Opuscula Math. 43, no. 3 (2023), 275-333
https://doi.org/10.7494/OpMath.2023.43.3.275
Opuscula Mathematica
Operators induced by certain hypercomplex systems
Abstract. In this paper, we consider a family \(\{ \mathbb{H}_{t}\}_{t\in\mathbb{R}}\) of rings of hypercomplex numbers, indexed by the real numbers, which contain both the quaternions and the split-quaternions. We consider natural Hilbert-space representations \(\{(\mathbb{C}^{2},\pi_{t})\}_{t\in\mathbb{R}}\) of the hypercomplex system \(\{ \mathbb{H}_{t}\}_{t\in\mathbb{R}}\), and study the realizations \(\pi_{t}(h)\) of hypercomplex numbers \(h \in \mathbb{H}_{t}\), as \((2\times 2)\)-matrices acting on \(\mathbb{C}^{2}\), for an arbitrarily fixed scale \(t\in\mathbb{R}\). Algebraic, operator-theoretic, spectral-analytic, and free-probabilistic properties of them are considered.
Keywords: scaled hypercomplex ring, scaled hypercomplex monoids, representations, scaled-spectral forms, scaled-spectralization.
Mathematics Subject Classification: 20G20, 46S10, 47S10.
- D. Alpay, M.E. Luna-Elizarrarás, M. Shapiro, D. Struppa, Gleason's problem, rational functions and spaces of left-regular functions: The split-quaternion setting, Isr. J. Math. 226 (2018), 319-349. https://doi.org/10.1007/s11856-018-1696-y
- I. Cho, P.E.T. Jorgensen, Spectral analysis of equations over quaternions, Conference Proceeding for International Conference on Stochastic Processes and Algebraic Structures from Theory towards Applications (SPAS 2019), Vastras, Sweden (2021).
- I. Cho, P.E.T. Jorgensen, Multi-variable quaternionic spectral analysis, Opuscula Math. 41(2021), no. 3, 335-379. https://doi.org/10.7494/OpMath.2021.41.3.335
- C. Doran, A. Lasenby, Geometric Algebra for Physicists, Cambridge University Press, Cambridge, 2003
- F.O. Farid, Q.-W. Wang, F. Zhang, On the eigenvalues of quaternion matrices, Linear Multilinear Algebra 59 (2011), no. 4, 451-473. https://doi.org/10.1080/03081081003739204
- C. Flaut, Eigenvalues and eigenvectors for the quaternion matrices of degree two, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 10 (2002), no. 2, 39-44.
- P.R. Girard, Einstein's equations and Clifford algebra, Adv. Appl. Clifford Algebras 9 (1999), no. 2, 225-230. https://doi.org/10.1007/BF03042377
- P.R. Halmos, A Hilbert Space Problem Book, Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York-Berlin, 1982.
- P.R. Halmos, Linear Algebra Problem Book, The Dolciani Mathematical Expositions, vol. 16, Mathematical Association of America, Washington, DC, 1995.
- W.R. Hamilton, Lectures on Quaternions, Cambridge Univ. Press., 1853.
- I.L. Kantor, A.S. Solodnikov, Hypercomplex Numbers: An Elementary Introduction to Algebras, Springer, Berlin, 1989.
- V. Kravchenko, Applied Quaternionic Analysis, Research and Exposition in Mathematics, vol. 28, Heldermann Verlag, Lemgo, 2003.
- S.D. Leo, G. Scolarici, L. Solombrino, Quaternionic eigenvalue problem, J. Math. Phys. 43 (2002), no. 11, 5815-5829.
- T.S. Li, Eigenvalues and eigenvectors of quaternion matrices, J. Central China Normal Univ. Natur. Sci. 29 (1995), no. 4, 407-411.
- N. Mackey, Hamilton and Jacobi meet again: quaternions and the eigenvalue problem, SIAM J. Matrix Anal. Appl. 16 (1995), no. 2, 421-435.
- S. Qaisar, L. Zou, Distribution for the standard eigenvalues of quaternion matrices, Int. Math. Forum 7 (2012), no. 17-20, 831-838.
- L. Rodman, Topics in Quaternion Linear Algebra, Princeton University Press, Princeton, NJ, 2014.
- B.A. Rozenfeld, A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space, Studies in the History of Mathematics and Physical Sciences, vol. 12, Springer, 1988.
- R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627. https://doi.org/http://dx.doi.org/10.1090/memo/0627
- A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199-224. https://doi.org/10.1017/S0305004100055638
- J. Vince, Geometric Algebra for Computer Graphics, Springer-Verlag London, Ltd., London, 2008.
- D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, American Mathematical Society, Providence, RI, 1992.
- J. Voight, Quaternion Algebra, Graduate Texts in Mathematics, 288. Springer, Cham, 2021.
- Daniel Alpay
https://orcid.org/0000-0002-7612-3598
- Chapman University, Department of Mathematics, One University Dr., Orange, CA 92866, U.S.A.
- Ilwoo Cho (corresponding author)
https://orcid.org/0000-0001-8962-1089
- Department of Mathematics and Statistics, 518 W. Locust St., Davenport, IA 52803, U.S.A.
- Communicated by P.A. Cojuhari.
- Received: 2022-10-11.
- Revised: 2023-04-14.
- Accepted: 2023-04-17.
- Published online: 2023-05-17.