Opuscula Math. 40, no. 1 (2020), 49-69
https://doi.org/10.7494/OpMath.2020.40.1.49
Opuscula Mathematica
On the regularity of solution to the time-dependent p-Stokes system
Luigi C. Berselli
Michael Růžička
Abstract. In this paper we consider the time evolutionary \(p\)-Stokes problem in a smooth and bounded domain. This system models the unsteady motion or certain non-Newtonian incompressible fluids in the regime of slow motions, when the convective term is negligible. We prove results of space/time regularity, showing that first-order time-derivatives and second-order space-derivatives of the velocity and first-order space-derivatives of the pressure belong to rather natural Lebesgue spaces.
Keywords: regularity, evolution problem, \(p\)-Stokes.
Mathematics Subject Classification: 76D03, 35Q35, 76A05.
- J.W. Barrett, W.B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68 (1994) 4, 437-456.
- H. Beirão da Veiga, P. Kaplický, M. Růžička, Boundary regularity of shear thickening flows, J. Math. Fluid Mech. 13 (2011), 387-404.
- L. Belenki, L.C. Berselli, L. Diening, M. Růžička, On the finite element approximation of \(p\)-stokes systems, SIAM J. Numer Anal. 50 (2012) 2, 373-397.
- L.C. Berselli, L. Diening, M. Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities, J. Math. Fluid Mech. 12 (2010), 101-132.
- L.C. Berselli, M. Růžička, Global regularity properties of steady shear thinning flows, J. Math. Anal. Appl. 450 (2017) 2, 839-871.
- L.C. Berselli, M. Růžička, Space-time discretization for nonlinear parabolic systems with \(p\)-structure, arXiv:2001.09888.
- D. Bothe, J. Prüss, \(L_P\)-theory for a class of non-Newtonian fluids, SIAM J. Math. Anal. 39 (2007) 2, 379-421.
- L. Diening, F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math. 20 (2008) 3, 523-556.
- L. Diening, Ch. Kreuzer, Linear convergence of an adaptive finite element method for the \(p\)-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), 614-638.
- L. Diening, M. Růžička, J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010) 1, 1-46.
- L.C. Evans, Partial differential equations, vol. 19, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2nd ed., 2010.
- G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems, Springer Monographs in Mathematics, Springer-Verlag, New York, 2011.
- A. Kaltenbach, M. Růžička, Note on the existence theory for pseudo-monotone evolution problems, arXiv:1905.13591.
- P. Kaplický, J. Málek, J. Stará, Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA Nonlinear Differential Equations Appl. 9 (2002) 2, 175-195.
- J. Málek, J. Nečas, M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case \(p \geq 2\), Adv. Differential Equations 6 (2001) 3, 257-302.
- M. Růžička, L. Diening, Non-Newtonian fluids and function spaces, [in:] Proceedings of NAFSA 2006, Prague, 8 (2007), 95-144.
- J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech. 9 (2007) 1, 104-138.
- Luigi C. Berselli (corresponding author)
https://orcid.org/0000-0001-6208-9934
- Università di Pisa, Dipartimento di Matematica, Via F. Buonarroti 1/c, I-56127 Pisa, Italy
- Michael Růžička
https://orcid.org/0000-0001-8497-1864
- Albert-Ludwigs-University Freiburg, Institute of Applied Mathematics, Ernst-Zermelo-Str. 1, D-79104 Freiburg, Germany
- Communicated by Vicentiu D. Radulescu.
- Received: 2019-12-22.
- Accepted: 2020-01-24.
- Published online: 2020-02-17.