Opuscula Math. 40, no. 1 (2020), 37-47
https://doi.org/10.7494/OpMath.2020.40.1.37
Opuscula Mathematica
On solvability of elliptic boundary value problems via global invertibility
Michał Bełdziński
Marek Galewski
Abstract. In this work we apply global invertibility result in order to examine the solvability of elliptic equations with both Neumann and Dirichlet boundary conditions.
Keywords: diffeomorphism, Dirichlet conditions, Laplace operator, Neumann conditions, uniqueness.
Mathematics Subject Classification: 35J60, 46T20, 47H30.
- A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, vol. 34, Cambridge University Press, 1995.
- M. Bełdziński, M. Galewski, Global diffeomorphism theorem applied to the solvability of discrete and continuous boundary value problems, J. Difference Equ. Appl. 24 (2018) 2, 277-290.
- M. Bełdziński, M. Galewski, R. Stegliński, Solvability of abstract semilinear equations by a global diffeomorphism theorem, Result. Math. 73 (2018) 3, Paper No. 122.
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, New York, Springer, 2011.
- D. Idczak, A. Skowron, S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud. 12 (2012) 1, 89-100.
- K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, vol. 265, Springer, Dordrecht, 2012.
- R. Stegliński, A global diffeomorphism theorem and a unique weak solution of Dirichlet problem, Complex Var. Elliptic Equ. 64 (2019) 8, 1285-1296.
- E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, New York, Springer-Verlag, 1986.
- Michał Bełdziński
https://orcid.org/0000-0002-9653-612X
- Lodz University of Technology, Institute of Mathematics, Wolczańska 215, 90-924 Łódź, Poland
- Marek Galewski (corresponding author)
https://orcid.org/0000-0002-3224-2456
- Lodz University of Technology, Institute of Mathematics, Wolczańska 215, 90-924 Łódź, Poland
- Communicated by P.A. Cojuhari.
- Received: 2020-01-02.
- Revised: 2020-01-28.
- Accepted: 2020-01-28.
- Published online: 2020-02-17.