Opuscula Math. 39, no. 4 (2019), 557-576
https://doi.org/10.7494/OpMath.2019.39.4.557

 
Opuscula Mathematica

Description of the scattering data for Sturm-Liouville operators on the half-line

Yaroslav Mykytyuk
Nataliia Sushchyk

Abstract. We describe the set of the scattering data for self-adjoint Sturm-Liouville operators on the half-line with potentials belonging to \(L_1(\mathbb{R}_+,\rho(x)\,\text{d} x)\), where \(\rho:\mathbb{R}_+\to\mathbb{R}_+\) is a monotonically nondecreasing function from some family \(\mathscr{R}\). In particular, \(\mathscr{R}\) includes the functions \(\rho(x)=(1+x)^{\alpha}\) with \(\alpha\geq 1\).

Keywords: inverse scattering, Schrödinger operator, Banach algebra.

Mathematics Subject Classification: 34L25, 34L40, 47L10, 81U40.

Full text (pdf)

  1. T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin - Heidelberg - New York, 1980.
  2. Y. Katznelson, An Introduction to Harmonic Analysis, 3rd ed., Cambridge University Press, 2004.
  3. V.A. Marchenko, Sturm-Liouville Operators and their Applications, Kiev: Naukova Dumka, 1977 [in Russian]; Engl. transl., Basel., Birkhäuser, 1986.
  4. Ya. Mykytyuk, N. Sushchyk, Inverse scattering problems for half-line Schrödinger operators and Banach algebras, Opuscula Math. 38 (2018), 719-731.
  5. W. Rudin, Functional Analysis, McGraw Hill, New York, 1973.
  6. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed., Oxford University Press, 1948.
  7. N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1-100.
  8. N. Wiener, Generalized Harmonic Analysis and Tauberian Theorems, MIT Press, Cambridge, MA/London, 1966.
  • Communicated by P.A. Cojuhari.
  • Received: 2019-01-26.
  • Revised: 2019-03-19.
  • Accepted: 2019-03-20.
  • Published online: 2019-05-23.
Opuscula Mathematica - cover

Cite this article as:
Yaroslav Mykytyuk, Nataliia Sushchyk, Description of the scattering data for Sturm-Liouville operators on the half-line, Opuscula Math. 39, no. 4 (2019), 557-576, https://doi.org/10.7494/OpMath.2019.39.4.557

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.