Opuscula Math. 42, no. 2 (2022), 179-217
https://doi.org/10.7494/OpMath.2022.42.2.179
Opuscula Mathematica
The d-bar formalism for the modified Veselov-Novikov equation on the half-plane
Abstract. We study the modified Veselov-Novikov equation (mVN) posed on the half-plane via the Fokas method, considered as an extension of the inverse scattering transform for boundary value problems. The mVN equation is one of the most natural \((2+1)\)-dimensional generalization of the \((1+1)\)-dimensional modified Korteweg-de Vries equation in the sense as to how the Novikov-Veselov equation is related to the Korteweg-de Vries equation. In this paper, by means of the Fokas method, we present the so-called global relation for the mVN equation, which is an algebraic equation coupled with the spectral functions, and the \(d\)-bar formalism, also known as Pompieu's formula. In addition, we characterize the \(d\)-bar derivatives and the relevant jumps across certain domains of the complex plane in terms of the spectral functions.
Keywords: initial-boundary value problem, integrable nonlinear PDE, spectral analysis, \(d\)-bar.
Mathematics Subject Classification: 35G31, 35Q53, 37K15.
- M.J. Ablowitz, D. BarYaacov, A.S. Fokas, On the inverse scattering transform for the Kadomtsev-Petviasvhili equation, Stud. Appl. Math. 69 (1983), 135-143.
- R. Beals, R.R. Coifman, Linear spectral problems, nonlinear equations and the \(\bar\partial\)-method, Inverse Problems 5 (1989), 87-130.
- L.V. Bogdanov, The Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 70 (1987), 309-314, English translation: Theoret. and Math. Phys. 70 (1987), 219-223.
- A. Boutet de Monvel, D. Shepelsky, L. Zielinski, A Riemann-Hilbert approach for the Novikov equation, Symmetry Integr. Geom.: Methods Appl. 12 (2016), 095.
- R.M. Chen, W. Lian, D. Wang, R. Xu, A rigidity property for the Novikov equation and the asymptotic stability of peakons, Arch. Rational Mech. Anal. 241 (2021), 497-533.
- R. Croke, J.L. Muller, A. Stahel, Transverse instability of plane wave soliton solutions of the Novikov-Veselov equation, Contemporary Mathematics 635 (2015).
- P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Bull. Amer. Math. Soc. 26 (1992), 119-123.
- P. Deift, S. Venakides, X. Zhou, New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems, Int. Math. Res. Notices 6 (1997), 286-299.
- A.S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A 453 (1997), 1411-1443.
- A.S. Fokas, Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys. 230 (2002), 1-39.
- A.S. Fokas, The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs, Comm. Pure Appl. Math. LVIII (2005), 639-670.
- A.S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics SIAM, 2008.
- A.S. Fokas, The Davey-Stewartson equation on the half-plane, Commun. Math. Phys. 289 (2009), 957-993.
- A.S. Fokas, M.J. Ablowitz, On the scattering transform of multi-dimensional nonlinear equations related to first order systems in the plane, J. Math. Phys. 25 (1984), 2494-2505.
- A.S. Fokas, L.Y. Sung, On the solvability of the N-wave the Davey-Stewartson and the Kadomtsev-Petviashvili equation, Inverse Problems 8 (1992), 673-708.
- G. Hwang, The modified Korteweg-de Vries equation on the quarter plane with \(t\)-periodic data, J. Nonlinear Math. Phys. 24 (2017), 620-634.
- G. Hwang, The elliptic sinh-Gordon equation in a semi-strip, Adv. Nonlinear Anal. 8 (2019), 533-544.
- G. Hwang, A.S. Fokas, The modified Korteweg-de Vries equation on the half-line with a sine-wave as Dirichlet datum, J. Nonlinear Math. Phys. 20 (2013), 135-157.
- M. Lassas, J.L. Muller, S. Siltanen, A. Stahel, The Novikov-Veselov equation and the inverse scattering method, Part I: Anlysis, Physica D 241 (2012), 1322-1335.
- M. Lassas, J.L. Muller, S. Siltanen, A. Stahel, The Novikov-Veselov equation and the inverse scattering method: II. Computation, Nonlinearity 25 (2012), 1799-1818.
- J. Lenells, A.S. Fokas, The nonlinear Schrödinger equation with \(t\)-periodic data: I. Exact results, Proc. R. Soc. A 471 (2015), 20140925.
- J. Lenells, A.S. Fokas, The nonlinear Schrödinger equation with \(t\)-periodic data: II. Perturbative results , Proc. R. Soc. A 471 (2015), 20140926.
- D. Mantzavinos, A.S. Fokas, The Kadomtsev-Petviashvili II equation on the half-plane, Physica D 240 (2011), 477-511.
- A.V. Mikhailov, V.S. Novikov, Perturbative symmetry approach, J. Phys. A: Math. Gen. 35 (2002), 4775-4790.
- B. Moon, Single peaked traveling wave solutions to a generalized \(\mu\)-Novikov equation, Adv. Nonlinear Anal. 10 (2021), 66-75.
- I.A. Taimanov, Modified Veselov-Novikov equation and differential geometry of surface, Trans. Amer. Math. Soc. 197 (1997), 133-151.
- D.-S. Wang, X. Wang, Long-time asymptotics and the bright \(N\)-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach, Nonlinear Anal.: Real World Appl. 41 (2018), 334-361.
- D.-S. Wang, B. Guo, X. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differential Equations 266 (2019), 5209-5253.
- D. Yu, Q. P. Liu, S. Wang, Darboux transformation for the modified Veselov-Novikov equation, J. Phys. A: Math. Gen. 35 (2002), 3779-3785.
- X. Zhou, Inverse scattering transform for the time dependent Schrödinger equation with application to the KPI equation, Commun. Math. Phys. 128 (1990), 551-564.
- Guenbo Hwang
- Department of Mathematics and Institute of Natural Sciences, Daegu University, Gyeongsan Gyeongbuk 38453, Korea
- Byungsoo Moon (corresponding author)
- Department of Mathematics, Incheon National University, Incheon 22012, Korea
- Communicated by Runzhang Xu.
- Received: 2021-06-11.
- Revised: 2021-07-28.
- Accepted: 2021-08-09.
- Published online: 2022-02-25.