Opuscula Math. 44, no. 5 (2024), 707-726
https://doi.org/10.7494/OpMath.2024.44.5.707

 
Opuscula Mathematica

Isoperimetric inequalities in nonlocal diffusion problems with integrable kernel

Gonzalo Galiano

Abstract. We deduce isoperimetric estimates for solutions of linear stationary and evolution problems. Our main result establishes the comparison in norm between the solution of a problem and its symmetric version when nonlocal diffusion defined through integrable kernels is replacing the usual local diffusion defined by a second order differential operator. Since an appropriate kernel rescaling allows to define a sequence of solutions of the nonlocal diffusion problems converging to their local diffusion counterparts, we also find the corresponding isoperimetric inequalities for the latter, i.e. we prove the classical Talenti's theorem. The novelty of our approach is that we replace the measure geometric tools employed in Talenti's proof, such as the geometric isoperimetric inequality or the coarea formula, by the Riesz's rearrangement inequality. Thus, in addition to providing a proof for the nonlocal diffusion case, our technique also introduces an alternative proof to Talenti's theorem.

Keywords: nonlocal diffusion, Schwarz's symmetrization, Talenti's theorem, Riesz's inequality.

Mathematics Subject Classification: 35B45, 35R09, 35J25, 35K20.

Full text (pdf)

  1. Ch. Abourjaily, Ph. Benilan, Symmetrization of quasi-linear parabolic problems, Rev. Un. Mat. Argentina 41 (1998), 1-13.
  2. A. Alberico, G. Di Blasio, F. Feo, Comparison results for nonlinear anisotropic parabolic problems, Rend. Lincei-Mat. Appl. 28 (2017), 305-322. https://doi.org/10.4171/RLM/764
  3. A. Alvino, G. Trombetti, A lower bound for the first eigenvalue of an elliptic operator, J. Math. Anal. Appl. 94 (1983), 328-337. https://doi.org/10.1016/0022-247X(83)90066-5
  4. A. Alvino, P.L. Lions, G. Trombetti, Comparison results for elliptic and parabolic equations via symmetrization: a new approach, Differ. Integral Equ. 4 (1991), 25-50. https://doi.org/10.57262/die/1371569633
  5. A. Alvino, G. Trombetti, J.I. Díaz, P.L. Lions, Elliptic equations and Steiner symmetrization, Commun. Pure Appl. Anal. 49 (1996), 217-236.
  6. A. Alvino, F. Chiacchio, C. Nitsch, C. Trombetti, Sharp estimates for solutions to elliptic problems with mixed boundary conditions, J. Math. Pures Appl. (9) 152 (2021), 251-261. https://doi.org/10.1016/j.matpur.2020.12.003
  7. A. Alvino, F. Chiacchio, C. Nitsch, C. Trombetti, Weighted symmetrization results for a problem with variable Robin parameter, Ann. Mat. Pura Appl. (4) 202 (2023), 2073-2089. https://doi.org/10.1007/s10231-023-01313-2
  8. F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J.J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs 165, American Math. Soc., 2010. https://doi.org/10.1090/surv/165
  9. C. Bandle, On symmetrizations in parabolic equations, J. Anal. Math. 30 (1976), 98-112.
  10. C. Bandle, Isoperimetric Inequalities and Applications, Pitman, London, 1980.
  11. M.F. Betta, F. Chiacchio, A. Ferone, Isoperimetric estimates for the first eigenfunction of a class of linear elliptic problems, Z. Angew. Math. Phys. 58 (2007), 37-52. https://doi.org/10.1007/s00033-005-0044-3
  12. M.F. Betta, A. Ferone, G. Paderni, Estimates for solutions to nonlinear degenerate elliptic equations with lower order terms, Ric. Mat. 69 (2020), 367-384. https://doi.org/10.1007/s11587-019-00467-7
  13. B. Brandolini, F. Chiacchio, C. Trombetti, Sharp estimates for eigenfunctions of a Neumann problem, Comm. Partial Differential Equations 34 (2009), 1317-1337. https://doi.org/10.1080/03605300903089859
  14. B. Brandolini, I. de Bonis, V. Ferone, B. Volzone, Comparison results for a nonlocal singular elliptic problem, Asymptot. Anal. 135 (2023), 421-444. https://doi.org/10.3233/ASY-231860
  15. H.J. Brascamp, E.H. Lieb, J.M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227-237. https://doi.org/10.1007/978-3-642-55925-9_33
  16. F. Brock, F. Chiacchio, A. Ferone, A. Mercaldo, New Pólya-Szegö-type inequalities and an alternative approach to comparison results for PDE's, Adv. Math. 336 (2018), 316-334. https://doi.org/10.1016/j.aim.2018.07.026
  17. F. Brock, J.I. Díaz, A. Ferone, D. Gómez-Castro, A. Mercaldo, Steiner symmetrization for anisotropic quasilinear equations via partial discretization, Ann. Inst. H. Poincaré C Anal. Non Linéaire 38 (2021), 347-368. https://doi.org/10.1016/j.anihpc.2020.07.005
  18. X. Cabré, X. Ros-Oton, J. Serra, Sharp isoperimetric inequalities via the ABP, J. Eur. Math. Soc. 18 (2016), 2971-2998. https://doi.org/10.4171/JEMS/659
  19. F. Della Pietra, C. Nitsch, F. Oliva, C. Trombetti, On the behavior of the first eigenvalue of the \(p\)-Laplacian with Robin boundary conditions as \(p\) goes to 1, Adv. Calc. Var. 16 (2023), 1123-1135. https://doi.org/10.1515/acv-2021-0085
  20. J.I. Díaz, Applications of symmetric rearrangement to certain nonlinear elliptic equations with a free boundary, [in:] Nonlinear Differential Equations, Res. Notes in Math. 132, Pitman, Boston, 1985, 155-181.
  21. J.I. Díaz, Symmetrization of nonlinear elliptic and parabolic problems and applications: a particular overview, [in:] Progress in Partial Differential Equations: Elliptic and Parabolic Problems, Res. Notes in Math. 266, Pitman Longman, Harlow, Essex, 1-16, 1992.
  22. J.I. Díaz, T. Nagai, Symmetrization in a parabolic-elliptic system related to chemotaxis, Adv. Math. Sci. Appl. 5 (1995), 659-680.
  23. J.I. Díaz, T. Nagai, J.M. Rakotoson, Symmetrization techniques on unbounded domains: application to a chemotaxis system, J. Differential Equations 145 (1998), 156-183.
  24. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American Math. Soc., 1998.
  25. F. Feo, J.L. Vázquez, B. Volzone, Anisotropic \(p\)-Laplacian evolution of fast diffusion type, Adv. Nonlinear Stud. 21 (2021), 523-555. https://doi.org/10.1515/ans-2021-2136
  26. V. Ferone, Symmetrization in a Neumann problem, Le Matematiche 41 (1989), 67-78.
  27. V. Ferone, A. Mercaldo, Neumann problems and Steiner symmetrization, Comm. Partial Differential Equations 30 (2005), 1537-1553. https://doi.org/10.1080/03605300500299596
  28. V. Ferone, B. Messano, A symmetrization result for nonlinear elliptic equations, Rev. Mat. Complut. 17 (2004), 261-276.
  29. V. Ferone, B. Volzone, Symmetrization for Fractional Elliptic Problems: A Direct Approach, Arch. Ration. Mech. Anal. 239 (2021), 1733-1770. https://doi.org/10.1007/s00205-020-01601-8
  30. V. Ferone, B. Volzone, Symmetrization for fractional nonlinear elliptic problems, Discrete Contin. Dyn. Syst. 43 (2023), 1400-1419. https://doi.org/10.3934/dcds.2022076
  31. G. Galiano, Well-posedness of an evolution problem with nonlocal diffusion, Nonlinear Anal. Real World Appl. 45 (2019), 170-185. https://doi.org/10.1016/j.nonrwa.2018.06.013
  32. G. Galiano, Error analysis of some nonlocal diffusion discretization schemes, Comput. Math. Appl. 103 (2021), 40-52. https://doi.org/10.1016/j.camwa.2021.10.023
  33. B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Massachusetts, 1968.
  34. B. Kawohl, Rearrangements and Convexity of Level Sets in P.D.E, Lecture Notes in Mathematics 1150, Springer Verlag, Berlin, 1985.
  35. S. Kesavan, Symmetrization and Applications, Series in Analysis 3, World Scientific, New Jersey, 2006. https://doi.org/10.1142/6071
  36. J.J. Langford, Neumann comparison theorems in elliptic PDEs, Potential Anal. 43 (2015), 415-459. https://doi.org/10.1007/s11118-015-9479-0
  37. E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math. 57 (1977), 93-105. https://doi.org/10.1002/sapm197757293
  38. E.H. Lieb, M. Loss, Analysis, American Math. Soc., 2001.
  39. P.L. Lions, Quelques remarques sur la symmetrization de Schwartz, [in:] Nonlinear Partial Differential Equations and their Applications, I, Pitman, London, 1980, 308-319.
  40. J. Mossino, Inégalités Isopérimétriques et Applications en Physique, Hermann, Paris, 1985.
  41. J. Mossino, J.M. Rakotoson, Isoperimetric inequalities in parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 13 (1986), 51-73.
  42. G. Pólya, G. Szegö, Isoperimetric Problems in Mathematical Physics, Annals of Mathematics Studies 27, Princeton University Press, 1951.
  43. F. Riesz, Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162-168.
  44. Y. Sire, J.L. Vázquez, B. Volzone, Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application, Chinese Ann. Math. Ser. B 38 (2017), 661-686. https://doi.org/10.1007/s11401-017-1089-2
  45. G. Talenti, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 3 (1976), 697-718. https://doi.org/10.1007/s11401-017-1089-2
  46. G. Talenti, The art of rearranging, Milan J. Math. 84 (2016), 105-157. https://doi.org/10.1007/s00032-016-0253-6
  47. J.L. Vázquez, Symmetrization in nonlinear parabolic equations, Port. Math. 41 (1982), 339-346.
  48. J.L. Vázquez, Symmetrization and mass comparison for degenerate nonlinear parabolic and related elliptic equations, Adv. Nonlinear Stud. 5 (2005), 87-131. https://doi.org/10.1515/ans-2005-0107
  49. J.L. Vázquez, B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type, J. Math. Pures Appl. 101 (2014), 553-582. https://doi.org/10.1016/j.matpur.2013.07.001
  50. J.L. Vázquez, B. Volzone, Optimal estimates for fractional fast diffusion equations, J. Math. Pures Appl. 103 (2015), 535-556. https://doi.org/10.1016/j.matpur.2014.07.002
  51. B. Volzone, Symmetrization for fractional Neumann problems, Nonlinear Anal. 147 (2016), 1-25. https://doi.org/10.1016/j.na.2016.08.029
  • Communicated by J.I. Díaz.
  • Received: 2024-01-12.
  • Revised: 2024-05-07.
  • Accepted: 2024-05-10.
  • Published online: 2024-07-01.
Opuscula Mathematica - cover

Cite this article as:
Gonzalo Galiano, Isoperimetric inequalities in nonlocal diffusion problems with integrable kernel, Opuscula Math. 44, no. 5 (2024), 707-726, https://doi.org/10.7494/OpMath.2024.44.5.707

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.