Opuscula Math. 43, no. 1 (2023), 101-108
https://doi.org/10.7494/OpMath.2023.43.1.101

 
Opuscula Mathematica

A note on Hausdorff convergence of pseudospectra

Marko Lindner
Dennis Schmeckpeper

Abstract. For a bounded linear operator on a Banach space, we study approximation of the spectrum and pseudospectra in the Hausdorff distance. We give sufficient and necessary conditions in terms of pointwise convergence of appropriate spectral quantities.

Keywords: resolvent, spectrum, pseudospectrum, Hausdorff convergence.

Mathematics Subject Classification: 47A10, 47A25.

Full text (pdf)

  1. S.N. Chandler-Wilde, R. Chonchaiya, M. Lindner, On spectral inclusion sets and computing the spectra and pseudospectra of bounded linear operators, in preparation.
  2. M.J. Colbrook, Pseudoergodic operators and periodic boundary conditions, Math. Comp. 89 (2020), no. 322, 737-766. https://doi.org/10.1090/mcom/3475
  3. E.B. Davies, E. Shargorodsky, Level sets of the resolvent norm of a linear operator revisited, Mathematika 62 (2015), no. 1, 243-265. https://doi.org/10.1112/S0025579315000194
  4. M.M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504-507. https://doi.org/10.1090/S0002-9904-1941-07499-9
  5. F. Gabel, D. Gallaun, J. Grossmann, M. Lindner, R. Ukena, Spectral approximation of generalized Schrödinger operators via approximation of subwords, in preparation.
  6. J. Globevnik, Norm-constant analytic functions and equivalent norms, Illinois J. Math. 20 (1976), no. 3, 503-506. https://doi.org/10.1215/ijm/1256049790
  7. R. Hagen, S. Roch, B. Silbermann, \(C^*\)-Algebras and Numerical Analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 236, Marcel Dekker, Inc., New York, Basel, 2001.
  8. R. Hagger, M. Lindner, M. Seidel, Essential pseudospectra and essential norms of band-dominated operators, J. Math. Anal. Appl. 437 (2016), no. 1, 255-291. https://doi.org/10.1016/j.jmaa.2015.11.060
  9. M. Lindner, D. Schmeckpeper, How stability indicators determine asymptotics of resolvents, condition numbers and pseudospectra, in preparation.
  10. M. Lindner, M. Seidel, An affirmative answer to a core issue on limit operators, J. Funct. Anal. 267 (2014), no. 3, 901-917. https://doi.org/10.1016/j.jfa.2014.03.002
  11. E. Shargorodsky, On the level sets of the resolvent norm of a linear operator, Bull. London Math. Soc. 40 (2008), no. 3, 493-504.
  12. E. Shargorodsky, On the definition of pseudospectra, Bull. London Math. Soc. 41 (2009), no. 3, 524-534. https://doi.org/10.1112/blms/bdp031
  13. E. Shargorodsky, S. Shkarin, The level sets of the resolvent norm and convexity properties of Banach spaces, Arch. Math. 93 (2009), no. 1, 59-66. https://doi.org/10.1007/s00013-009-0001-z
  14. L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton Univ. Press, Princeton, NJ, 2005.
  • Marko Lindner (corresponding author)
  • TU Hamburg, Institute of Mathematics, Am Schwarzenberg - Campus 1, 21073 Hamburg, Germany
  • Dennis Schmeckpeper
  • TU Hamburg, Institute of Mathematics, Am Schwarzenberg - Campus 1, 21073 Hamburg, Germany
  • Communicated by P.A. Cojuahri.
  • Received: 2022-10-13.
  • Revised: 2022-11-01.
  • Accepted: 2022-11-05.
  • Published online: 2022-12-30.
Opuscula Mathematica - cover

Cite this article as:
Marko Lindner, Dennis Schmeckpeper, A note on Hausdorff convergence of pseudospectra, Opuscula Math. 43, no. 1 (2023), 101-108, https://doi.org/10.7494/OpMath.2023.43.1.101

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.