Opuscula Math. 42, no. 3 (2022), 439-458
https://doi.org/10.7494/OpMath.2022.42.3.439

 
Opuscula Mathematica

Distance irregularity strength of graphs with pendant vertices

Faisal Susanto
Kristiana Wijaya
Slamin
Andrea Semaničová-Feňovčíková

Abstract. A vertex \(k\)-labeling \(\phi:V(G)\rightarrow\{1,2,\dots,k\}\) on a simple graph \(G\) is said to be a distance irregular vertex \(k\)-labeling of \(G\) if the weights of all vertices of \(G\) are pairwise distinct, where the weight of a vertex is the sum of labels of all vertices adjacent to that vertex in \(G\). The least integer \(k\) for which \(G\) has a distance irregular vertex \(k\)-labeling is called the distance irregularity strength of \(G\) and denoted by \(\mathrm{dis}(G)\). In this paper, we introduce a new lower bound of distance irregularity strength of graphs and provide its sharpness for some graphs with pendant vertices. Moreover, some properties on distance irregularity strength for trees are also discussed in this paper.

Keywords: vertex \(k\)-labeling, distance irregular vertex \(k\)-labeling, distance irregularity strength, pendant vertices.

Mathematics Subject Classification: 05C78, 05C12.

Full text (pdf)

  1. A. Ahmad, O.B.S. Al-Mushayt, M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput. 243 (2014), 607-610.
  2. M. Aigner, E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990), 439-449.
  3. D. Amar, O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998), 15-38.
  4. S. Arumugam, N. Kamatchi, On \((a,d)\)-distance antimagic graphs, Australas. J. Combin. 54 (2012), 279- 288.
  5. F. Ashraf, M. Bača, M. Lascśaková, A. Semaničová-Feňovčíková, On \(H\)-irregularity strength of graphs, Discuss. Math. Graph Theory 37 (2017), 1067-1078.
  6. M. Bača, S. Jendrol', M. Miller, J. Ryan, On irregular total labellings, Discrete Math. 307 (2007), 1378-1388.
  7. M. Bača, A. Semaničová-Feňovčíková, Slamin, K.A. Sugeng, On inclusive distance vertex irregular labelings, Electron. J. Graph Theory Appl. (EJGTA) 6 (2018), 61-83.
  8. N.H. Bong, Y. Lin, Slamin, On distance-irregular labelings of cycles and wheels, Australas. J. Combin. 69 (2017), 315-322.
  9. N.H. Bong, Y. Lin, Slamin, On inclusive and non-inclusive vertex irregular \(d\))-distance vertex labeling, J. Combin. Math. Combin. Comput. 113 (2020), 233-247.
  10. G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer. 64 (1988), 197-210.
  11. M. Kalkowski, M. Karoński, F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011), 1319-1321.
  12. M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B. 91 (2004), no. 1, 151-157.
  13. P. Majerski, J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014), 197-205.
  14. M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003), 305-315.
  15. S. Novindasari, Marjono, S. Abusini, On distance irregular labeling of ladder graph and triangular ladder graph, Pure Math. Sci. 5 (2016), 75-81.
  16. J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009), 511-516.
  17. Slamin, On distance irregular labelling of graphs, Far East J. Math. Sci. 102 (2017), 919-932.
  18. F. Susanto, K. Wijaya, P.M. Purnama, Slamin, On distance irregular labeling of disconnected graphs, Kragujevac J. Math. 46 (2022), 507-523.
  • Communicated by Mirko Horňák.
  • Received: 2020-11-09.
  • Revised: 2022-01-25.
  • Accepted: 2022-01-26.
  • Published online: 2022-04-29.
Opuscula Mathematica - cover

Cite this article as:
Faisal Susanto, Kristiana Wijaya, Slamin, Andrea Semaničová-Feňovčíková, Distance irregularity strength of graphs with pendant vertices, Opuscula Math. 42, no. 3 (2022), 439-458, https://doi.org/10.7494/OpMath.2022.42.3.439

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.