Opuscula Math. 39, no. 3 (2019), 361-382
https://doi.org/10.7494/OpMath.2019.39.3.361
Opuscula Mathematica
On the zeros of the Macdonald functions
Yuji Hamana
Hiroyuki Matsumoto
Tomoyuki Shirai
Abstract. We are concerned with the zeros of the Macdonald functions or the modified Bessel functions of the second kind with real index. By using the explicit expressions for the algebraic equations satisfied by the zeros, we describe the behavior of the zeros when the index moves. Results by numerical computations are also presented.
Keywords: zeros, Macdonald functions, Bessel functions.
Mathematics Subject Classification: 33C10, 30C15, 32A60, 33F05.
- Y. Hamana, The expected volume and surface area of the Wiener sausage in odd dimensions, Osaka J. Math. 49 (2012), 853-868.
- Y. Hamana, H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Industry 4 (2012), 91-95.
- Y. Hamana, H. Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), 5237-5257.
- Y. Hamana, H. Matsumoto, Hitting times of Bessel processes, volume of the Wiener sausages and zeros of Macdonald functions, J. Math. Soc. Japan 68 (2016), 1615-1653.
- L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd ed., North-Holland, 1990.
- M.K. Kerimov, S.L. Skorokhodov, Calculation of the complex zeros of the modified Bessel function of the second kind and its derivatives, U.S.S.R. Comput. Math. and Math. Phys. 24 (1984), 115-123; Russian original, Zh. Vychisl. Mat. i Mat. Fiz. 24 (1984), 1150-1163.
- N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.
- W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966.
- M. Marden, Geometry of Polynomials, Amer. Math. Soc., 1966.
- R. Parnes, Complex zeros of the modified Bessel function \(K_n(z)\), Math. Comp. 26 (1972), 949-953.
- G.N. Watson, A Treatise on the Theory of Bessel Functions, Reprinted of 2nd ed., Cambridge Univ. Press, 1995.
- M.V. Zavolzhenskii, A.Kh. Terskov, The zeros of the cylinder functions \(K_n(z)\), U.S.S.R. Comput. Math. and Math. Phys., 17 (1978), 192-195; Russian original, Zh. Vychisl. Mat. i Mat. Fiz. 17 (1977), 759-762.
- Yuji Hamana
https://orcid.org/0000-0002-9997-3114
- Kumamoto University, Department of Mathematics, Kurokami 2-39-1, Kumamoto 860-8555, Japan
- Hiroyuki Matsumoto
- Aoyama Gakuin University, Department of Physics and Mathematics, Fuchinobe 5-10-1, Sagamihara 252-5258, Japan
- Tomoyuki Shirai
https://orcid.org/0000-0001-6269-5387
- Kyushu University, Institute of Mathematics for Industry, Motooka 744, Fukuoka 819-0395, Japan
- Communicated by P.A. Cojuhari.
- Received: 2018-08-30.
- Revised: 2018-10-02.
- Accepted: 2018-10-04.
- Published online: 2019-02-23.