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Abstract. We describe the set of the scattering data for self-adjoint Sturm–Liouville oper-
ators on the half-line with potentials belonging to L1(R+, ρ(x) dx), where ρ : R+ → R+ is
a monotonically nondecreasing function from some family R. In particular, R includes the
functions ρ(x) = (1 + x)α with α ≥ 1.
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1. INTRODUCTION

In the Hilbert space L2(R+), we consider the Schrödinger operator generated by
the differential expression

tq(f) := −f ′′ + qf

and the boundary condition
f(0) = 0

with the potential q belonging to the class

Qρ := {q ∈ L1(R+, ρ(x) dx) | Im q = 0}, ρ ∈ R0.

Here R0 is the class of all monotonically nondecreasing weight functions ρ : R+ → R+
such that x ≤ ρ(x) for all x > 0. In particular, the class R0 includes the weight
function ω(x) := x.

In the present paper, we study the problem of an efficient description of the
scattering data for operators from the class Tρ := {Tq | q ∈ Qρ} (for more details on
the operator Tq see Appendix A). For the class Tω, such description was given by
V.A. Marchenko [3]. As shown in [4], the scattering data for operators from the class

c© Wydawnictwa AGH, Krakow 2019 557



558 Yaroslav Mykytyuk and Nataliia Sushchyk

Tω can be efficiently described in terms of some functional Banach algebra introduced
below. Our aim is to describe the class R of weight functions ρ ∈ R0 for which a result
analogous to that can be obtained.

To formulate the main result of the paper, let us recall some definitions. The scat-
tering function S = Sq of the operator Tq is defined as

S(λ) := e(−λ)
e(λ) , λ ∈ R,

where e(λ) := e(λ, 0) and e(λ, · ) is the Jost solution of the equation

−y′′ + qy = λ2y, λ ∈ C+ := {λ ∈ C | Imλ ≥ 0}, (1.1)

i.e., a solution of (1.1) satisfying the asymptotics

e(λ, x) = eiλx(1 + o(1)), x→ +∞.

The spectrum of the operator Tq with q ∈ Qρ consists of the absolutely continuous
part filling the whole positive half-axis and the point spectrum consisting of a finite
number of negative simple eigenvalues (see, e.g., [3]). Let us enumerate these eigenvalues
in the ascending order of their moduli and denote them by −κ2

s, s = 1, . . . , n, where
κs = κs(q) > 0. To each eigenvalue λ = −κ2

s, there correspond the eigenfunction
e(iκs, ·) and the norming constant ms = ms(q), which is defined as

ms =



∞∫

0

|e(iκs, x)|2 dx



− 1

2

.

The scattering data of the operator Tq are defined as the triple sq := (Sq, ~κq, ~mq),
where ~κq := (κs(q))ns=1, ~mq := (ms(q))ns=1. If n = 0, then sq := (Sq, 0, 0). Let us put

Ωn := {(κ1, . . . , κn) ∈ Rn+ | 0 < κ1 < · · · < κn}, n ∈ N.

For an arbitrary open set O ⊂ R, we denote by AC(O) the set of all functions
f : O → C that are absolutely continuous on each compact interval ∆ ⊂ O. For
an arbitrary ρ ∈ R0, let us denote by Xρ the Banach space consisting of functions
u ∈ AC(R \ {0}) ∩ L1(R) with the norm

‖u‖Xρ :=
∫

R

ρ(|x|)|u′(x)|dx <∞.

Similarly, we denote by X+
ρ and X−ρ the Banach spaces consisting of u+ ∈

AC(R+) ∩ L1(R+) and u− ∈ AC(R−) ∩ L1(R−), respectively, with the norms

‖u±‖X±
ρ

:=
∫

R±

ρ(|x|)|u′±(x)|dx <∞.
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Let us agree to identify the spaces X±ρ with the subspaces {f ∈ Xρ | f
∣∣R∓ = 0} in

the space Xρ. Then Xρ = X+
ρ uX−ρ .

Recall that ω(x) = x and ω ≤ ρ. Therefore, Xρ ⊂ Xω and X±ρ ⊂ X±ω . As will be
shown in Section 2 of this paper, the space Xρ is continuously embedded in L1(R).

Consider the Banach space

Bρ := {α1 + ϕ̂ | α ∈ C, ϕ ∈ Xρ}

with the norm
‖α1 + ϕ̂‖Bρ

:= |α|+ ‖ϕ‖Xρ . (1.2)

Here 1(x) ≡ 1 and ϕ̂ is the Fourier transform of a function ϕ.

Definition 1.1. A weight function ρ ∈ R0 is called regular if

c(ρ) := sup
x>0

ρ(2x)/ρ(x) <∞.

Denote by R the set of all regular functions ρ ∈ R0.

Theorem 1.2. Let ρ ∈ R. Then there is a norm on Bρ (see the formula (3.1) below)
equivalent to the norm (1.2) which turns Bρ into a unital commutative Banach algebra
in which the multiplication is the standard pointwise multiplication.

The main result of this paper is:

Theorem 1.3. Let ρ ∈ R. Then the set {Sq | q ∈ Qρ} coincides with the set

Sρ := {S ∈ Bρ | S(∞) = 1 and ∀λ ∈ R S(λ)S(−λ) = |S(λ)| = 1}.

The following result follows from Theorem 1.3.

Corollary 1.4. Let ρ ∈ R and n ∈ N (resp.n = 0). A triple (S,~κ, ~m) (resp. (S, 0, 0)),
where S : R→ C, ~κ ∈ Ωn, ~m ∈ Rn+, is the scattering data of some T ∈ Tρ if and only
if S ∈ Sρ and [−indS/2] = n, where indS := ((lnS)(∞)− (lnS)(−∞))/2πi and [x] is
the integer part of x.

This paper is organized as follows. In Section 2, we study properties of the spacesXρ

and their subspaces X±ρ . In Section 3, we consider properties of the algebra Bρ and
prove Theorem 1.2. In Section 4, we prove Theorem 1.3. Finally, in an Appendix,
we give the explicit definition of the operator Tq.

2. PROPERTIES OF THE SPACES Xρ

Denote by ‖ · ‖p the norm in the space Lp(R), p ∈ [1,∞], and denote by f ∗ g the
convolution of functions f, g ∈ L1(R), i.e.,

(f ∗ g)(x) :=
∫

R

f(x− t)g(t) dt, x ∈ R.
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It is well known that the convolution is a commutative operation in L1(R) and that

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1, f, g ∈ L1(R),

and
f̂ ∗ g = f̂ ĝ,

where ϕ̂ is the Fourier transform of a function ϕ, i.e.,

ϕ̂(λ) :=
∫

R

eiλtϕ(t) dt, λ ∈ R.

Let us denote by P+ and P− the projections in the space L1(R) acting by the
formulas

(P+f)(x) := χ+(x)f(x), (P−f)(x) := χ−(x)f(x), x ∈ R,

where χ+ (resp. χ−) is the indicator function of the half-line R+ (resp. of R−).
Remark 2.1. If f, g ∈ L1(R) and P−f = P−g = 0, then P−(f ∗ g) = 0 and

(f ∗ g)(x) =
x∫

0

f(x− t)g(t) dt =
x/2∫

0

f(x− t)g(t) dt+
x/2∫

0

g(x− t)f(t) dt, x > 0.

Clearly, P+ and P− are the projections in every space Xρ (ρ ∈ R0). Moreover,
P±Xρ = X±ρ and

‖f‖Xρ = ‖P+f‖Xρ + ‖P−f‖Xρ , f ∈ Xρ. (2.1)

Note that the reflection operator Γ, given by the formula

(Γf)(x) = f(−x), x ∈ R,

is an isometry of Xρ onto itself and maps the space X+
ρ (X−ρ ) on X−ρ (X+

ρ ). Moreover,

(Γf) ∗ (Γg) = Γ(f ∗ g), f, g ∈ L1(R). (2.2)

Next, denote by Λρ the operator acting on the space L1,loc(R) by the formula

(Λρf)(x) := ρ(|x|)f(x), x ∈ R.

Lemma 2.2. Let ρ ∈ R0. Then
(i) the space Xρ is continuously embedded in L1(R) and

‖u‖1 ≤ ‖u‖Xρ , u ∈ Xρ; (2.3)

(ii) the operator Λρ maps continuously the space Xρ into L∞(R) and

‖Λρu‖∞ ≤ ‖u‖Xρ , u ∈ Xρ. (2.4)
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Proof. Clearly, it suffices to prove the estimates (2.3), (2.4), and only for u ∈ X+
ρ .

Fix an arbitrary u ∈ X+
ρ . Since u(x) vanishes at +∞ and thus

|u(x)| ≤
∞∫

x

|u′(t)|dt, x ∈ R+,

we have

ρ(x)|u(x)| ≤ ρ(x)
∞∫

x

|u′(t)|dt ≤
∞∫

x

ρ(t)|u′(t)|dt, x ∈ R+, (2.5)

and ∞∫

0

|u(x)|dx ≤
∞∫

0

∞∫

x

|u′(t)|dtdx =
∞∫

0

t|u′(t)|dt ≤
∞∫

0

ρ(t)|u′(t)|dt.

Using these estimates, we obtain (2.3) and (2.4).

Consider the spaces

Y ± := {f ∈ X±ρ | f has compact support and f ∈ C1(R± ∪ {0})}.

Lemma 2.3. Let ρ ∈ R0. Then the set Y + (resp. Y −) is everywhere dense in the
space X+

ρ (resp. in X−ρ ).
Proof. Obviously, it suffices to prove the statement for the set Y + only. Take f ∈ X+

ρ

and consider the sequence fn := θnf (n ∈ N), where the functions θn : R→ [0, 1] are
defined as

θn(x) :=





1, if 0 ≤ x ≤ n,
2− x/n, if n < x ≤ 2n,
0, if x < 0 or x > 2n.

It is easily seen that each function fn belongs to X+
ρ , has compact support and

‖f − fn‖Xρ =
∞∫

0

ρ(t)|f ′(t)− f ′n(t)|dt ≤
∞∫

n

ρ(t)|f ′(t)|dt+ 1
n

2n∫

n

ρ(t)|f(t)|dt.

It follows from (2.5) that

ρ(x)|f(x)| ≤
∞∫

n

ρ(t)|f ′(t)|dt, x ≥ n.

Thus

‖f − fn‖Xρ ≤ 2
∞∫

n

ρ(t)|f ′(t)|dt

and hence fn
Xρ→ f as n→∞.
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It remains to prove that every function u ∈ X+
ρ of compact support can be

approximated by elements from Y + in the norm of Xρ. Let u ∈ X+
ρ be a function of

compact support. Fix an arbitrary non-negative function φ ∈ C∞(R) for which

suppφ ⊂ [0, 1],
∫

R

φ(t) dt = 1.

Obviously, for an arbitrary ε > 0, the function

uε(x) :=
{ 1

ε

∫
R u(t)φ

(
t−x
ε

)
dt, if x ≥ 0,

0, if x < 0,

belongs to Y +. Note that for x > 0,

u(x)− uε(x) =
1∫

0

(u(x)− u(x+ εy)) φ(y) dy,

and
ρ(x) d

dx (u(x)− u(x+ εy)) = v(x)− v(x+ εy) + v(x+ εy)mε(x, y),

where v(x) := ρ(x)u′(x) and mε(x, y) := 1− ρ(x)
ρ(x+εy) . Thus

‖u− uε‖Xρ ≤
∞∫

0

1∫

0

|v(x)− v(x+ εy)|φ(y) dy dx+
∞∫

0

1∫

0

|v(x+ εy)|mε(x, y)φ(y) dy dx.

Since v ∈ L1(R), 0 ≤ mε ≤ 1, and mε(x, y) → 0 as ε → 0 almost everywhere
on R+ × [0, 1], we conclude that uε

Xρ→ u as ε→ +0.

Proposition 2.4. Let ρ ∈ R and c = c(ρ). Then for an arbitrary f, g ∈ Xρ, the con-
volution f ∗ g belongs to Xρ and

‖f ∗ g‖Xρ ≤ 4c‖f‖Xρ‖g‖Xρ . (2.6)

Proof. Note that in view of Definition 1.1,

ρ(2x) ≤ cρ(x), x > 0. (2.7)

1) Let f, g ∈ Y +. Then (see Remark 2.1) (f ∗ g)(x) = 0 for x < 0 and

(f ∗ g)′(x) = f(x/2)g(x/2) +
x/2∫

0

f ′(x− t)g(t) dt+
x/2∫

0

g′(x− t)f(t) dt, x > 0.
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Using this fact and the estimate (2.7), we obtain that for x > 0

ρ(x)|(f ∗ g)′(x)| ≤ cρ(x/2)|f(x/2)| |g(x/2)|

+ c

x/2∫

0

ρ(x− t)|f ′(x− t)| |g(t)|dt

+ c

x/2∫

0

ρ(x− t)|g′(x− t)| |f(t)|dt.

Therefore, taking into account (2.3) and (2.4), we get that for all f, g ∈ Y +,

‖f ∗ g‖Xρ ≤ 2c‖Λρf‖∞‖g‖1 + c‖f‖Xρ‖g‖1 + c‖g‖Xρ‖f‖1 ≤ 4c‖f‖Xρ‖g‖Xρ . (2.8)

2) Since the reflection operator Γ maps Y + onto Y − and is an isometry of the
spaces Xρ, taking into account (2.2) and (2.8), we obtain that

‖f ∗ g‖Xρ ≤ 4c‖f‖Xρ‖g‖Xρ , f, g ∈ Y −. (2.9)

3) Let f ∈ Y + and g ∈ Y −. Then

ρ(x)|(f ∗ g)′(x)| ≤ ρ(x)
0∫

−∞

|f ′(x− t)| |g(t)|dt ≤
0∫

−∞

ρ(x− t)|f ′(x− t)| |g(t)|dt

for x > 0 and

ρ(|x|)|(f ∗ g)′(x)| ≤ ρ(|x|)
∞∫

0

|g′(x− t)| |f(t)|dt ≤
∞∫

0

ρ(|x− t|)|g′(x− t)| |f(t)|dt

for x < 0. Since c ≥ 1, using the estimate (2.3), we get

‖f ∗ g‖Xρ ≤ ‖f‖Xρ‖g‖1 + ‖g‖Xρ‖f‖1 ≤ 2c‖f‖Xρ‖g‖Xρ , f ∈ Y +, g ∈ Y −. (2.10)

4) Let f, g ∈ Y + ⊕ Y − and f± := P±f , g± := P±g. Then

f ∗ g = f+ ∗ g+ + f− ∗ g− + f+ ∗ g− + f− ∗ g+.

Taking into account (2.9), (2.10) and (2.1), we obtain

‖f ∗ g‖Xρ ≤ 4c‖f‖Xρ‖g‖Xρ , f, g ∈ Y + ⊕ Y −. (2.11)

Let f, g ∈ Xρ and u = f ∗ g. In view of Lemma 2.3, there exist sequences (fn)n∈N
and (gn)n∈N in Y + ⊕ Y − converging in Xρ to f and g, respectively. It follows from
(2.11) that the sequence (fn ∗ gn)n∈N is Cauchy in Xρ and

‖fn ∗ gn‖Xρ ≤ 4c‖fn‖Xρ‖gn‖Xρ , n ∈ N.

Since the space Xρ is complete and continuously embedded in L1(R), we conclude
that the sequence (fn ∗ gn)n∈N converges in Xρ to some u ∈ Xρ. Thus, letting n→∞,
we get that ‖f ∗ g‖Xρ ≤ 4c‖f‖Xρ‖g‖Xρ , and the proof is complete.
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3. PROPERTIES OF THE SPACES Bρ

Let us consider the classical Wiener algebra (see, e.g., [7, 8]), i.e., the commutative
Banach algebra

A := {α1 + ϕ̂ | α ∈ C, ϕ ∈ L1(R)}
with the norm

‖α1 + ϕ̂‖A := |α|+ ‖ϕ‖1.

The multiplication in A is the usual pointwise multiplication and

‖fg‖A ≤ ‖f‖A‖g‖A, f, g ∈ A.

It is known that every function f ∈ A is continuous on R ∪ {∞}.
In the algebra A, we consider the closed subalgebras

A+ := {f = α1 + ĥ | α ∈ C, h ∈ L1(R), h
∣∣R− = 0},

A0 := {f = ĥ | h ∈ L1(R)}, A+
0 := A0 ∩A+.

Remark 3.1. Each function ϕ ∈ A+ is the restriction onto R of a function Φ which
is analytic in the upper half-plane C+ and continuous in C+ ∪ {∞}. We will identify
the functions ϕ and Φ.

The following statement follows from the well known results of Wiener (see, e.g.,
[2], Chapter VIII, 6) and is an analogue of classical Wiener’s lemma.
Lemma 3.2 (Wiener). An element f ∈ A (f ∈ A+) is invertible in the algebra A
(resp., in A+) if and only if f does not vanish on R ∪ {∞} (resp., in C+ ∪ {∞}).
Remark 3.3. Since X̂ρ and Xρ are isometric, then X̂ρ and Bρ are Banach spaces.
It follows from (2.3) that the space X̂ρ is continuously embedded in A0. Thus the
algebra Bρ is continuously embedded in A.
Proof of Theorem 1.2. Let ρ ∈ R and f, g ∈ Xρ. In view of Proposition 2.4, the
convolution f ∗g belongs to Xρ. Since f̂ ∗ g = f̂ ĝ, the product f̂ ĝ belongs to X̂ρ. Thus
X̂ρ is a complex algebra. By the definition of Bρ,

Bρ = X̂ρ u {α1 | α ∈ C}.

Hence Bρ is a complex algebra with unit 1.
Let c be the constant from Definition 1.1. Obviously, the formula

‖α1 + ϕ̂‖ρ,c := |α|+ 4c‖ϕ‖Xρ , α ∈ C, ϕ ∈ Xρ, (3.1)

defines a norm on Bρ which is equivalent to the norm (1.2). We now show that Bρ

with the norm ‖ · ‖ρ,c is a Banach algebra with unit. Clearly, it suffices to prove that
the norm ‖ · ‖ρ,c satisfies the multiplicative inequality. Let f = α1 + ϕ̂ and g = β1 + ψ̂,
where α, β ∈ C and ϕ,ψ ∈ Xρ. Then

‖fg‖ρ,c ≤ |α||β|+ |β|‖ϕ̂‖ρ,c + |α|‖ψ̂‖ρ,c + ‖ϕ̂ψ̂‖ρ,c.
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It follows from the inequality (2.6) that

‖ϕ̂ψ̂‖ρ,c = 4c‖ϕ ∗ ψ‖Xρ ≤ 16c2‖ϕ‖Xρ‖ψ‖Xρ ≤ ‖ϕ̂‖ρ,c‖ψ̂‖ρ,c.

Thus
‖fg‖ρ,c ≤ (|α|+ ‖ϕ̂‖ρ,c)(|β|+ ‖ψ̂‖ρ,c) = ‖f‖ρ,c‖g‖ρ,c

as claimed.

In the algebra Bρ, we consider the closed subalgebras B+
ρ := Bρ ∩A+.

Lemma 3.4.
(i) Let ρ ∈ R and b be a rational function that has only simple zeros and does not

vanish on R ∪ {∞}. Then 1/b ∈ Bρ.
(ii) Let ρ ∈ R and u ∈ Y + and, moreover, assume that the function g = 1 + û does

not vanish in C+ ∪ {∞}. Then 1/g ∈ B+
ρ .

Proof. Let the conditions of (i) be satisfied. Then

1
b(λ) = c0 +

n∑

j=1

cj
λ+ αj

, λ ∈ R,

where {cj}nj=0 ⊂ C and {αj}nj=1 ⊂ C \ R. Thus, it suffices to show that the functions
fα(λ) = (λ+ α)−1 with α ∈ C+ belong to B+

ρ . Note that fα is the Fourier transform
of the function uα(x) := −ieiαxχ+(x). Since lim

x→+∞
ρ(x)e−γx = 0 for γ > 0, then

fα ∈ X̂+
ρ .

Let the conditions of (ii) be satisfied. We consider the function v(x) := iu(x) +
iu′(x) (x 6= 0). This function belongs to L2(R), has compact support and

v̂(λ) = iû(λ) + i
∫

R

eiλxu′(x) dx = (λ+ i)û(λ)− i(u(+0)− u(−0)).

Thus
û(λ) = i(u(+0)− u(−0))

λ+ i + v̂(λ)
λ+ i , λ ∈ C.

Using this fact, we conclude that

û(λ) = o(λ−1), λ→∞,

uniformly in each strip {z ∈ C | |Imz| < γ} (γ > 0). Thus

1
g(λ) = 1− û(λ) + û(λ)2

1 + û(λ) = 1− û(λ) + h(λ),

where the function h is analytic in some half-plane {z ∈ C | Imz > −δ} (δ > 0) and

sup
|y|<δ

∫

R

|(x+ iy)h(x+ iy)|2 dx <∞. (3.2)
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Therefore, it suffices to show that h ∈ X̂+
ρ . It follows from (3.2) that h = ŵ, where w

belongs to the Sobolev space W 1
2 (R). From known properties of the Fourier transform

(see, e.g., [6, Chapter 5]), we obtain that

2π
∫

R

e−2yξ|w′(ξ)|2 dξ =
∫

R

|(x+ iy)h(x+ iy)|2 dx, y ∈ (−δ, δ).

Using this fact and (3.2), we get that

J(y) :=
∫

R

e2y|ξ||w′(ξ)|2 dξ <∞, y ∈ (0, δ).

Using the Cauchy–Schwarz inequality, we derive that


∫

R

ey|ξ||w′(ξ)|dξ




2

≤ J(u)
∫

R

e2(y−u)|ξ| dξ <∞, 0 < y < u < δ.

Since lim
x→+∞

ρ(x)e−yx = 0 for y > 0, we conclude that w ∈ X+
ρ , and hence h ∈ X̂+

ρ .
The proof is complete.

Lemma 3.5. Let ρ ∈ R, c = c(ρ), u ∈ Y + and ‖u‖1 ≤ 1/4c. Then the function
g = 1 + û is invertible in the algebra B+

ρ and, moreover, (see (3.1))

‖1/g‖ρ,c ≤ 4‖g‖ρ,c.

Proof. Since c ≥ 1, we conclude that the element g = 1 + û is invertible in the
algebra A+ and, moreover, 1/g = 1 + v̂, where v ∈ L1(R) and

‖v‖1 = ‖1/g − 1‖A ≤
∞∑

n=1
‖û‖nA = ‖û‖A

1− ‖û‖A
= ‖u‖1

1− ‖u‖1
≤ 1

2c . (3.3)

In view of the Wiener Lemma and Lemma 3.4, we obtain that v ∈ X+
ρ . Since

(1 + û)(1 + v̂) = 1, we have that u+ v + u ∗ v = 0. Taking into account that u ∈ Y +

and v ∈ X+
ρ , we get the equality

u(x) + v(x) +
x∫

0

u(x− t)v(t) dt = 0, x > 0,

from which we can easily see that v ∈ C1[0,∞). We represent the convolution u ∗ v in
the form u ∗ v = w1 + w2, where (see Remark 2.1)

w1(x) :=
x/2∫

0

u(x− t)v(t) dt, w2(x) :=
x/2∫

0

v(x− t)u(t) dt, x ≥ 0,
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and w1(x) = w2(x) = 0 for x < 0. It is clear that w1, w2 ∈ C1[0,∞) and

w′1(x) = 1
2u(x/2)v(x/2) +

x/2∫

0

u′(x− t)v(t) dt, x > 0,

w′2(x) = 1
2u(x/2)v(x/2) +

x/2∫

0

v′(x− t)u(t) dt, x > 0.

Let us estimate the norm ‖w1‖Xρ . Taking into account the inequality (2.7), we have
that for an arbitrary x > 0,

ρ(x)|w′1(x)| ≤ c

2 |ρ(x/2)u(x/2)||v(x/2)|+ c

x/2∫

0

ρ(x− t)|u′(x− t)||v(t)|dt.

Thus, using (2.4) and (3.3), we get

‖w1‖Xρ ≤ c‖u‖Xρ‖v‖1 + c‖u‖Xρ‖v‖1 ≤ 2c‖u‖Xρ‖v‖1 ≤ ‖u‖Xρ . (3.4)

Similarly, we obtain that

‖w2‖Xρ ≤ 2c‖v‖Xρ‖u‖1 ≤
1
2‖v‖Xρ . (3.5)

It is easily seen that ‖v‖Xρ ≤ ‖u‖Xρ + ‖w1‖Xρ + ‖w2‖Xρ . Taking into account (3.4)
and (3.5), we obtain that ‖v‖Xρ ≤ 4‖u‖Xρ , so that

‖1/g‖ρ,c = 1 + 4c‖v‖Xρ ≤ 4(1 + 4c‖u‖Xρ) = 4‖g‖ρ,c
as claimed.

The main result of this section is following analogue of the Wiener Lemma.
Theorem 3.6. Let ρ ∈ R. Then g ∈ B+

ρ is invertible in the Banach algebra B+
ρ

if and only if g does not vanish in C+ ∪ {∞}.
Proof. Let g be invertible in the algebra B+

ρ . Since B+
ρ ⊂ A+, the element g is

invertible in the algebra A+. Thus, in view of Wiener Lemma, g does not vanish
in C+ ∪ {∞}.

Conversely, let g ∈ B+
ρ not vanish in C+ ∪ {∞}. From Wiener Lemma, we can

conclude that 1/g ∈ A+. Let us show that 1/g ∈ B+
ρ . Without loss of generality, we

can assume that g = 1 + û, where u ∈ X+
ρ .

First, we consider the case ‖u‖1 ≤ 1/4c. By Lemma 2.3, there exists a sequence
(un)n∈N in Y + converging to u in X+

ρ . Since the space Xρ is continuously embedded
in L1(R), we can assume that ‖un‖1 ≤ 1/4c for all n ∈ N. Let gn := 1 + ûn, n ∈ N.
Then the sequence (gn)n∈N converges to g in B+

ρ and, in view of Lemma 3.5,

1/gn ∈ B+
ρ , ‖1/gn‖ρ,c ≤ 4‖gn‖ρ,c, n ∈ N.
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Since the sequence (1/gn)n∈N is bounded in B+
ρ , we conclude (see, e.g., [5, Chapter 10])

that 1/g ∈ B+
ρ .

Now we consider the general case when g = 1 + û, u ∈ X+
ρ and g does not vanish

in C+ ∪ {∞}. By Lemma 2.3, there exists a sequence (un)n∈N in Y + converging to u
in X+

ρ . Since Xρ is continuously embedded in L1(R), we can assume that all functions
gn := 1 + ûn (n ∈ N) do not vanish in C+ ∪ {∞}, so that (see Lemma 3.4) 1/gn ∈ B+

ρ

for all n. Hence (see Theorem 1.2) the sequence fn := g/gn (n ∈ N) belongs to the
space B+

ρ and, obviously, converges to 1 in the space A+. Using this fact, we conclude
that fn = 1 + v̂n, where the sequence (vn)n∈N belongs to X+

ρ and converges to zero
in L1(R). Thus (see Lemma 3.5) 1/fn ∈ B+

ρ for sufficiently large n. Let 1/fm ∈ B+
ρ

for some m ∈ N. Since 1/g = 1/gm · 1/fm, in view of Theorem 1.2, we arrive at the
conclusion that 1/g ∈ B+

ρ and the proof is complete.

4. PROOF OF THEOREM 1.3.

First, we prove two auxiliary Lemmas that are generalizations of the similar Lemmas
in [3, Chapter 3].
Lemma 4.1. Let ρ ∈ R0 and ϕ ∈ Lr(R+) (r ∈ [1,∞]). If a function ψ ∈ X+

ρ is such
that the function g is given by

g(x) := ϕ(x) +
∞∫

0

ϕ(t)ψ(x+ t) dt, x ∈ R+, (4.1)

belongs to the space X+
ρ , then ϕ ∈ X+

ρ .
Proof. Let g, ψ ∈ X+

ρ . Since X+
ρ ⊂ L1(R+), then (see [4], Lemma 3.1) ϕ ∈ L1(R+).

Taking into account the equalities

g(x) = −
∞∫

x

g′(ξ) dξ, ψ(x) = −
∞∫

x

ψ′(ξ) dξ, x ∈ R+,

(4.1) can be represented as

ϕ(x) = −
∞∫

x

g′(ξ) dξ +
∞∫

0

ϕ(t)
∞∫

x

ψ′(ξ + t) dξ dt. (4.2)

Since ∞∫

0

∞∫

0

|ψ′(ξ + t)|dξ dt =
∞∫

0

t|ψ′(t)| dt ≤ ‖ψ‖X+
ρ
,

applying Fubini’s theorem to the iterated integral in (4.2), we get

ϕ(x) = −
∞∫

x


g′(ξ)−

∞∫

0

ϕ(t)ψ′(ξ + t) dt


 dξ, x ∈ R+.
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Consequently, the function ϕ belongs to AC(R+) and

ϕ′(x) = g′(x)−
∞∫

0

ϕ(t)ψ′(x+ t) dt, x ∈ R+.

Thus
∞∫

0

ρ(x)|ϕ′(x)|dx ≤
∞∫

0

ρ(x)|g′(x)|dx+
∞∫

0

∞∫

0

|ϕ(t)| |ρ(x+ t)ψ′(x+ t)|dtdx,

and, therefore, ‖ϕ‖X+
ρ
≤ ‖g‖X+

ρ
+ ‖ϕ‖1‖ψ‖X+

ρ
<∞.

Lemma 4.2. Let ρ ∈ R0 and ϕ ∈ L1(R+) and ψ ∈ X+
ρ be related via

ϕ(x) + ψ(x) +
∞∫

0

ϕ(t)ψ(x+ t) dt = 0, x ∈ R+. (4.3)

If the function f is given by the formula

f(λ) = 1 +
∞∫

0

ϕ(t)eiλt dt, λ ∈ R,

and f(0) = 0, then there exists g ∈ B+
ρ such that f(λ) = λ

λ+i g(λ).

Proof. Let the conditions of the lemma be satisfied. From Lemma 4.1, it follows that
ϕ ∈ X+

ρ and thus f ∈ B+
ρ . Let us show that the function

h(x) :=
∞∫

x

ϕ(t) dt, x ∈ R+,

belongs to X+
ρ . Note that it follows from the condition f(0) = 0 that h(0) = −1.

Consider the auxiliary function

Φ(x) :=
∞∫

0

h′(t)
∞∫

x+t

ψ(ξ) dξ dt, x ≥ 0. (4.4)

Integrating by parts, we obtain that

Φ(x) =
∞∫

x

ψ(ξ) dξ +
∞∫

0

h(t)ψ(x+ t) dt. (4.5)
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On the other hand, it follows from (4.4) that

Φ(x) = −
∞∫

0

ϕ(t)
∞∫

x

ψ(y + t) dy dt = −
∞∫

x

∞∫

0

ϕ(t)ψ(y + t) dtdy. (4.6)

Taking into account (4.3), (4.5) and (4.6), we get
∞∫

x

ψ(ξ) dξ +
∞∫

0

h(t)ψ(x+ t) dt =
∞∫

x

(ϕ(y) + ψ(y)) dy

and, therefore,

h(x) +
∞∫

0

h(t)(−ψ(x+ t)) dt = 0, x ∈ R+.

Since h ∈ L∞(R+) and −ψ ∈ X+
ρ , in view of Lemma 4.1, we conclude that h ∈ X+

ρ .
Consequently, the function

g1(λ) := i
∞∫

0

h(t)eiλt dt, λ ∈ R,

belongs to B+
ρ . Integrating by parts, we get

λg1(λ) =
∞∫

0

h(t)
(

d
dte

iλt
)

= −h(0) +
∞∫

0

ϕ(t)eiλt dt = f(λ).

Let g(λ) := f(λ) + ig1(λ). Since g1, f ∈ B+
ρ , we deduce that g ∈ B+

ρ . Moreover,
λ(λ+ i)−1g(λ) = λg1(λ) = f(λ).

Below, we list some facts from [3, Chapter 3]. Let q ∈ Qω and

σ(x) :=
∞∫

x

|q(ξ)|dξ, σ1(x) :=
∞∫

x

ξ|q(ξ)|dξ.

1◦. The solution of the Jost equation (1.1) can be represented in the form

e(λ, x) = eiλx +
∞∫

x

K(x, t)eiλt dt, λ ∈ C+, x ∈ R+,

where the kernel K is continuous on the set Ω := {(x, t) ∈ R2
+ | x ≤ t} and

|K(x, t)| ≤ σ
(
x+ t

2

)
exp{σ1(x)}, (x, t) ∈ Ω.
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2◦. For λ ∈ R \ {0}, the estimate for the derivative of the Jost solution

|e′(λ, x)− iλeiλx| ≤ σ(x) exp{σ1(x)}, x ∈ R+, (4.7)

holds, and the formula

ω(λ, x) := e(−λ, 0)e(λ, x)− e(λ, 0)e(−λ, x)
2iλ , x ∈ R+, (4.8)

defines a solution of the equation (1.1) satisfying

ω(λ, x) = x(1 + o(1)), ω′(λ, x) = 1 + o(1), x→ +0. (4.9)

3◦. The function C+ \ {0} 3 λ 7→ e(λ) := e(λ, 0) has a finite number of zeros which
are simple and lie on the imaginary line.

4◦. The kernel K is a solution of the Marchenko equation

F (x+ t) +K(x, t) +
∞∫

x

K(x, ξ)F (ξ + t) dξ = 0, (x, t) ∈ Ω, (4.10)

with F given by

F (x) :=
n∑

s=1
mse

−κsx + FS(x), x ≥ 0, (4.11)

where
FS(x) := 1

2π

∫

R

(1− S(λ))eiλx dλ, x ∈ R. (4.12)

5◦. The function F belongs to the class AC(R+) and there exists a constant C1 > 0
such that

|F ′(2x)− q(x)/4| ≤ C1σ
2(x), x > 0. (4.13)

Lemma 4.3. Let q ∈ Qω and the function F be given by formula (4.11). Then for
each ρ ∈ R the function q belongs to the class Qρ if and only if F ∈ X+

ρ .

Proof. 1) Let ρ ∈ R and q ∈ Qρ. Then for an arbitrary γ ≥ 0,

ρ(x)σ(x) ≤
∞∫

x

ρ(t)|q(t)|dt ≤
∞∫

γ

ρ(t)|q(t)|dt, x ≥ γ,

and
∞∫

γ

σ(x) dx =
∞∫

γ

∞∫

x

|q(t)|dtdx ≤
∞∫

γ

t|q(t)|dt <∞.
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Thus
∞∫

γ

ρ(x)σ2(x) dx ≤



∞∫

γ

ρ(t)|q(t)|dt





∞∫

γ

σ(x) dx




≤



∞∫

γ

ρ(t)|q(t)|dt





∞∫

γ

t|q(t)|dt


 <∞. (4.14)

It follows from (4.13) that

|F ′(2x)| ≤ |q(x)|+ C1σ
2(x), x > 0.

Using this estimate and (2.7), we get

∞∫

0

ρ(2x)|F ′(2x)|dx ≤ c
∞∫

0

ρ(x)|F ′(2x)|dx

≤ c
∞∫

0

ρ(x)|q(x)|dx+ cC1

∞∫

0

ρ(x)σ2(x) dx <∞,

and hence F ∈ X+
ρ as claimed.

2) Let q ∈ Qω and F ∈ X+
ρ . It follows from (4.13) that

|q(x)| ≤ 4|F ′(2x)|+ 4C1σ
2(x), x > 0. (4.15)

Let us fix γ > 0 for which
∞∫

γ

t|q(t)|dt ≤ 1
8C1

, (4.16)

and put
ρn(x) := min{ρ(x), n+ x}, x ≥ 0, n ∈ N.

Obviously, that ρn ∈ R. Using the estimate (4.15), we obtain that for an arbitrary
n ∈ N,

∞∫

γ

ρn(x)|q(x)|dx ≤ 4
∞∫

γ

ρn(2x)|F ′(2x)|dx+ 4C1

∞∫

γ

ρn(x)σ2(x) dx. (4.17)

From (4.14) and (4.16), we deduce that

4C1

∞∫

γ

ρn(x)σ2(x) dx ≤ 4C1

∞∫

γ

ξ|q(ξ)|dξ
∞∫

γ

ρn(t)|q(t)|dt ≤ 1
2

∞∫

γ

ρn(t)|q(t)|dt.
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Thus, in view of (4.17), we get
∞∫

γ

ρn(x)|q(x)|dx ≤ 8
∞∫

γ

ρn(2x)|F ′(2x)|dx ≤ 4
∞∫

0

ρ(x)|F ′(x)|dx.

Using the monotone convergence theorem, we have
∞∫

γ

ρ(x)|q(x)|dx ≤ 4
∞∫

0

ρ(x)|F ′(x)|dx <∞,

and hence q ∈ Qρ.
Proof of Theorem 1.3. First, we prove sufficiency. Let ρ ∈ R, S ∈ Sρ and n :=
[−indS/2]. Since Sρ ⊂ Sω, in view of the results of [4], we conclude that S is the
scattering function for some operator Tq with q ∈ Qω. Since S ∈ Sρ, the function
FS (see (4.12)) belongs to the space Xρ. Therefore, the function F , given by the
formula (4.11), belongs to the space X+

ρ . In view of Lemma 4.3, we have that q ∈ Qρ
so that every function S ∈ Sρ is the scattering function of some operator Tq with
q ∈ Qρ as claimed.

Let us prove necessity. Let q ∈ Qρ. We need to prove that Sq ∈ Sρ. Since q ∈ Qρ,
in view of Lemma 4.3, we conclude that F ∈ X+

ρ . It follows from the Marchenko
equation (4.10) that

F (t) +K(0, t) +
∞∫

0

K(0, ξ)F (ξ + t) dξ = 0, t > 0.

Thus in view of Lemma 4.1 the function R+ 3 t 7→ K(0, t) belongs to the space X+
ρ

and, therefore, the Jost function

e(λ) = 1 +
∞∫

0

K(0, t)eiλt dt, λ ∈ C+,

belongs to the space B+
ρ .

1) Suppose that e(0) 6= 0. Then, in view of 3◦, the function e has a finite number
of zeros in C+ ∪ {∞}. All these zeros are simple and can be represented as z = iκj ,
where {κj}nj=1 ⊂ R+. Let us consider the Blaschke product

b(λ) =
n∏

j=1

λ− iκj
λ+ iκj

(4.18)

and the functions
f(λ) := e(−λ)

b(λ) , g(λ) := e(λ)
b(λ) , λ ∈ R.
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It follows from Lemma 3.4 and Theorem 1.2 that f, g ∈ Bρ. Obviously, g ∈ A+, and
thus g ∈ B+

ρ . Moreover, the function g does not vanish in C+ ∪ {∞}. Therefore, in
view of Theorem 3.6, we obtain that 1/g ∈ B+

ρ . Since S = f/g and Bρ is an algebra,
we deduce that S ∈ Bρ.

2) Suppose that e(0) = 0. Taking into account (4.10) and Lemma 4.2, we get that
e(λ) = λ

λ+ih(λ), where h ∈ B+
ρ . Let us show that h(0) 6= 0. It follows from (4.7)

that there exists C > 0 such that |e′(λ, x)| ≤ C for x ∈ R+ and λ ∈ [−1, 1] \ {0}. Thus
(see (4.8))

|ω′(λ, x)| ≤ C(|h(−λ)|+ |h(λ)|), x ∈ R+, λ ∈ [−1, 1] \ {0}.

Therefore, taking into account (4.9), we have

1 = lim
x→+0

|ω′(λ, x)| ≤ C(|h(−λ)|+ |h(λ)|), λ ∈ [−1, 1] \ {0}.

Since the function h is continuous, we obtain that h(0) 6= 0. In view of 3◦, the
function h has a finite number of zeros in C+ ∪ {∞}. All these zeros are simple and
can be represented as z = iκj , where {κj}nj=1 ⊂ R+. Let us consider the functions

f(λ) := λ+ i
λ− i

h(−λ)
b(λ) , g(λ) := h(λ)

b(λ) , λ ∈ R,

where b is the Blaschke product given by the formula (4.18). It follows from Lemma 3.4
and Theorem 1.2 that f, g ∈ Bρ. Obviously, g ∈ B+

ρ and the function g does not
vanish in C+ ∪ {∞}. It follows from Theorem 3.6 that 1/g ∈ Bρ. Since S = f/g and
Bρ is an algebra, we arrive at the conclusion that S ∈ Bρ. Therefore, the proof is
complete.

APPENDIX

A. OPERATOR Tq

In this appendix, we will give the explicit definition of the operator Tq.
We denote by C∞0 the linear space of all functions on the half-line with compact

support that are infinitely often differentiable. Also we denote by W 1
2 the Sobolev

space of functions f ∈ AC[0,∞) for which

‖f‖2
W 1

2
:=

∞∫

0

(|f(x)|2 + |f ′(x)|2) dx <∞.

Let q be a locally integrable real-valued function on R+ and
∞∫

0

x|q(x)|dx <∞. (A.1)
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We consider the symmetric sesqulinear forms t0 and q that are defined on the common
domain W 1

2,0 := {f ∈W 1
2 | f(0) = 0} by the formulas

t0[f, g] :=
∞∫

0

f ′(x) g′(x) dx, q[f, g] :=
∞∫

0

q(x)f(x) g(x) dx.

Note that the form t0 is nonnegative and closed (see [1], Ch.VI-§1.3). We will show that
the form q is t0-bounded (see [1], Ch.VI-§1.6). We represent the function q (see (A.1))
as the sum q1 + q2, where q1 ∈ C∞0 and q2 satisfies the following condition:

∞∫

0

x|q2(x)|dx ≤ b < 1.

Using the Cauchy–Schwarz inequality, we get that for f ∈W 1
2,0

|f(x)|2 =

∣∣∣∣∣∣

x∫

0

f ′(t) dt

∣∣∣∣∣∣

2

≤ x
x∫

0

|f ′(t)|2 dt ≤ x t0[f ], x ∈ R+,

where t0[f ] := t0[f, f ]. Thus for all f ∈W 1
2,0

|q[f ]| ≤
∞∫

0

|q1(x)||f(x)|2 dx+
∞∫

0

|q2(x)||f(x)|2 dx ≤ a‖f‖2 + b t0[f ],

where a := max |q1(x)|. Consequently, the form q is t0-bounded with b < 1. Therefore
(see [1, Chapter VI, §1.6]), the symmetric form t = t0 + s is bounded from below and
closed. By the first representation theorem (see [1, Chapter VI, §2.1]), there exists
the unique self-adjoint operator Tq that is associated with t. Its domain consists of
functions f ∈W 1

2,0 for which there exists h ∈ L2(R+) such that

t[f, g] = (h | g), g ∈W 1
2,0. (A.2)

If (A.2) holds, then Tqf = h. Let f ∈ domTq. Then for some h ∈ L2(R+)

(f ′ | g′) = (h− qf | g), g ∈ C∞0 .

Thus we have that −f ′′ = h− qf in the sense of distribution theory. It means that
f ′ ∈ AC(0,∞) and (−f ′′ + qf) = h ∈ L2(0,∞). Therefore,

domTq := {f ∈W 1
2,0 | f ′ ∈ AC(0,∞), (−f ′′ + qf) ∈ L2(R+)}

and
Tqf := −f ′′ + qf, f ∈ domTq.
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