Opuscula Math. 40, no. 1 (2020), 49-69

Opuscula Mathematica

On the regularity of solution to the time-dependent p-Stokes system

Luigi C. Berselli
Michael Růžička

Abstract. In this paper we consider the time evolutionary \(p\)-Stokes problem in a smooth and bounded domain. This system models the unsteady motion or certain non-Newtonian incompressible fluids in the regime of slow motions, when the convective term is negligible. We prove results of space/time regularity, showing that first-order time-derivatives and second-order space-derivatives of the velocity and first-order space-derivatives of the pressure belong to rather natural Lebesgue spaces.

Keywords: regularity, evolution problem, \(p\)-Stokes.

Mathematics Subject Classification: 76D03, 35Q35, 76A05.

Full text (pdf)

  1. J.W. Barrett, W.B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68 (1994) 4, 437-456.
  2. H. Beirão da Veiga, P. Kaplický, M. Růžička, Boundary regularity of shear thickening flows, J. Math. Fluid Mech. 13 (2011), 387-404.
  3. L. Belenki, L.C. Berselli, L. Diening, M. Růžička, On the finite element approximation of \(p\)-stokes systems, SIAM J. Numer Anal. 50 (2012) 2, 373-397.
  4. L.C. Berselli, L. Diening, M. Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities, J. Math. Fluid Mech. 12 (2010), 101-132.
  5. L.C. Berselli, M. Růžička, Global regularity properties of steady shear thinning flows, J. Math. Anal. Appl. 450 (2017) 2, 839-871.
  6. L.C. Berselli, M. Růžička, Space-time discretization for nonlinear parabolic systems with \(p\)-structure, arXiv:2001.09888.
  7. D. Bothe, J. Prüss, \(L_P\)-theory for a class of non-Newtonian fluids, SIAM J. Math. Anal. 39 (2007) 2, 379-421.
  8. L. Diening, F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math. 20 (2008) 3, 523-556.
  9. L. Diening, Ch. Kreuzer, Linear convergence of an adaptive finite element method for the \(p\)-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), 614-638.
  10. L. Diening, M. Růžička, J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010) 1, 1-46.
  11. L.C. Evans, Partial differential equations, vol. 19, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2nd ed., 2010.
  12. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems, Springer Monographs in Mathematics, Springer-Verlag, New York, 2011.
  13. A. Kaltenbach, M. Růžička, Note on the existence theory for pseudo-monotone evolution problems, arXiv:1905.13591.
  14. P. Kaplický, J. Málek, J. Stará, Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA Nonlinear Differential Equations Appl. 9 (2002) 2, 175-195.
  15. J. Málek, J. Nečas, M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case \(p \geq 2\), Adv. Differential Equations 6 (2001) 3, 257-302.
  16. M. Růžička, L. Diening, Non-Newtonian fluids and function spaces, [in:] Proceedings of NAFSA 2006, Prague, 8 (2007), 95-144.
  17. J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech. 9 (2007) 1, 104-138.
  • Communicated by Vicentiu D. Radulescu.
  • Received: 2019-12-22.
  • Accepted: 2020-01-24.
  • Published online: 2020-02-17.
Opuscula Mathematica - cover

Cite this article as:
Luigi C. Berselli, Michael Růžička, On the regularity of solution to the time-dependent p-Stokes system, Opuscula Math. 40, no. 1 (2020), 49-69, https://doi.org/10.7494/OpMath.2020.40.1.49

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.