0 pp.a(un) = 0,

)
)
(iii) if [lp(o),a@) > 1 then [ul} ) o) < Ppalu) < |u|5zrx),a(z)’
)
)
(vi) limp 4 oo [Un|p(a),a(z) = +00 if and only if limy, s oo pp.a(un) = +00.

Theorem 2.14. Assume that 0 € ﬁjnd the boundary of ) possesses the cone property.
Suppose that p(z),s(x),q(x) € C(Q), 0 < s(z) < N for z € Q. If q(x) satisfies
1< q(z) < p(z) for z € Q, there is a compact embedding WP (Q) — L™ (Q).

jal =+

Theorem 2.15 (Yu, Fu and Li [30]). Assume that 0 € Q and the boundary of Q
possesses the cone property. Suppose that p(z), s(x),q(x) € C(Q), 0 < s(z) < p(x)
for x € Q. There is a continuous embedding W P()(Q) — Lr=) (Q).

jal =<
For the lemma below, consider p(x) Lipschitz continuous with
1<p <p(x)<ph <+o00
and s(z) continuous on Q.

Lemma 2.16 (Fu [16]). Let (uy,) C r@ (Q) be bounded, and u, — u €

|z|—s (@)
Lfé‘{)s(w)(Q% a.e. on £, then
i [ (P PN e
n—o0o |x|s(:ﬂ) |m|s(w) = ‘CL’|S($) i
Q

Let .# () be the class of nonnegative Borel measures with finite total mass on £2.
Let (un) € A (), we say that u, — u weakly-* in .Z(Q2) when

(b, ) /udun H/udu (1, u)

Q Q

for every function u € C(Q2) N C§° ().
Now we reproduce the concentration-compactness principle of Lions for critical
Sobolev—Hardy exponent p*(z) extended by Yu, Fu and Li [30], in the space VVO1 p(e) Q).
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Theorem 2.17. Let (u,) be a sequence in Wol’p(x)(ﬂ) with norm ||unll1 p) < 1
such that

Up — U N Wol’p(z)(Q),
[Vt + ") — 1 weakily-« in .4(9),

ps(z)

[tn
o

— v weakly-+ in . (Q),

as n — +o00. Then, the limit measures are of the form

jef

p:(z) _
+ > b, + oy, v(Q) <C7
jes

_

Tl ®

where ¢ is a countable set, {y;} C [0,+00), {v;} C [0,4+00), po > 0, vog > 0,
{z;} € Q, € A (Q) is a nonatomic positive measure, 0,; and dy are atomic measures
which concentrate on x; and 0, respectively, and

C* =sup [l dr:u e Wl’p(x)(Q) [l <1
@ 4o € W), [lull i <

The atoms and the reqular part satisfy the generalized Sobolev inequalities:

V(@) < C* max {u(ﬂ)’f+ u@> |
RN }

vg < C* max {,uo” i } .

b

*t ot
4 « = 57

v; < C" max Wy

it Bl

In the next section, we will apply this principle distinctly for each pj (z)
(i =1,...,k) of our problem in order to ensure important convergences.

3. PROOF OF THEOREM 1.1

Here we will proceed in a similar way to the proof given in [30], with important
adaptations. We denote by O(N) the group of orthogonal linear transformations in R¥.
Let G be a subgroup of O(N), an open subset  of RV is G-invariant if 7Q = Q,
for every 7 € G. For z # 0, taking |G|y as the cardinality of G, = {rz : 7 € G},
we define the cardinality of G by

‘Ghi = inf £0 |G3c|li

z€RN ¢
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Considering G' a subgroup of O(N) and 2 a G-invariant open subset of R,
the action of G on W, ") (Q) is defined by ru(z) = u(r~'z) for any u € W, ") (Q).
The subspace of invariant functions is defined by

WS,’S((?V))(Q) — {u c Wol’p(z)(ﬂ) cTu=wuforall T € G} . (3.1)

We have that the functional J in (1.6) is G-invariant, because (J o 7)(u) = J(u)
for all 7 € G.
So, let us establish the functional

T = J]yiae) -
s @)

Based on the principle of symmetric criticality due to Krawcewicz and Marzan-
towicz [25], we claim that any critical point of J is critical point of J. Thus, it is
sufficient and necessary to find critical points of J.

The first step is to show that J satisfies the condition (PS). To verify this, we need
to prove that (PS) sequences are bounded.

Lemma 3.1. If (uy,) C Wee) () is a (PS). sequence for J, then (uy) is bounded

0,0(N)
. 1,p(x
n Wo,g((zg) (Q).

Proof. Let (uy) be a sequence (PS), for J, that is,

~ !
J(un) = c¢(c €R) and J'(u,) — 0 in (Wolg((?\),)(Q)) , as n — +00. (3.2)

Considering 6 € R such that

m1p+

<0< min{pzl_a"' 7p:k_}7
mo

where p}. = = ming p} (x) for all i € {1,...,k}, and C is such that

C > J(uy), Yn>1,
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we write

~ 1~
O llunll = I (un) = 5" (un)un

— 1
-M [P AP®)) d
/M@(Wul + lunP)) da

Py, (@) Py
—/hl(x)ilu" . dx—...—/hk(x) a2 —/qun
i, () fzfo® i, (@) fz]ss @)
Q Q
1 1 (z) (z) (z) (z)
—-Mm| [ — (|vun|z’ + [P )dx (|vun|p + g P )d:v
0 p(x)
Q Q
1 Uy, |Po1 (@) 1 |t s, (@)
+5/h1 |$|81(m dm—&—...—f—é/hk() 2@ dx +/ —f(z, up)updx,
Q Q

which implies

my
> (=2 - 22 p(z) p(z)
€ luall = (2= 1) [ (19l o) i
Q
1 1 ‘un P:I (z)
(5= 52) [ 00 i o

- — h —d
et (9 p§k>/ o) @
Q

Suppose that (u,) is not bounded in W) ’g((f\),)(Q). Then, if necessary, passing to
a subsequence again denoted by (u,) we have for the terms of the sequence such that
|lun|| > 1, by Proposition 2.7,

5 (x)
mo My o (L1 [un "™
0+sz<w, 9>wm +<9 ¢_>/mu>mmwdw
Q

S1

Q

Sk
+/
Q

(:)f(x’“n)“n - F(w,un)) dz.
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From (f3) we compute

%f(x, U Uy — F(2, up)

<C, (lunl 4 |un|‘I(9‘)) .

By Young’s inequality, for € € (0,1), we obtain

pzl(w)

n P5 (@) +C(e) +¢ (|un|q(x)) " +C(e)
P (@) 4 Cle),

|un| + |un|q(z) < €lu

< Eu,

where € := 2¢ and C(¢) := 2C(¢) and consequently
‘ / (éf(a:,un)un - F(x,un)> dz| < C’OE/ |t [P51 P da + C. (3.4)
Q Q

Now, by (1.3), there exists H;; > 0 such that h,;(z )/\x|sl(”) > H;1,as x — 0
and, by (1.2), there exists H; o > 0 such that h;(z) i2, 88 T E Q {0}.

Then there is a constant H; > 0 such that for all z € Q we get h;(x) ) > H;
and consequently
/h dx >H, /|un Py @, vie {1,...,k}. (3.5)

Then by (3.3), (3.4) and (3.5) we have

ma - 1 1 — _
Ol = (=5l + | (5 - 5= ) -] [

Uy, P55 (@) g

Take
ol
0<e<—|-—-—
Co \ 0 p;l_

mi

€+ lunll 2 (22 = 51 uall” =i,

to get

which is a contradiction because p~ > 1. Hence, (u,,) is bounded in W} ’g((g]ﬁ\)])(ﬂ) O

Before proving the condition (P.S) for J, let us present another technical lemma.

Lemma 3.2. Let (u,) C W, ’g((‘f\;)( ) be a sequence (PS). for J. Then, u, — u

Lﬁl(g)( 5 () forallie{1,... k}.
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Proof. Due to the previous lemma, if (u,) C W(}g(&v\;)(Q) is a sequence (PS), for J,
we claim that (u,) is bounded, so there exists a subsequence, still denoted by (uy,),
and u € Wol’g((gj\a) (©) such that
. 1,p(z
Up — u in Wo’g((]\z)(ﬁ)

U, = uin L"@(Q),  Vr(z) e [1,p*(z)).
According to Theorem 2.17 we have the following convergences:

|Vt [P + |1y, [P — = [VuP@ 4 uP@ 4 Z 110, + podo + Ji,
i€s
Pk, (z) _ _ (3.6)
+ > Vb, V00 (i=1,...,k),
jes

v, (@)

|un, i |u

z=@ T @

weakly-+ in .#(Q), as n — +00 where ¢ is a countable set and {x;} € Q, p;, v} >0,
po, Ve >0, u(Q) < 1, 14(Q) < C*, with C* defined in the theorem itself and i € . (2)
is a nonatomic positive measure. Furthermore, the following inequalities hold:

v < CPmax ¢ ;" py” ,
p:;r P:i_
i = e
vy < C*"max < g o , (3.7)

The lemma will be proved if, for i € {1,...,k}, we show that 1§ = uj’: =0 for all
j € #,in (3.6), because, in this case, considering n € C§°(RY) such that n =1 in Q
and compact support supp(n) C 2, by (3.6) we obtain

| |Pi () [ un P, (@) .
/ e = [ e = [ i =
Q RN RN Q

v, (2)

|u

dx (3.8)

si(zx)

|z

as n — +oo, for ¢ € {1,...,k}, and by Lemma 2.16 then u, — u in L@ (Q).

||~ (=)
Case 1. vi =0 for alli € {1,...,k}.
For convenience, we define ¢ € C§°(RY) with 0 <
support in B;(0) C RY. Consider € > 0, let ¢.(z) =
[Voe| < 2/e.

Since the sequence (¢cu,,) is bounded and J’(u,) — 0, we have

¢ <1, ¢(0) = 1 and compact
¢ (%), for z € RY such that

lim j’(un) (¢eun) = O’

n—-+oo
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that is,

n—roo

0= lim [M (W (un)) ( / (|Vun|P(I)*2VunV(¢5un)+|un|P(z)*2un(¢)eun)) da:)

= Pop (=2,

Q
- / f(x,unmun)da:],
Q

0= lim [M (V(up)) / <|VUH‘P(I) + |un\1’(z)) ¢ dx

n—oo
B.(0)

+ M (Y (un)) / |V [P =2V, (Ve Yunda

B(0) (3.9)
|t p:, (@) |, s, ()
B(0) B.(0)
- / f(xvun)un¢edx‘| .
B.(0)
By (3.6), note that
im [ (VP 4 ) g de = / bedyt — 106(0) = po,
B.(0) B.(0)
. |un Ps,; (@) i i
nll)rfoo hi(a:)W¢€ dx = hi(z)pedv® — hi(0)9(0) =0,  (3.10)
B.(0) B.(0)
as e — 0.

By the same arguments as in [30], we can show that

lim,_,q <limnﬁ+oo st(o) |Vun\p(ac)—2Vun(V¢e)undx> =0,

. . (3.11)
lim._,0 (hmn_,_H)O fBE(O) f(m,un)un¢€dx) =0.
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According to (3.9), using (Mp), (3.10) and (3.11), it results that

0 <mopo < lim lim (M(¢(un)) / (|Vun|p(r) + \un|p(m)) ¢pedx | =0.

e—0n—-+oo
B(0)

Hence, as mg > 0, it follows that g = 0 and by (3.7)

. st o=t =t .
0§1/6§C*max{,ug” /P ,,ug'” /P }:0 —= =0 (i=1,...,k).

Case 2. V]i- =0forall je ¢ andforalliec {1,...,k}.
Let us assume that for some jo € _Z, V;O > (. Since we are working on the subspace
W&’g((f\),)(ﬁ) in O(N)-invariant Q domain, then

Vi(rxz;,) = vi(zj,) >0, V1€ O(N).

However, we have |O(N)|; = oo and consequently v ({rz;, : 7 € O(N)}) = oo,
which is a contradiction, since v* € .Z(Q) is a finite measure. So, for any j € ¢,
we must have V]i. =0.

So, for all cases we have vj =0 and v} =0, j € # andi € {1,...,k} and by (3.8),

P Q) foralli=1, ..., k. 0

we conclude u,, — u in le‘,si(m)

The next lemma deals with the Palais—Smale compactness condition for the func-
tional J.

Lemma 3.3. Let (u,) C Wolg((gf\?)(ﬁ) be a sequence (PS), for J. Then, (uy) has
a convergent subsequence.

Proof. Consider (u,) C Wolg((f\?)(fl) such that

J(un) = ¢, J'(up) — 0, as n — +00.
The result of Lemma 3.1 guarantees that (u,) is bounded in VVO1 ’g((f\;)(Q), and
therefore, up to subsequence, there exists u € VVO1 ’g((g]c\),)(Q) such that

Up — U in Wol’g((ﬁ)(ﬁ)

and

Up — win L"®(Q),  Vr(x) € [1,p*(x)).
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From j’(un) — 0, we get

j(u")(un - u) = M('L/)(un)) / |vun|p(x)72vunv(un - u) dx

Q
+ M ((uy)) / i [P 200w — ) de
Q

ps, ()2
_ / lhl(x)w(un _ u)} da (3.12)
x s1(x
Q
[P @2
.. —/ lhk(w)W(un - U)l dx
Q
- /f(x,un)(un —u) dr — 0.
Q

(@)
Moreover, as u, — u in LP(®)(Q), we have |u,|P@) =1 — [u[P®~1 in L7-1(Q) and,

by Lemma 3.2, u,, — u in LT;"L(ZEZ(I) (©), which implies that |u,, P @1 |u Pe @1y
p;‘.i(r) ,
EROE: p:, (@)
L‘wl—si(m) (Q) = L‘wl—si(m) (Q)

for each i € {1,...,k}. Taking h; = maxgh,(z) for each i € {1,...,k}, we use
Hélder’s inequality to obtain positive constants C';, Cy such that

/|un|p(“’)_2un(un —u) dz| < / \un|p(x)_1|un —u| dz
Q Q

<0, ‘|un|p(w)—1

() \un — U|p(x) — 0
p(x)—1

and

as n — +00.
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Note that by (f1) and (fz) and Theorem 2.11, the Nemytskii operator
Np: L9@)(Q) — L7@)(Q) is continuous and bounded, then f(z,u,) € L7 ®(Q)
is bounded. So, by Holder’s inequality,

/ F (@)t —0) de| < Tl £, 100 (o) [t — lyay — O,
Q

as n — +00.
Remembering that

Lyt () = 0) = [ Va2 290, — ),
Q

we obtain from (3.12) Ly ) (un)(tn —u) — 0. We also have L, ;) (u)(un —u) — 0. So,

(Lp(ay (un) = Ly(a) (u), (un — ) =0,

as n — +00.
From Proposition 2.10, and the condition (PS)c holds, we have that w, — u

in Wol”g(g\?)(ﬂ) as n — oo. O

Since VVO1 ’g((?\),)(Q) C WO1 ple) (Q) is a reflexive and separable Banach space, there

exist (ep) C W()l”g((f\),)(Q) and (e},) C (Wg,’g(&)(ﬂ))l such that

W()l”g((f\),)(ﬁ) =span{e, :n=1,2,...},
(WO{’S((‘?\;)(Q))/ =span{e}, :m=1,2,...} (3.13)

and
(€t en) = {; L o (3.14)
We denote the subspaces

X, =span{ey,...,e .}, forr=1,2,...,

(3.15)

Yr = éXl and ZT = éXl
=1 l=r

Consider the following two results below.

Proposition 3.4 (Fan [10]). Let X be a Banach space. Assume that ¥ : X — R
is weakly-strongly continuous and V(0) = 0. Let v > 0 be given. Set

Br=0r(y) = sup  [¥(u)].

u€Zy, [lull <y

Then B, — 0, as r — +o0.
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Proposition 3.5 (Fan [10], Fountain Theorem). Assume

(F1) X is a Banach space, p € C1(X,R) is an even functional, the subspaces X, Y,
and Z, are defined by (3.15).

If for each r = 1,2,..., there exists p,. > =, > 0 such that

(F2) inf,ez, |u|=, ©(u) = 400 as r — +o00,
(F3) maxucy, |ulj=p, ¥(u) <0,
(F4) o satisfies (PS). condition for every ¢ > 0,

then ¢ has a sequence of critical values tending to +oco.

In order to apply Proposition 3.4, consider

W(u) = / Fla,u) da.

Q

Certainly U(u) is weakly-strongly continuous. In fact, since f satisfies (f2), we can
write

u

|F(z,u)| < /|f(x,s)\ds < /(c1 + cas|9®)=1) ds
0

0

1
<elul + [ — ) - coful?@,
il <q(x)) 2l

F(a,w)] < es (Jul + @),

v mmas oo () -

Using Young’s inequality for € € (0,1), we can have

where

ul + ) < a4 €(&) + 1) = (e + DIul ) + O (0
<ecy (1 + |u|qm> ,

and consequently
|F(z,u)| < 5+ cslul?®. (3.16)

Based on (f1), (3.16), and Theorem 2.11, we conclude that the operator Nemytskii
of the form Ny : L®)(Q) — L'(Q) is continuous and bounded. Therefore, for the

sequence (uy,) C VVO1 ’g((f\;)(ﬁ) such that u,, — u in WO1 ’g((f\;)(Q) by compact embedding
we obtain the convergence u, — u in L(*) (©2) and through the continuity of Ng
we have

Up —uin LYP(Q) = F(z,u,) = F(z,u) in L}(Q),

i.e. ¥(u,) = ¥(u), showing that ¥(u) is weakly-strongly continuous on Wol’g((?\?)(ﬂ).
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Furthermore, ¥(0) = 0, so for v > 0 it follows from Proposition 3.4 that

Br=pBr(y) = sup /F(m,u) dz| — 0, asr — 400. (3.17)

ueZnllull<y |

Proceeding, given v > 0, for each s;(z) (i =1,...,k) we define

lu ps, (2)
Oy, =D, (7)) = sup e dx. (3.18)
ez lul<y ) el
Q
We prove the convergence
O, — Z 1/;» + vt as r — +oo. (3.19)

j€S
Indeed, from (3.18), for every integer r > 0, there is u, € Z, such that |lu,| <~ and

Py

si(m) 1

i

0§<I>S”</|“T
9 |m
Q

that is,

p?, () 1

0 S (I)si,r _/ |T;
Q

which implies that

gy [,
lim &g, . = lim /Ti dx. (3.20)
r—00 “ r—00 |£L' si(x)

Q

Note that, for any r, 0 < &g, .11 < P, ,, then there exist ®;, > 0 such that
b, » — P, as 1 — +oo. Taking a subsequence of the sequence (u,), denoted again

by (u,), in the reflexive space VVO1 7(1;((753)(9) such that u, — u weakly in VVO1 ’g((gj“g)(Q),

!/
we deduce that v = 0. In fact, choosing m < r, note that for e}, € (Wolg((f\;)(ﬁ))

we obtain
e (tr) = trlen, er) + trp1{en,, ert1) +trralen,, erp2) + ... = 0.

Therefore, in this case e, (u,) — 0, as r — 400 and m € N. On the other hand,

!
u —u = e (u.) — el (u), asr — +oo and for all e} € (Wolg((gjc\),)(ﬂ))

/
thus, we conclude that e, (u) =0 for all X, € (Wég%ﬁ%(ﬂ)) , and therefore u = 0.
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So, since u, — 0 in W, ’g(&)(ﬂ), according to Theorem 2.17 we have

‘ur|p; (z)
€T si(z)

‘u|p; (z)
si(z)

-V =

+ Z 1/;:61_7. + vpdo, weakly-* in . (Q),
i€s

where _# is a countable set, {v}} C [0,+00), v§ >0, {x;} € Q such that d,, and &
are atomic measures which concentrate on x; and 0.
Making = 1, we obtain

|u |Ps (I) u |Ps (=)
Ta dx—i—Zl/ + v = Zl/ +vh, as T — 400
Jje€f j€F
and, by (3.20), we have
u p;, () _
o, .= sup e dr — Z vi+ vh < () < oo, asr — +oo  (3.21)
weznillul <y |21 jer

which confirms (3.19).
Now, by (3.17) and (3.21), for each v = n € N there is an integer 7, > 0 such that
for all » > r,, we have

‘Br(n” = Br(n) <1
and
i ' 3.22
(I)Si,’!“(n)—zjej V;+l/6<1 < (I)s“r Z V _|_1/0+1 ( )

jeEL

Suppose further that r, < 7,11 for every n € N. Let us define the set
{7 :r=1,2,...} such that

_n, o <r<r,+1,
= 1, 1<r<nr.

In this way, as r — 400 we have ~,. — +00.
Thus, for u € Z, with |Ju|| = v, > 1, we get

s mo - hir h;:
Ju _71{] - ,(I)s ,r\Ir _---_7',(1)5 ,rUlr _67‘ T
(u) e e () P Tu () = Br(r)

since h;” := maxg h;(x). Using (3.22) we obtain

j(u)Z—ff e Zl/ +up+1
p psl =

Zl/ +1/0+1 -1,

pzf jer
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that is,

inf  J(u) > 10ap" oM S vlavh+
weZplul=y "0 T pt Tyt e

IS d vt +1] -1
o ¢ 0 .
psk ]Ej

Making r — +oo (i.e. v, — +00) we have

. 7 . mo _p- hi 1 1
inf Jw) | > lim |—/7 — —— ZVj+V0+1

lim = n T  —
r—++00 -
i p P, je g

r—r400 (HGZNIUI—%

ht
— *’t ZV?—&—V{?—}—I —1| — +o0

which shows that
inf J(u) = 400, as r — +oo. (3.23)

i
weZJlull=rr
Next, again by (3.16) for € € (0,1) we have

|F(z,u)] <es (1 + |u\q(‘”))
ps, (@)
< (14 i) H +.0(0).

P:l (z) + cg.

|F(x,u)| < ecselu

Thus,
P (®) g 4 6|9

|[o Fz,u) de| < [ |F(z,u)| do < cse [, |u

Hence, it follows that

- m o,
<M @) o |, |P@) _ 7/
T < % Q/(WU + @) de v lu

Hy,
— |u
psk

x
Q

L) gy

Po @) gy 4 656/ lulPs1 @ da + ¢,
Q

where H; > 0 is such that |;L‘7(32) > H;.
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Taking € small enough such that cze < g—u, we have
51

~ H .
J(u) < % o (Va4 |ul®)) do — 52 ol da
— S1

H .
- = ]:_ |u Pay (@) dz + 6|9,
s
~ m " Q
J(w) < —= [ (IVar® + [ufP@) da

p

7Ffﬂ <|U

Pul® 4 4w

P da + a9,

where L o
. [ Hi Hy Hy,
H := min T e (-
2ps1 y2p Psy
Therefore,
Ty <™

” /(|vu|f’<z>+|u|?<f>) dx—ﬁ/\u|pzl(x) da + ¢/ ).
Q Q

Considering ¢ € Y, with ||¢|| = 1 and ¢ > 1 note that ||¢|| > 1. So, by the previous

expression, it follows that

J ()

A

P (@) dr 4 6|0

m TR —
el - A / )
Q

my

Ttlﬁ _ﬁtP:17 /|w
Q

IN

P (@) dr 4 6|0

p

since pt < ps,  for t — +oo we conclude

J(t) = —o0.

Hence, there exists t, > 7, > 1 large enough such that J(t.1)) < 0. Thus, just

assume p, = ||t = t. to get

J(u) <0.

max
u€Yy,[lul|=pr

(3.24)

Since Lemma 3.3 proves that J satisfies condition (PS)., by results (3.23) and
(3.24), we conclude via Fountain Theorem that J has an unbounded sequence of critical

values. Thus, there is (u,) C Wol’p(:c) () critical points of J such that
J(un) — o0, as n — +0oo

and (u,) are weak solutions to (1.1).
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