Opuscula Math. 43, no. 1 (2023), 19-46
https://doi.org/10.7494/OpMath.2023.43.1.19
Opuscula Mathematica
Singular elliptic problems with Dirichlet or mixed Dirichlet-Neumann non-homogeneous boundary conditions
Abstract. Let \(\Omega\) be a \(C^{2}\) bounded domain in \(\mathbb{R}^{n}\) such that \(\partial\Omega=\Gamma_{1}\cup\Gamma_{2}\), where \(\Gamma_{1}\) and \(\Gamma_{2}\) are disjoint closed subsets of \(\partial\Omega\), and consider the problem\(-\Delta u=g(\cdot,u)\) in \(\Omega\), \(u=\tau\) on \(\Gamma_{1}\), \(\frac{\partial u}{\partial\nu}=\eta\) on \(\Gamma_{2}\), where \(0\leq\tau\in W^{\frac{1}{2},2}(\Gamma_{1})\), \(\eta\in(H_{0,\Gamma_{1}}^{1}(\Omega))^{\prime}\), and \(g:\Omega \times(0,\infty)\rightarrow\mathbb{R}\) is a nonnegative Carathéodory function. Under suitable assumptions on \(g\) and \(\eta\) we prove the existence and uniqueness of a positive weak solution of this problem. Our assumptions allow \(g\) to be singular at \(s=0\) and also at \(x\in S\) for some suitable subsets \(S\subset\overline{\Omega}\). The Dirichlet problem \(-\Delta u=g(\cdot,u)\) in \(\Omega\), \(u=\sigma\) on \(\partial\Omega\) is also studied in the case when \(0\leq\sigma\in W^{\frac{1}{2},2}(\Omega)\).
Keywords: singular elliptic problems, mixed boundary conditions, weak solutions.
Mathematics Subject Classification: 35J75, 35M12, 35D30.
- R.A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
- R.P. Agarwal, K. Perera, D. O'Regan, A variational approach to singular quasilinear problems with sign changing nonlinearities, Appl. Anal. 85 (2006), no. 10, 1201-1206. https://doi.org/10.1080/00036810500474655
- I. Bachar, H. Mâagli, V. Rădulescu, Singular solutions of a nonlinear elliptic equation in a punctured domain, Electron. J. Qual. Theory Differ. Equ. 2017, Paper no. 94. https://doi.org/10.14232/ejqtde.2017.1.94
- B. Bougherara, J. Giacomoni, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal. 4 (2015), no. 2, 123-134. https://doi.org/10.1515/anona-2015-0002
- B. Bougherara, J. Giacomoni, J. Hernández, Existence and regularity of weak solutions for singular elliptic problems, Proceedings of the 2014 Madrid Conference on Applied Mathematics in honor of Alfonso Casal, 19-30, Electron. J. Differ. Equ. Conf. 22, Texas State Univ., San Marcos, TX, 2015.
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
- H. Brezis, X. Cabre, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1 (1998), no. 2, 223-262.
- A. Callegari, A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), no. 2, 275-281. https://doi.org/10.1137/0138024
- Y. Chu, Y. Gao, W. Gao, Existence of solutions to a class of semilinear elliptic problem with nonlinear singular terms and variable exponent, J. Funct. Spaces (2016), Art. ID 9794739. https://doi.org/10.1155/2016/9794739
- F. Cîrstea, M. Ghergu, V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pures Appl. 84 (2005), no. 4, 493-508. https://doi.org/10.1016/j.matpur.2004.09.005
- M.M. Coclite, G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), no. 10, 1315-1327. https://doi-org.am.e-nformation.ro/10.1080/03605308908820656
- D.S. Cohen, H.B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech. 16 (1967), 1361-1376.
- M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193-222. https://doi-org.am.e-nformation.ro/10.1080/03605307708820029
- M. Cuesta, P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), no. 4-6, 721-746.
- M.A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 3-4, 341-352. https://doi.org/10.1017/S0308210500021144
- J.I. Diaz, J. Hernández, Positive and free boundary solutions to singular nonlinear elliptic problems with absorption: an overview and open problems, Electron. J. Differ. Equ. Conf. 21 (2014), 31-44.
- J.I. Diaz, J. Hernandez, J.M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math. 79 (2011), Article no. 233. https://doi.org/10.1007/s00032-011-0151-x
- J.I. Diaz, J.M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), no. 12, 1333-1344. https://doi.org/10.1080/03605308708820531
- L. Dupaigne, M. Ghergu, V. Rădulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 (2007), no. 6, 563-581. https://doi.org/10.1016/j.matpur.2007.03.002
- P. Feng, On the structure of positive solutions to an elliptic problem arising in thin film equations, J. Math. Anal. Appl. 370 (2010), no. 2, 573-583. https://doi.org/10.1016/j.jmaa.2010.04.049
- W. Fulks, J.S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1-19.
- L. Gasiński, N.S. Papageorgiou, Nonlinear elliptic equations with singular terms and combined nonlinearities, Ann. Henri Poincaré 13 (2012), no. 3, 481-512. https://doi.org/10.1007/s00023-011-0129-9
- M. Ghergu, V.D. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, vol. 37, The Clarendon Press, Oxford University Press, Oxford, 2008.
- M. Ghergu, V.D. Rădulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer-Verlag, Berlin, Heidelberg, New York, 2012.
- M. Ghergu, V.D. Rădulescu, Bifurcation and asymptotics for the Lane-Emden-Fowler equation, C. R. Math. Acad. Sci. Paris 337 (2003), no. 4, 259-264. https://doi.org/10.1016/S1631-073X(03)00335-2
- D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, 2001.
- T. Godoy, Strong solutions for singular Dirichlet elliptic problems, Electron. J. Qual. Theory Differ. Equ. 2022, Paper no. 40, 1-20. https://doi.org/10.14232/ejqtde.2022.1.40
- T. Godoy, A. Guerin, Positive weak solutions of elliptic Dirichlet problems with singularities in both the dependent and the independent variables, Electron. J. Qual. Theory Differ. Equ. 2019, Paper no. 54, 1-17. https://doi.org/10.14232/ejqtde.2019.1.73
- P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Marshfield, Massachusetts, 1985.
- J. Janus, J. Myjak, A generalizad Emden-Fowler equation with a negative exponent, Nonlinear Anal. 23 (1994), no. 8, 953-970. https://doi.org/10.1016/0362-546X(94)90193-7
- A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721-730. https://doi.org/10.2307/2048410
- Q. Li, W. Gao, Existence of weak solutions to a class of singular elliptic equations, Mediterr. J. Math. 13 (2016), no. 6, 4917-4927. https://doi.org/10.1007/s00009-016-0782-9
- H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), no. 9, 2941-2947. https://doi.org/10.1016/j.na.2011.01.011
- L. Ma, J.C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal. 254 (2008), no. 4, 1058-1087. https://doi.org/10.1016/j.jfa.2007.09.017
- M. Montenegro, A.C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2429-2438.
- F. Oliva, F. Petitta, Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness, J. Differential Equations 264 (2018), no. 1, 311-340. https://doi.org/10.1016/j.jde.2017.09.008
- N.S. Papageorgiou, G. Smyrlis, Nonlinear elliptic equations with singular reaction, Osaka J. Math. 53 (2016), no. 2, 489-514.
- N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis, Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
- K. Perera, E.A. Silva, Multiple positive solutions of singular \(p\)-Laplacian problems via variational methods, [in:] Differential & Difference Equations and Applications, Hindawi Publ. Corp., New York, 2006, pp. 915-924.
- K. Perera, E.A. Silva, On singular \(p\)-Laplacian problems, Differential Integral Equations 20 (2007), no. 1, 105-120.
- V.D. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, [in:] Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, Elsevier/North-Holland, Amsterdam, 2007, pp. 483-591.
- J. Sabina de Lis, Hopf maximum principle revisited, Electron. J. Differential Equations 2015, no. 115, 9 pp.
- S. Salsa, Partial Differential Equations in Action - From Modelling to Theory, Springer, Milan, Berlin, Heidelberg, New York, 2008.
- J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1389-1401. https://doi.org/10.1017/S0308210500027384
- J. Shi, M. Yao, Positive solutions for elliptic equations with singular nonlinearity, Electron. J. Qual. Theory Differ. Equ. 2005, no. 04, 11 pp.
- C.A. Stuart, Existence and approximation of solutions of nonlinear elliptic problems, Mathematics Report, Battelle Advanced Studies Center, Geneva, Switzerland, vol. 86, 1976.
- S. Yijing, Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 909-922. https://doi.org/10.1007/s00526-013-0604-x
- Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation, J. Math. Anal. Appl. 312 (2005), no. 1, 33-43. https://doi.org/10.1016/j.jmaa.2005.03.023
- Tomas Godoy
https://orcid.org/0000-0002-8804-9137
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Av. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
- Communicated by Vicentiu D. Rădulescu.
- Received: 2022-08-07.
- Revised: 2022-11-21.
- Accepted: 2022-11-25.
- Published online: 2022-12-30.