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Abstract. The aim of this work is to present a result of multiplicity of solutions,
in generalized Sobolev spaces, for a non-local elliptic problem with p(x)-Laplace oper-
ator containing k distinct critical Sobolev–Hardy exponents combined with singularity
points



M(ψ(u))(−∆p(x)u+ |u|p(x)−2u) =

∑k
i=1 hi(x) |u|p∗

si
(x)−2u

|x|si(x) + f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with 0 ∈ Ω and 1 < p− ≤ p(x) ≤ p+ < N .
The real function M is bounded in [0,+∞) and the functions hi (i = 1, . . . , k) and
f are functions whose properties will be given later. To obtain the result we use the
Lions’ concentration-compactness principle for critical Sobolev–Hardy exponent in the
space W 1,p(x)

0 (Ω) due to Yu, Fu and Li, and the Fountain Theorem.
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1. INTRODUCTION

In this paper we study the following class of p(x)-Laplacian equations coupled with
the homogeneous Dirichlet boundary conditions given by



M(ψ(u))(−∆p(x)u+ |u|p(x)−2u) =

∑k
i=1 hi(x) |u|p∗

si
(x)−2u

|x|si(x) + f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)
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where Ω ⊂ RN (N ≥ 2) is a bounded domain with 0 ∈ Ω. Furthermore, the variable
exponent p(x) is Lipschitz continuous and radially symmetric on Ω with the growth
condition

1 < p− := min
x∈Ω

p(x) ≤ p(x) ≤ max
x∈Ω

p(x) =: p+ < N,

while s1(x), . . . , sk(x) are Lipschitz continuous, radially symmetric on Ω such
that 0 ≤ si(x) ≪ p(x) for all i ∈ {1, . . . , k}, where si(x) ≪ p(x) denotes the fact that
inf(p(x) − si(x)) > 0, with

|{x ∈ Ω : si(x) = sj(x) for all i ̸= j}| = 0,

where | · | denotes the Lebesgue measure. The critical Sobolev–Hardy exponent for
each i = 1, . . . , k is defined by

p∗
si

(x) = p(x) · (N − si(x))
N − p(x) .

Note that
p∗

0(x) = Np(x)
N − p(x) = p∗(x)

is the critical Sobolev exponent. The p(x)-Laplace operator ∆p(x) given by

∆p(x)u := div(|∇u|p(x)−2∇u) =
N∑

j=1

∂

∂xj

(
|∇u|p(x)−2 ∂u

∂xj

)

is a natural extension of the p-Laplace operator. We define

ψ(u) =
∫

Ω

1
p(x) (|∇u|p(x) + |u|p(x)) dx

and M : R+ → R+ where R+ = [0,+∞) is a class of continuous functions satisfying
the following growth condition:

(M0) m0 ≤ M(τ) ≤ m1 for all τ ≥ 0,

where m0 and m1 are positive constants.
Every real function hi is continuous on Ω and satisfy:

hi(x) = hi(|x|) > 0, ∀x ∈ Ω − {0} and hi(0) = 0, (1.2)

and
lim
x→0

hi(x) · 1
|x|si(x) = +∞, ∀i ∈ {1, . . . , k}. (1.3)

A typical example for functions hi’s can be given by ϕ(x) = 1
| ln |x|| if x ̸= 0,

and ϕ(x) = 0 if x = 0.
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We assume the following hypotheses for the function f : Ω × R −→ R:

(f1) f satisfies the Carathéodory condition;
(f2) There are constants c1, c2 such that |f(x, t)| ≤ c1 + c2|t|q(x)−1, where q : Ω −→ R

is a measurable Lebesgue function such that p(x) ≪ q(x) ≪ p∗
si

(x) for all
i ∈ {1, . . . , k} and for all x ∈ Ω,

(f3) f(x, t) = f(|x|, t) for all (x, t) ∈ Ω × R,
(f4) f(x, t) = −f(x,−t) for all (x, t) ∈ Ω × R.

This problem is an extension of the application, of the presented result by Yu, Fu
and Li in [30], where they presented a version of the Lions’ concentration-compactness
principle for the critical Sobolev–Hardy exponent in W

1,p(x)
0 (Ω), in order to solve the

p(x)-Laplacian problem with only one Sobolev–Hardy critical term




−div(|∇u|p(x)−2∇u) + |u|p(x)−2u = h(x) |u|p∗
s(x)−2u

|x|s(x) + f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is bounded in RN such that 0 ∈ Ω, p(x), s(x) are Lipschitz continuous and
radially symmetric on Ω with 1 < p− ≤ p(x) ≤ p+ < N , and 0 ≤ s(x) ≪ p(x), h and f
satisfy the same conditions as this paper.

Singularity problems with critical exponents of the Sobolev–Hardy type have been
studied frequently in recent years, starting when p(x) is a constant function p. This is
the case, for p = 2, of the singular critical problem with the usual Laplace operator
given by 




−∆u− µ
u

|x|2 = |u|2∗(s)−2u

|x|s + λ|u|r−2u in Ω,

u = 0 on ∂Ω,
(1.4)

with Ω ⊂ RN (N ≥ 3) bounded and smooth; 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N−s)
N−2 ,

2 ≤ r < 2∗, λ > 0 and 0 ≤ µ < µ̃ :=
(

N−2
2
)2. The works of Jannelli [18], Ferrero and

Gazzola [14] and Cao and Peng [7] show the existence of solutions for problem (1.4)
when s = 0 and r = 2 using local compactness arguments and min-max principles.

If s varies in the interval [0, 2) many interesting results for (1.4) due to Kang and
Peng have been obtained. For example, in [21] they conclude that (1.4) has a positive
solution in H1

0 (Ω) under certain assumptions for r, µ and λ, applying the Mountain
Pass Theorem. In [22], with λ1(µ) being the first eigenvalue of the operator −∆−µ/|x|2
in H1

0 (Ω) and N ≥ 7, they guarantee the existence of at least one pair of sign-changing
solutions, as r = 2, 0 ≤ µ < µ − 4 and 0 < λ < λ1(µ). On the other hand, in [20]
they prove the existence of sign-changing solutions in the range 2 < r < 2∗ and λ > 0,
employing the technique used in [17] and [29].

A particular case of equations (1.4) when r = 2, where Ω ⊂ RN (N ≥ 5) is an open
bounded domain and 0 ≤ µ < µ̃−

(
N+2

N

)2, is investigated by Cao and Han in [6] and
again by Kang and Peng in [23], where they prove at least one non-trivial solution
in H1

0 (Ω) for a certain range of energy level and with the critical Sobolev–Hardy growth.
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The authors Li and Lin through [26] studied the Laplacian problem generated by
two terms with critical Sobolev–Hardy exponents, that is, the problem





∆u+ λ
u2∗(s1)−1

|x|s1
+ u2∗(s2)−1

|x|s2
= 0 in Ω,

u(x) > 0 in Ω,
u(x) = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) bounded and smooth and 0 ∈ ∂Ω, 0 ≤ s2 < s1 ≤ 2, 0 ̸= λ ∈ R.
In this paper they first show the existence of a least-energy solution, and then prove
the existence of positive integer solutions under Ω = RN

+ with certain conditions
for s1, s2 and λ.

In [19], Kang presents the p-Laplacian version of (1.4) with arbitrary p such that
1 < p < N (N ≥ 3) in its singular quasilinear form





−∆pu− µ
up−1

|x|p = up∗(s)−1

|x|s + λa(x)ur−1 in RN ,

u ∈ D1,p(RN ), u ≥ 0 in RN ,

(1.5)

considering 0 ≤ s < p, 1 < r < p∗(s), λ > 0 and 0 ≤ µ < µ̃ :=
(

N−p
p

)p

with

a(x) ∈ C(RN ) ∩ L
p∗

p∗−q (RN ) and a(0) > 0. He obtains the existence of non-trivial
solutions to (1.5) via mountain pass arguments and analysis techniques.

In addition to mathematical motivations, the interest in elliptic equations of
the p(x)-Laplacian nature has motivations in the context of physical applications,
such as, for example, in the field of nonlinear elastic mechanics and in dynamic
models of electrorheological fluids that allow changing the mechanical properties of
these fluids when exposed to electromagnetic fields external (see [1, 2, 27] and the
references therein). In [28], Růžička presents another physical implication for this type
of equations through image processing.

Motivated by the problems mentioned above, and inspired by [30], we study the
problem (1.1) establishing the following theorem as the main result of this paper:

Theorem 1.1. Assume that (M0), (1.2), (1.3) and (f1)–(f4) hold. Moreover,
assume m1p+

m0
< p∗

si

− for all i ∈ {1, . . . , k}. Then, the problem (1.1) has a sequence
(un) ⊂ W

1,p(x)
0 (Ω) of solutions such that, for its energy functional J : W 1,p(x)

0 (Ω) → R,
we have J(un) → +∞, as n → +∞.

Our result shows that there are infinitely many solutions, for example, for the
following problem, naturally with the hypotheses of Theorem 1.1, given by




(2 + sin(ψ(u)))(−∆p(x)u+ |u|p(x)−2u) =
k∑

i=1
hi(x) |u|p∗

si
(x)−2

u

|x|si(x) + f(x, u) in Ω,

u = 0 on ∂Ω.
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Problems in the form (1.1) are associated with the energy functional

J(u) = M̂(ψ(u)) −
∫

Ω

h1(x)
p∗

s1(x)
|u|p∗

s1 (x)

|x|s1(x) dx− . . .−
∫

Ω

hk(x)
p∗

sk
(x)

|u|p
∗
sk

(x)

|x|sk(x) dx

−
∫

Ω

F (x, u) dx,
(1.6)

for all u ∈ W
1,p(x)
0 (Ω), where

F (x, t) =
t∫

0

f(x, s)ds and M̂(t) :=
t∫

0

M(s)ds.

This functional is differentiable and its Fréchet derivative is given by

J ′(u)v = M(ψ(u))
∫

Ω

(
|∇u|p(x)−2∇u∇v + |u|p(x)−2uv

)
dx

−
∫

Ω

h1(x) |u|p∗
s1 (x)−2uv

|x|s1(x) dx− . . .−
∫

Ω

hk(x) |u|p
∗
sk

(x)−2uv

|x|sk(x) dx

−
∫

Ω

f(x, u)v dx,

for all u, v ∈ W
1,p(x)
0 (Ω). Then u ∈ W

1,p(x)
0 (Ω) is a weak solution of problem (1.1)

if and only if u is a critical point of J .
This paper is organized as follows: in Section 2 we introduce a summary on

Sobolev–Lebesgue spaces of variable exponents, and in Section 3 we prove Theorem 1.1.

2. PRELIMINARIES ON VARIABLE EXPONENT SPACES

In this paper we consider

C+(Ω) :=
{
h ∈ C(Ω) : h(x) > 1 for all x ∈ Ω

}

and for each h ∈ C+(Ω) we define

h+ := max
Ω

h(x) and h− := min
Ω
h(x).

We denote by M(Ω) the set of real measurable functions defined on Ω.
Definition 2.1. Let p(x) ∈ C+(Ω). The variable exponent Lebesgue space Lp(x)(Ω)
is defined by

Lp(x)(Ω) =



u ∈ M(Ω) :

∫

Ω

|u(x)|p(x) dx < +∞



 . (2.1)
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Lp(x)(Ω) is a Banach space equipped with the Luxemburg norm defined as

|u|p(x) = inf



λ > 0 :

∫

Ω

∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

dx ≤ 1



 .

For all p(x) ∈ C+(Ω), we define Lp′(x)(Ω), the dual space of Lp(x)(Ω), where

1
p(x) + 1

p′(x) = 1,

for all x ∈ Ω.
The proofs of the following propositions and theorems can be found in Kováčik and

Rákosník [24], Fan, Shen and Zhao [13], Fan and Zhao [12], Fu [15], Fan and Zhang [11],
Diening [9], Bonder and Silva [5], Corrêa and Costa [8] and Bonder, Saintier and
Silva [3, 4].
Proposition 2.2. Let

ρp(u) :=
∫

Ω

|u(x)|p(x) dx.

For all u, un ∈ Lp(x)(Ω), we have:
(i) for u ̸= 0, |u|p(x) = λ if and only if ρp

(
u
λ

)
= 1,

(ii) |u|p(x) < 1(= 1;> 1) if and only if ρp(u) < 1(= 1;> 1),
(iii) if |u|p(x) > 1, then |u|p

−

p(x) ≤ ρp(u) ≤ |u|p
+

p(x),
(iv) if |u|p(x) < 1, then |u|p

+

p(x) ≤ ρp(u) ≤ |u|p
−

p(x),
(v) limn→+∞ |un|p(x) = 0 if and only if limn→+∞ ρp(un) = 0,
(vi) limn→+∞ |un|p(x) = +∞ if and only if limn→+∞ ρp(un) = +∞.

Proposition 2.3. If u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), then
∣∣∣∣∣∣

∫

Ω

u(x) · v(x) dx

∣∣∣∣∣∣
≤
(

1
p− + 1

p′−

)
|u|p(x) · |v|p′(x).

Proposition 2.4. If |Ω| < +∞ and p, q ∈ C+(Ω) such that p(x) ≤ q(x) for all x ∈ Ω,
then we have continuous embedding Lq(x)(Ω) ↪→ Lp(x)(Ω).
Definition 2.5. Let Ω ⊂ RN be an open set, m ∈ Z∗

+, α ∈ NN and p(x) ∈ C+(Ω).
The generalized Lebesgue–Sobolev space Wm,p(x)(Ω) is defined by

Wm,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), where |α| ≤ m

}
.

Wm,p(x)(Ω) is a Banach space with the norm

∥u∥m,p(x) =
∑

|α|≤m

|Dαu|p(x).
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We define W 1,p(x)
0 (Ω) as being the closure of C∞

0 (Ω) in W 1,p(x)(Ω) with respect to
the norm ∥ · ∥1,p(x). The space W 1,p(x)

0 (Ω) is Banach.
The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)

0 (Ω) are reflexive and separable Banach
spaces.

In the space W 1,p(x)(Ω) there is an equivalent norm for ∥ · ∥1,p(x):

∥u∥W 1,p(x) := inf



λ > 0 :

∫

Ω

∣∣∣∣
∇u(x)
λ

∣∣∣∣
p(x)

+
∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

dx ≤ 1





for all u ∈ W 1,p(x)(Ω). In fact, we have

1
2
(
|∇u|p(x) + |u|p(x)

)
≤ ∥u∥W 1,p(x) ≤ 2

(
|∇u|p(x) + |u|p(x)

)
.

Proposition 2.6 (Poincaré inequality). If u ∈ W
1,p(x)
0 (Ω), then

|u|p(x) ≤ C|∇u|p(x),

where C is a constant that does not depend on u.

Note that, by the Poincaré inequality, the norms ∥ · ∥1,p(x) and ∥u∥ = |∇u|p(x) are
equivalent in W

1,p(x)
0 (Ω). From now on we will work in W

1,p(x)
0 (Ω) with the norm

∥u∥ = |∇u|p(x).

Proposition 2.7. Consider

ρ1,p(x)(u) :=
∫

Ω

(
|∇u(x)|p(x) + |u(x)|p(x)

)
dx, u ∈ W 1,p(x)(Ω).

For all u, un ∈ W 1,p(x)(Ω), we have:

(i) ∥u∥1,p(x) < 1(= 1;> 1) if and only if ρ1,p(x)(u) < 1(= 1;> 1),
(ii) if ∥u∥1,p(x) > 1, then ∥u∥p−

1,p(x) ≤ ρ1,p(x)(u) ≤ ∥u∥p+

1,p(x),
(iii) if ∥u∥1,p(x) < 1, then ∥u∥p+

1,p(x) ≤ ρ1,p(x)(u) ≤ ∥u∥p−

1,p(x),
(iv) limn→+∞ ∥un∥1,p(x) = 0 if and only if limn→+∞ ρ1,p(x)(un) = 0,
(v) limn→+∞ ∥un∥1,p(x) = +∞ if and only if limn→+∞ ρ1,p(x)(un) = +∞.

Theorem 2.8. Let Ω be a bounded in RN , p ∈ C(Ω) with 1 < p− ≤ p+ < +∞. Then
for any measurable function q(x) with 1 ≤ q(x) ≪ p∗(x), there is a compact embedding
W 1,p(x)(Ω) ↪→ Lq(x)(Ω).
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Theorem 2.9. If p : Ω −→ R is Lipschitz continuous and 1 < p− ≤ p+ < +∞, then
for any measurable function q(x) with p(x) ≤ q(x) ≤ p∗(x), there is a continuous
embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Proposition 2.10 (Fan and Zhang [11]). Let Lp(x) : W 1,p(x)
0 (Ω) → (W 1,p(x)

0 (Ω))′

be such that

Lp(x)(u)(v) =
∫

Ω

|∇u|p(x)−2∇u · ∇v dx, u, v ∈ W
1,p(x)
0 (Ω).

Then:

(i) Lp(x) : W 1,p(x)
0 (Ω) → (W 1,p(x)

0 (Ω))′ is a continuous, bounded and strictly mono-
tone operator,

(ii) Lp(x) is a mapping of type S+, i.e. if un ⇀ u in W
1,p(x)
0 (Ω) and

lim sup(Lp(x)(un) − Lp(x)(u), un − u) ≤ 0,

then un → u in W
1,p(x)
0 (Ω),

(iii) Lp(x) : W 1,p(x)
0 (Ω) → (W 1,p(x)

0 (Ω))′ is a homeomorphism.

Theorem 2.11. Let Ω ⊂ RN be a measurable subset. Suppose that f : Ω ×R −→ R is
a Carathéodory function and satisfies

|f(x, t)| ≤ α(x) + β|t|
p1(x)
p2(x) , ∀x ∈ Ω, t ∈ R,

where p1(x), p2(x) ≥ 1 for all x ∈ Ω, α(x) ∈ Lp2(x)(Ω) such that α(x) ≥ 0, x ∈ Ω and
β ≥ 0 is a constant. Then the Nemytskii operator from Lp1(x)(Ω) to Lp2(x)(Ω) defined
by (Nfu)(x) = f(x, u(x)) is a continuous and bounded operator.

Definition 2.12 (Yu, Fu and Li [30]). Let Ω ⊂ RN be an open set, p(x) ∈ C+(Ω) and
a(x) a real measurable function with a(x) > 0 for all x ∈ Ω. We define the space

L
p(x)
a(x)(Ω) :=



u ∈ M(Ω) :

∫

Ω

a(x)|u(x)|p(x) dx < +∞



 . (2.2)

L
p(x)
a(x)(Ω) is a Banach space with the norm

|u|p(x),a(x) = inf



λ > 0 :

∫

Ω

a(x)
∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

dx ≤ 1



 . (2.3)
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Theorem 2.13. Let
ρp,a(u) =

∫

Ω

a(x)|u(x)|p(x) dx.

If u, un ∈ L
p(x)
a(x)(Ω), then:

(i) for u ̸= 0, |u|p(x),a(x) = λ if and only if ρp,a

(u
λ

)
= 1,

(ii) |u|p(x),a(x) < 1(= 1;> 1) if and only if ρp,a(u) < 1(= 1;> 1),
(iii) if |u|p(x),a(x) > 1 then |u|p

−

p(x),a(x) ≤ ρp,a(u) ≤ |u|p
+

p(x),a(x),
(iv) if |u|p(x),a(x) < 1 then |u|p

+

p(x),a(x) ≤ ρp,a(u) ≤ |u|p
−

p(x),a(x),
(v) limn→+∞ |un|p(x),a(x) = 0 if and only if limn→+∞ ρp,a(un) = 0,
(vi) limn→+∞ |un|p(x),a(x) = +∞ if and only if limn→+∞ ρp,a(un) = +∞.

Theorem 2.14. Assume that 0 ∈ Ω and the boundary of Ω possesses the cone property.
Suppose that p(x), s(x), q(x) ∈ C(Ω), 0 ≤ s(x) < N for x ∈ Ω. If q(x) satisfies
1 ≤ q(x) < p∗

s(x) for x ∈ Ω, there is a compact embedding W 1,p(x)(Ω) ↪→ L
q(x)
|x|−s(x)(Ω).

Theorem 2.15 (Yu, Fu and Li [30]). Assume that 0 ∈ Ω and the boundary of Ω
possesses the cone property. Suppose that p(x), s(x), q(x) ∈ C(Ω), 0 ≤ s(x) ≪ p(x)
for x ∈ Ω. There is a continuous embedding W 1,p(x)(Ω) ↪→ L

p∗
s(x)

|x|−s(x)(Ω).

For the lemma below, consider p(x) Lipschitz continuous with

1 < p− ≤ p(x) ≤ p+ < +∞

and s(x) continuous on Ω.

Lemma 2.16 (Fu [16]). Let (un) ⊂ L
p(x)
|x|−s(x)(Ω) be bounded, and un → u ∈

L
p(x)
|x|−s(x)(Ω), a.e. on Ω, then

lim
n→∞

∫

Ω

( |un|p(x)

|x|s(x) − |un − u|p(x)

|x|s(x)

)
dx =

∫

Ω

|u|p(x)

|x|s(x) dx.

Let M (Ω) be the class of nonnegative Borel measures with finite total mass on Ω.
Let (µn) ∈ M (Ω), we say that µn → µ weakly-∗ in M (Ω) when

(µn, u) =
∫

Ω

udµn −→
∫

Ω

udµ = (µ, u)

for every function u ∈ C(Ω) ∩ C∞
0 (Ω).

Now we reproduce the concentration-compactness principle of Lions for critical
Sobolev–Hardy exponent p∗

s(x) extended by Yu, Fu and Li [30], in the space W 1,p(x)
0 (Ω).
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Theorem 2.17. Let (un) be a sequence in W
1,p(x)
0 (Ω) with norm ∥un∥1,p(x) ≤ 1

such that

un ⇀ u in W
1,p(x)
0 (Ω),

|∇un|p(x) + |un|p(x) → µ weakly-∗ in M (Ω),
|un|p∗

s(x)

|x|s(x) → ν weakly-∗ in M (Ω),

as n → +∞. Then, the limit measures are of the form

µ = |∇u|p(x) + |u|p(x) +
∑

j∈J

µjδxj + µ0δ0 + µ̃, µ(Ω) ≤ 1,

ν = |u|p∗
s(x)

|x|s(x) +
∑

j∈J

νjδxj
+ ν0δ0, ν(Ω) ≤ C∗,

where J is a countable set, {µj} ⊂ [0,+∞), {νj} ⊂ [0,+∞), µ0 ≥ 0, ν0 ≥ 0,
{xj} ∈ Ω, µ̃ ∈ M (Ω) is a nonatomic positive measure, δxj

and δ0 are atomic measures
which concentrate on xj and 0, respectively, and

C∗ = sup





∫

Ω

|u|p∗
s(x)

|x|s(x) dx : u ∈ W
1,p(x)
0 (Ω), ∥u∥1,p(x) ≤ 1



 .

The atoms and the regular part satisfy the generalized Sobolev inequalities:

ν(Ω) ≤ C∗ max
{
µ(Ω)

p
∗+
s

p− , µ(Ω)
p

∗−
s

p+

}
,

νj ≤ C∗ max
{
µ

p
∗+
s

p−
j , µ

p
∗−
s

p+
j

}
,

ν0 ≤ C∗ max
{
µ

p
∗+
s

p−
0 , µ

p
∗−
s

p+
0

}
.

In the next section, we will apply this principle distinctly for each p∗
si

(x)
(i = 1, . . . , k) of our problem in order to ensure important convergences.

3. PROOF OF THEOREM 1.1

Here we will proceed in a similar way to the proof given in [30], with important
adaptations. We denote by O(N) the group of orthogonal linear transformations in RN .
Let G be a subgroup of O(N), an open subset Ω of RN is G-invariant if τΩ = Ω,
for every τ ∈ G. For x ̸= 0, taking |Gx|♯ as the cardinality of Gx = {τx : τ ∈ G},
we define the cardinality of G by

|G|♯ = inf
x∈RN ,x ̸=0

|Gx|♯.
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Considering G a subgroup of O(N) and Ω a G-invariant open subset of RN ,
the action of G on W

1,p(x)
0 (Ω) is defined by τu(x) = u(τ−1x) for any u ∈ W

1,p(x)
0 (Ω).

The subspace of invariant functions is defined by

W
1,p(x)
0,O(N)(Ω) :=

{
u ∈ W

1,p(x)
0 (Ω) : τu = u for all τ ∈ G

}
. (3.1)

We have that the functional J in (1.6) is G-invariant, because (J ◦ τ)(u) = J(u)
for all τ ∈ G.

So, let us establish the functional

J̃ = J |
W

1,p(x)
0,O(N)(Ω).

Based on the principle of symmetric criticality due to Krawcewicz and Marzan-
towicz [25], we claim that any critical point of J is critical point of J̃ . Thus, it is
sufficient and necessary to find critical points of J̃ .

The first step is to show that J̃ satisfies the condition (PS). To verify this, we need
to prove that (PS) sequences are bounded.

Lemma 3.1. If (un) ⊂ W
1,p(x)
0,O(N)(Ω) is a (PS)c sequence for J̃ , then (un) is bounded

in W
1,p(x)
0,O(N)(Ω).

Proof. Let (un) be a sequence (PS)c for J̃ , that is,

J̃(un) → c (c ∈ R) and J̃ ′(un) → 0 in
(
W

1,p(x)
0,O(N)(Ω)

)′
, as n → +∞. (3.2)

Considering θ ∈ R such that

m1p
+

m0
< θ < min{p∗

s1
−, · · · , p∗

sk

−},

where p∗
si

− = minΩ p
∗
si

(x) for all i ∈ {1, . . . , k}, and C is such that

C ≥ J̃(un), ∀n ≥ 1,



800 Augusto César dos Reis Costa and Ronaldo Lopes da Silva

we write

C + ∥un∥ ≥ J̃(un) − 1
θ
J̃ ′(un)un

= M̂



∫

Ω

1
p(x)

(
|∇un|p(x) + |un|p(x)

)
dx




−
∫

Ω

h1(x)
p∗

s1(x)
|un|p∗

s1 (x)

|x|s1(x) dx− . . .−
∫

Ω

hk(x)
p∗

sk
(x)

|un|p
∗
sk

(x)

|x|sk(x) dx−
∫

Ω

F (x, un) dx

− 1
θ
M



∫

Ω

1
p(x)

(
|∇un|p(x) + |un|p(x)

)
dx



∫

Ω

(
|∇un|p(x) + |un|p(x)

)
dx

+ 1
θ

∫

Ω

h1(x) |un|p∗
s1 (x)

|x|s1(x) dx+ . . .+ 1
θ

∫

Ω

hk(x) |un|p
∗
sk

(x)

|x|sk(x) dx+
∫

Ω

1
θ
f(x, un)undx,

which implies

C + ∥un∥ ≥
(
m0
p+ − m1

θ

)∫

Ω

(
|∇un|p(x) + |un|p(x)

)
dx

+
(

1
θ

− 1
p∗

s1
−

)∫

Ω

h1(x) |un|p∗
s1 (x)

|x|s1(x) dx+

+ . . .+
(

1
θ

− 1
p∗

sk

−

)∫

Ω

hk(x) |un|p
∗
sk

(x)

|x|sk(x) dx

+
∫

Ω

(
1
θ
f(x, un)un − F (x, un)

)
dx.

Suppose that (un) is not bounded in W
1,p(x)
0,O(N)(Ω). Then, if necessary, passing to

a subsequence again denoted by (un) we have for the terms of the sequence such that
∥un∥ > 1, by Proposition 2.7,

C + ∥un∥ ≥
(
m0
p+ − m1

θ

)
∥un∥p−

+
(

1
θ

− 1
p∗

s1
−

)∫

Ω

h1(x) |un|p∗
s1 (x)

|x|s1(x) dx

+ . . .+
(

1
θ

− 1
p∗

sk

−

)∫

Ω

hk(x) |un|p
∗
sk

(x)

|x|sk(x) dx

+
∫

Ω

(
1
θ
f(x, un)un − F (x, un)

)
dx.

(3.3)
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From (f2) we compute
∣∣∣∣
1
θ
f(x, un)un − F (x, un)

∣∣∣∣ ≤ C0

(
|un| + |un|q(x)

)
.

By Young’s inequality, for ϵ ∈ (0, 1), we obtain

|un| + |un|q(x) ≤ ϵ|un|p∗
s1 (x) + C(ϵ) + ϵ

(
|un|q(x)

) p∗
s1 (x)
q(x) + C(ϵ)

≤ ϵ|un|p∗
s1 (x) + C(ϵ),

where ϵ := 2ϵ and C(ϵ) := 2C(ϵ) and consequently
∣∣∣∣∣∣

∫

Ω

(
1
θ
f(x, un)un − F (x, un)

)
dx

∣∣∣∣∣∣
≤ C0ϵ

∫

Ω

|un|p∗
s1 (x)dx+ C0. (3.4)

Now, by (1.3), there exists Hi,1 > 0 such that hi(x)/|x|si(x) > Hi,1, as x → 0
and, by (1.2), there exists Hi,2 > 0 such that hi(x)/|x|si(x) > Hi,2, as x ∈ Ω − {0}.
Then there is a constant Hi > 0 such that for all x ∈ Ω we get hi(x)/|x|si(x) > Hi

and consequently
∫

Ω

hi(x) |un|p∗
si

(x)

|x|si(x) dx > Hi

∫

Ω

|un|p∗
si

(x)dx, ∀i ∈ {1, . . . , k}. (3.5)

Then by (3.3), (3.4) and (3.5) we have

C + ∥un∥ ≥
(
m0
p+ − m1

θ

)
∥un∥p−

+
[(

1
θ

− 1
p∗

s1
−

)
H1 − C0ϵ

] ∫

Ω

|un|p∗
s1 (x)dx

+ . . .+
(

1
θ

− 1
p∗

sk

−

)
Hk

∫

Ω

|un|p
∗
sk

(x)dx− C0.

Take
0 < ϵ <

H1
C0

(
1
θ

− 1
p∗

s1
−

)

to get
C + ∥un∥ ≥

(
m0
p+ − m1

θ

)
∥un∥p− − C0,

which is a contradiction because p− > 1. Hence, (un) is bounded in W
1,p(x)
0,O(N)(Ω).

Before proving the condition (PS) for J̃ , let us present another technical lemma.

Lemma 3.2. Let (un) ⊂ W
1,p(x)
0,O(N)(Ω) be a sequence (PS)c for J̃ . Then, un → u

in L
p∗

si
(x)

|x|−si(x)(Ω) for all i ∈ {1, . . . , k}.
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Proof. Due to the previous lemma, if (un) ⊂ W
1,p(x)
0,O(N)(Ω) is a sequence (PS)c for J̃ ,

we claim that (un) is bounded, so there exists a subsequence, still denoted by (un),
and u ∈ W

1,p(x)
0,O(N)(Ω) such that

un ⇀ u in W
1,p(x)
0,O(N)(Ω)

un → u in Lr(x)(Ω), ∀r(x) ∈ [1, p∗(x)).

According to Theorem 2.17 we have the following convergences:

|∇un|p(x) + |un|p(x) ⇀ µ = |∇u|p(x) + |u|p(x) +
∑

j∈J

µjδxj
+ µ0δ0 + µ̃,

|un|p∗
si

(x)

|x|si(x) ⇀ νi = |u|p∗
si

(x)

|x|si(x) +
∑

j∈J

νi
jδxj

+ νi
0δ0 (i = 1, . . . , k),

(3.6)

weakly-∗ in M (Ω), as n → +∞ where J is a countable set and {xj} ∈ Ω, µj , ν
i
j ≥ 0,

µ0, ν
i
0 ≥ 0, µ(Ω) ≤ 1, νi(Ω) ≤ C∗, with C∗ defined in the theorem itself and µ̃ ∈ M (Ω)

is a nonatomic positive measure. Furthermore, the following inequalities hold:

νi
j ≤ C∗ max



µ

p
∗ +
si
p−

j , µ

p
∗ −
si
p+

j



 ,

νi
0 ≤ C∗ max



µ

p
∗+
si

p−
0 , µ

p
∗ −
si
p+

0



 ,

νi(Ω) ≤ C∗ max
{
µ(Ω)

p
∗+
si

p− , µ(Ω)
p

∗−
si

p+

}
.

(3.7)

The lemma will be proved if, for i ∈ {1, . . . , k}, we show that νi
0 = νi

j = 0 for all
j ∈ J , in (3.6), because, in this case, considering η ∈ C∞

0 (RN ) such that η = 1 in Ω
and compact support supp(η) ⊂ Ω, by (3.6) we obtain

∫

Ω

|un|p∗
si

(x)

|x|si(x) dx =
∫

RN

|un|p∗
si

(x)

|x|si(x) ηdx →
∫

RN

ηdνi =
∫

Ω

|u|p∗
si

(x)

|x|si(x) dx (3.8)

as n → +∞, for i ∈ {1, . . . , k}, and by Lemma 2.16 then un → u in L
p∗

si
(x)

|x|−si(x)(Ω).

Case 1. νi
0 = 0 for all i ∈ {1, . . . , k}.

For convenience, we define ϕ ∈ C∞
0 (RN ) with 0 ≤ ϕ ≤ 1, ϕ(0) = 1 and compact

support in B1(0) ⊂ RN . Consider ϵ > 0, let ϕϵ(x) = ϕ
(

x
ϵ

)
, for x ∈ RN such that

|∇ϕϵ| ≤ 2/ϵ.
Since the sequence (ϕϵun) is bounded and J̃ ′(un) → 0, we have

lim
n→+∞

J̃ ′(un) (ϕϵun) = 0,
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that is,

0 = lim
n→∞

[
M (ψ(un))



∫

Ω

(
|∇un|p(x)−2∇un∇(ϕϵun) + |un|p(x)−2un(ϕϵun)

)
dx




−
∫

Ω

(
h1(x) |un|p∗

s1 (x)−2un

|x|s1(x) (ϕϵun)
)
dx

− . . .−
∫

Ω

(
hk(x) |un|p

∗
sk

(x)−2un

|x|sk(x) (ϕϵun)
)
dx

−
∫

Ω

f(x, un)(ϕϵun)dx
]
,

0 = lim
n→∞

[
M (ψ(un))



∫

Bϵ(0)

(
|∇un|p(x) + |un|p(x)

)
ϕϵ dx




+M(ψ(un))



∫

Bϵ(0)

|∇un|p(x)−2∇un(∇ϕϵ)undx




−
∫

Bϵ(0)

h1(x) |un|p∗
s1 (x)

|x|s1(x) ϕϵdx− . . .−
∫

Bϵ(0)

hk(x) |un|p
∗
sk

(x)

|x|sk(x) ϕϵdx

−
∫

Bϵ(0)

f(x, un)unϕϵdx

]
.

(3.9)

By (3.6), note that

lim
n→+∞

∫

Bϵ(0)

(
|∇un|p(x) + |un|p(x)

)
ϕϵ dx =

∫

Bϵ(0)

ϕϵdµ → µ0ϕϵ(0) = µ0,

lim
n→+∞

∫

Bϵ(0)

hi(x) |un|p∗
si

(x)

|x|si(x) ϕϵ dx =
∫

Bϵ(0)

hi(x)ϕϵdν
i → hi(0)νi

0ϕϵ(0) = 0, (3.10)

as ϵ → 0.
By the same arguments as in [30], we can show that

limϵ→0

(
limn→+∞

∫
Bϵ(0) |∇un|p(x)−2∇un(∇ϕϵ)undx

)
= 0,

limϵ→0

(
limn→+∞

∫
Bϵ(0) f(x, un)unϕϵdx

)
= 0.

(3.11)
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According to (3.9), using (M0), (3.10) and (3.11), it results that

0 ≤ m0µ0 ≤ lim
ϵ→0

lim
n→+∞

(M(ψ(un))



∫

Bϵ(0)

(
|∇un|p(x) + |un|p(x)

)
ϕϵdx


 = 0.

Hence, as m0 > 0, it follows that µ0 = 0 and by (3.7)

0 ≤ νi
0 ≤ C∗ max

{
µ

p∗
si

+/p−

0 , µ
p∗

si

−/p+

0

}
= 0 ⇐⇒ νi

0 = 0 (i = 1, . . . , k).

Case 2. νi
j = 0 for all j ∈ J and for all i ∈ {1, . . . , k}.

Let us assume that for some j0 ∈ J , νi
j0
> 0. Since we are working on the subspace

W
1,p(x)
0,O(N)(Ω) in O(N)-invariant Ω domain, then

νi(τxj0) = νi(xj0) > 0, ∀τ ∈ O(N).

However, we have |O(N)|♯ = ∞ and consequently νi ({τxj0 : τ ∈ O(N)}) = ∞,
which is a contradiction, since νi ∈ M (Ω) is a finite measure. So, for any j ∈ J ,
we must have νi

j = 0.
So, for all cases we have νi

0 = 0 and νi
j = 0, j ∈ J and i ∈ {1, . . . , k} and by (3.8),

we conclude un → u in L
p∗

si
(x)

|x|−si(x)(Ω) for all i = 1, . . . , k.

The next lemma deals with the Palais–Smale compactness condition for the func-
tional J̃ .

Lemma 3.3. Let (un) ⊂ W
1,p(x)
0,O(N)(Ω) be a sequence (PS)c for J̃ . Then, (un) has

a convergent subsequence.

Proof. Consider (un) ⊂ W
1,p(x)
0,O(N)(Ω) such that

J̃(un) → c, J̃ ′(un) → 0, as n → +∞.

The result of Lemma 3.1 guarantees that (un) is bounded in W
1,p(x)
0,O(N)(Ω), and

therefore, up to subsequence, there exists u ∈ W
1,p(x)
0,O(N)(Ω) such that

un ⇀ u in W
1,p(x)
0,O(N)(Ω)

and
un → u in Lr(x)(Ω), ∀r(x) ∈ [1, p∗(x)).
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From J̃ ′(un) → 0, we get

J̃ ′(un)(un − u) = M(ψ(un))



∫

Ω

|∇un|p(x)−2∇un∇(un − u) dx




+M(ψ(un))



∫

Ω

|un|p(x)−2un(un − u) dx




−
∫

Ω

[
h1(x) |un|p∗

s1 (x)−2un

|x|s1(x) (un − u)
]
dx

− . . .−
∫

Ω

[
hk(x) |un|p

∗
sk

(x)−2un

|x|sk(x) (un − u)
]
dx

−
∫

Ω

f(x, un)(un − u) dx → 0.

(3.12)

Moreover, as un → u in Lp(x)(Ω), we have |un|p(x)−1 → |u|p(x)−1 in L
p(x)

p(x)−1 (Ω) and,
by Lemma 3.2, un → u in Lp∗

si
(x)

|x|−si(x)(Ω), which implies that |un|p∗
si

(x)−1 → |u|p∗
si

(x)−1 in

L

p∗
si

(x)
p∗

si
(x)−1

|x|−si(x) (Ω) = L
p∗

si

′
(x)

|x|−si(x)(Ω)

for each i ∈ {1, . . . , k}. Taking h+
i = maxΩ hi(x) for each i ∈ {1, . . . , k}, we use

Hölder’s inequality to obtain positive constants C1, C2 such that
∣∣∣∣∣∣

∫

Ω

|un|p(x)−2un(un − u) dx

∣∣∣∣∣∣
≤
∫

Ω

|un|p(x)−1|un − u| dx

≤ C1

∣∣∣|un|p(x)−1
∣∣∣

p(x)
p(x)−1

|un − u|p(x) → 0

and
∣∣∣∣∣∣

∫

Ω

hi(x) |un|p∗
si

(x)−2un

|x|si(x) (un − u) dx

∣∣∣∣∣∣

≤
∫

Ω

hi(x) |un|p∗
si

(x)−1

|x|si(x) |un − u| dx

≤ C2

∣∣∣∣∣
|un|p∗

si
(x)−1

|x|si(x)/p∗
si

′ (x)

∣∣∣∣∣
p∗

si

′ (x)

∣∣∣∣∣
|un − u|

|x|si(x)/p∗
si

(x)

∣∣∣∣∣
p∗

si
(x)

→ 0,

as n → +∞.
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Note that by (f1) and (f2) and Theorem 2.11, the Nemytskii operator
Nf : Lq(x)(Ω) → Lq′(x)(Ω) is continuous and bounded, then f(x, un) ∈ Lq′(x)(Ω)
is bounded. So, by Hölder’s inequality,

∣∣∣∣∣∣

∫

Ω

f(x, un)(un − u) dx

∣∣∣∣∣∣
≤ C3|f(x, un)|q′(x)|un − u|q(x) → 0,

as n → +∞.
Remembering that

Lp(x)(un)(un − u) =
∫

Ω

|∇un|p(x)−2∇un∇(un − u),

we obtain from (3.12) Lp(x)(un)(un − u) → 0. We also have Lp(x)(u)(un − u) → 0. So,
(
Lp(x)(un) − Lp(x)(u), (un − u)

)
→ 0,

as n → +∞.
From Proposition 2.10, and the condition (PS)c holds, we have that un → u

in W
1,p(x)
0,O(N)(Ω) as n → ∞.

Since W 1,p(x)
0,O(N)(Ω) ⊂ W

1,p(x)
0 (Ω) is a reflexive and separable Banach space, there

exist (en) ⊂ W
1,p(x)
0,O(N)(Ω) and (e∗

m) ⊂
(
W

1,p(x)
0,O(N)(Ω)

)′
such that

W
1,p(x)
0,O(N)(Ω) = span{en : n = 1, 2, . . .},(

W
1,p(x)
0,O(N)(Ω)

)′
= span{e∗

m : m = 1, 2, . . .}
(3.13)

and

⟨e∗
m, en⟩ =

{
1, if n = m,

0, if n ̸= m.
(3.14)

We denote the subspaces

Xr = span{e1, . . . , er}, for r = 1, 2, . . . ,

Yr =
r⊕

l=1
Xl and Zr =

∞⊕

l=r

Xl.
(3.15)

Consider the following two results below.
Proposition 3.4 (Fan [10]). Let X be a Banach space. Assume that Ψ : X −→ R
is weakly-strongly continuous and Ψ(0) = 0. Let γ > 0 be given. Set

βr = βr(γ) = sup
u∈Zr,∥u∥≤γ

|Ψ(u)|.

Then βr → 0, as r → +∞.
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Proposition 3.5 (Fan [10], Fountain Theorem). Assume

(F1) X is a Banach space, φ ∈ C1(X,R) is an even functional, the subspaces Xr, Yr

and Zr are defined by (3.15).

If for each r = 1, 2, . . ., there exists ρr > γr > 0 such that

(F2) infu∈Zr,∥u∥=γr
φ(u) → +∞ as r → +∞,

(F3) maxu∈Yr,∥u∥=ρr
φ(u) ≤ 0,

(F4) φ satisfies (PS)c condition for every c > 0,

then φ has a sequence of critical values tending to +∞.

In order to apply Proposition 3.4, consider

Ψ(u) :=
∫

Ω

F (x, u) dx.

Certainly Ψ(u) is weakly-strongly continuous. In fact, since f satisfies (f2), we can
write

|F (x, u)| ≤
u∫

0

|f(x, s)|ds ≤
u∫

0

(c1 + c2|s|q(x)−1) ds

≤ c1|u| +
(

1
q(x)

)
· c2|u|q(x),

|F (x, u)| ≤ c3

(
|u| + |u|q(x)

)
,

where
c3 := max

x∈Ω

{
c1,

(
c2
q(x)

)}
.

Using Young’s inequality for ϵ ∈ (0, 1), we can have

|u| + |u|q(x) ≤ ϵ|u|q(x) + C(ϵ) + |u|q(x) = (ϵ+ 1)|u|q(x) + C(ϵ)

≤ c4

(
1 + |u|q(x)

)
,

and consequently
|F (x, u)| ≤ c5 + c5|u|q(x). (3.16)

Based on (f1), (3.16), and Theorem 2.11, we conclude that the operator Nemytskii
of the form NF : Lq(x)(Ω) −→ L1(Ω) is continuous and bounded. Therefore, for the
sequence (un) ⊂ W

1,p(x)
0,O(N)(Ω) such that un ⇀ u in W 1,p(x)

0,O(N)(Ω) by compact embedding
we obtain the convergence un → u in Lq(x)(Ω) and through the continuity of NF

we have
un → u in Lq(x)(Ω) ⇒ F (x, un) → F (x, u) in L1(Ω),

i.e. Ψ(un) → Ψ(u), showing that Ψ(u) is weakly-strongly continuous on W
1,p(x)
0,O(N)(Ω).



808 Augusto César dos Reis Costa and Ronaldo Lopes da Silva

Furthermore, Ψ(0) = 0, so for γ > 0 it follows from Proposition 3.4 that

βr = βr(γ) = sup
u∈Zr,∥u∥≤γ

∣∣∣∣∣∣

∫

Ω

F (x, u) dx

∣∣∣∣∣∣
→ 0, as r → +∞. (3.17)

Proceeding, given γ > 0, for each si(x) (i = 1, . . . , k) we define

Φsi,r = Φsi,r(γ) = sup
u∈Zr,∥u∥≤γ

∫

Ω

|u|p∗
si

(x)

|x|si(x) dx. (3.18)

We prove the convergence

Φsi,r →
∑

j∈J

νi
j + νi

0, as r → +∞. (3.19)

Indeed, from (3.18), for every integer r > 0, there is ur ∈ Zr such that ∥ur∥ ≤ γ and

0 ≤ Φsi,r <

∫

Ω

|ur|p∗
si

(x)

|x|si(x) dx+ 1
r
,

that is,

0 ≤ Φsi,r −
∫

Ω

|ur|p∗
si

(x)

|x|si(x) dx <
1
r

which implies that

lim
r→∞

Φsi,r = lim
r→∞

∫

Ω

|ur|p∗
si

(x)

|x|si(x) dx. (3.20)

Note that, for any r, 0 ≤ Φsi,r+1 ≤ Φsi,r, then there exist Φsi
≥ 0 such that

Φsi,r → Φsi
, as r → +∞. Taking a subsequence of the sequence (ur), denoted again

by (ur), in the reflexive space W 1,p(x)
0,O(N)(Ω) such that ur ⇀ u weakly in W

1,p(x)
0,O(N)(Ω),

we deduce that u = 0. In fact, choosing m < r, note that for e∗
m ∈

(
W

1,p(x)
0,O(N)(Ω)

)′

we obtain

e∗
m(ur) = tr⟨e∗

m, er⟩ + tr+1⟨e∗
m, er+1⟩ + tr+2⟨e∗

m, er+2⟩ + . . . = 0.

Therefore, in this case e∗
m(ur) → 0, as r → +∞ and m ∈ N. On the other hand,

ur ⇀ u ⇒ e∗
m(ur) → e∗

m(u), as r → +∞ and for all e∗
m ∈

(
W

1,p(x)
0,O(N)(Ω)

)′

thus, we conclude that e∗
m(u) = 0 for all e∗

m ∈
(
W

1,p(x)
0,O(N)(Ω)

)′
, and therefore u = 0.
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So, since ur ⇀ 0 in W
1,p(x)
0,O(N)(Ω), according to Theorem 2.17 we have

|ur|p∗
si

(x)

|x|si(x) → νi = |u|p∗
si

(x)

|x|si(x) +
∑

j∈J

νi
jδxj

+ νi
0δ0, weakly-∗ in M (Ω),

where J is a countable set, {νi
j} ⊂ [0,+∞), νi

0 ≥ 0, {xj} ∈ Ω such that δxj
and δ0

are atomic measures which concentrate on xj and 0.
Making η ≡ 1, we obtain
∫

Ω

|ur|p∗
si

(x)

|x|si(x) dx →
∫

Ω

|u|p∗
si

(x)

|x|si(x) dx+
∑

j∈J

νi
j + νi

0 =
∑

j∈J

νi
j + νi

0, as r → +∞

and, by (3.20), we have

Φsi,r = sup
u∈Zr;∥u∥≤γ

∫

Ω

|u|p∗
si

(x)

|x|si(x) dx →
∑

j∈J

νi
j + νi

0 ≤ µ(Ω) < ∞, as r → +∞ (3.21)

which confirms (3.19).
Now, by (3.17) and (3.21), for each γ = n ∈ N there is an integer rn > 0 such that

for all r ≥ rn we have

|βr(n)| = βr(n) < 1
and

Φsi,r(n) −∑j∈J νi
j + νi

0 < 1 ⇐⇒ Φsi,r(n) <
∑

j∈J

νi
j + νi

0 + 1.
(3.22)

Suppose further that rn < rn+1 for every n ∈ N. Let us define the set
{γr : r = 1, 2, . . .} such that

γr =
{
n, rn ≤ r < rn + 1,
1, 1 ≤ r < r1.

In this way, as r → +∞ we have γr → +∞.
Thus, for u ∈ Zr with ∥u∥ = γr ≥ 1, we get

J̃(u) ≥ m0
p+ γp−

r − h+
1

p∗
s1

− Φs1,r(γr) − . . .− h+
k

p∗
sk

− Φsk,r(γr) − βr(γr)

since h+
i := maxΩ hi(x). Using (3.22) we obtain

J̃(u) ≥ m0
p+ γp−

r − h+
1

p∗
s1

−


∑

j∈J

ν1
j + ν1

0 + 1




− . . .− h+
k

p∗
sk

−


∑

j∈J

νk
j + νk

0 + 1


− 1,
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that is,

inf
u∈Zr,∥u∥=γr

J̃(u) ≥ m0
p+ γp−

r − h+
1

p∗
s1

−


∑

j∈J

ν1
j + ν1

0 + 1




− . . .− h+
k

p∗
sk

−


∑

j∈J

νk
j + νk

0 + 1


− 1.

Making r → +∞ (i.e. γr → +∞) we have

lim
r→+∞

(
inf

u∈Zr,∥u∥=γr

J̃(u)
)

≥ lim
γr→+∞


m0
p+ γp−

r − h+
1

p∗
s1

−


∑

j∈J

ν1
j + ν1

0 + 1




− . . .− h+
k

p∗
sk

−


∑

j∈J

νk
j + νk

0 + 1


− 1


 → +∞

which shows that

inf
u∈Zr,∥u∥=γr

J̃(u) → +∞, as r → +∞. (3.23)

Next, again by (3.16) for ϵ ∈ (0, 1) we have

|F (x, u)| ≤ c5
(
1 + |u|q(x))

≤ c5

(
1 + ϵ(|u|q(x))

p∗
s1 (x)
q(x) + C(ϵ)

)
,

|F (x, u)| ≤ c5ϵ|u|p∗
s1 (x) + c6.

Thus,

∣∣∫
Ω F (x, u) dx

∣∣ ≤
∫

Ω |F (x, u)| dx ≤ c5ϵ
∫

Ω |u|p∗
s1 (x) dx+ c6|Ω|.

Hence, it follows that

J̃(u) ≤ m1
p−

∫

Ω

(
|∇u|p(x) + |u|p(x)

)
dx− H1

p∗
s1

+

∫

Ω

|u|p∗
s1 (x) dx

− . . .− Hk

p∗
sk

+

∫

Ω

|u|p
∗
sk

(x) dx+ c5ϵ

∫

Ω

|u|p∗
s1 (x) dx+ c6|Ω|,

where Hi > 0 is such that hi(x)
|x|si(x) > Hi.
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Taking ϵ small enough such that c5ϵ ≤ H1
2p∗

s1
+ , we have

J̃(u) ≤ m1
p−
∫

Ω
(
|∇u|p(x) + |u|p(x)) dx− H1

2p∗
s1

+
∫

Ω |u|p∗
s1 (x) dx

− . . .− Hk

p∗
sk

+

∫

Ω

|u|p
∗
sk

(x) dx+ c6|Ω|,

J̃(u) ≤ m1
p−
∫

Ω
(
|∇u|p(x) + |u|p(x)) dx

−H
∫

Ω

(
|u|p∗

s1 (x) + . . .+ |u|p
∗
sk

(x)
)
dx+ c6|Ω|,

where
H := min

{
H1

2p∗+
s1

,
H2

p∗ +
s2

, . . . ,
Hk

p∗+
sk

}
.

Therefore,

J̃(u) ≤ m1
p−

∫

Ω

(
|∇u|p(x) + |u|p(x)

)
dx−H

∫

Ω

|u|p∗
s1 (x) dx+ c6|Ω|.

Considering ψ ∈ Yr with ∥ψ∥ = 1 and t > 1 note that ∥tψ∥ > 1. So, by the previous
expression, it follows that

J̃(tψ) ≤ m1
p− ∥tψ∥p+ −H

∫

Ω

|tψ|p∗
s1 (x) dx+ c6|Ω|

≤ m1
p− tp

+ −Htp
∗
s1

−
∫

Ω

|ψ|p∗
s1 (x) dx+ c6|Ω|

since p+ < p∗
s1

− for t → +∞ we conclude

J̃(tψ) → −∞.

Hence, there exists t∗ > γr > 1 large enough such that J̃(t∗ψ) ≤ 0. Thus, just
assume ρr = ∥t∗ψ∥ = t∗ to get

max
u∈Yr,∥u∥=ρr

J̃(u) ≤ 0. (3.24)

Since Lemma 3.3 proves that J̃ satisfies condition (PS)c, by results (3.23) and
(3.24), we conclude via Fountain Theorem that J̃ has an unbounded sequence of critical
values. Thus, there is (un) ⊂ W

1,p(x)
0 (Ω) critical points of J such that

J(un) → +∞, as n → +∞

and (un) are weak solutions to (1.1).
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