Opuscula Math. 39, no. 3 (2019), 361-382
https://doi.org/10.7494/OpMath.2019.39.3.361

 
Opuscula Mathematica

On the zeros of the Macdonald functions

Yuji Hamana
Hiroyuki Matsumoto
Tomoyuki Shirai

Abstract. We are concerned with the zeros of the Macdonald functions or the modified Bessel functions of the second kind with real index. By using the explicit expressions for the algebraic equations satisfied by the zeros, we describe the behavior of the zeros when the index moves. Results by numerical computations are also presented.

Keywords: zeros, Macdonald functions, Bessel functions.

Mathematics Subject Classification: 33C10, 30C15, 32A60, 33F05.

Full text (pdf)

  1. Y. Hamana, The expected volume and surface area of the Wiener sausage in odd dimensions, Osaka J. Math. 49 (2012), 853-868.
  2. Y. Hamana, H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Industry 4 (2012), 91-95.
  3. Y. Hamana, H. Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), 5237-5257.
  4. Y. Hamana, H. Matsumoto, Hitting times of Bessel processes, volume of the Wiener sausages and zeros of Macdonald functions, J. Math. Soc. Japan 68 (2016), 1615-1653.
  5. L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd ed., North-Holland, 1990.
  6. M.K. Kerimov, S.L. Skorokhodov, Calculation of the complex zeros of the modified Bessel function of the second kind and its derivatives, U.S.S.R. Comput. Math. and Math. Phys. 24 (1984), 115-123; Russian original, Zh. Vychisl. Mat. i Mat. Fiz. 24 (1984), 1150-1163.
  7. N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.
  8. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966.
  9. M. Marden, Geometry of Polynomials, Amer. Math. Soc., 1966.
  10. R. Parnes, Complex zeros of the modified Bessel function \(K_n(z)\), Math. Comp. 26 (1972), 949-953.
  11. G.N. Watson, A Treatise on the Theory of Bessel Functions, Reprinted of 2nd ed., Cambridge Univ. Press, 1995.
  12. M.V. Zavolzhenskii, A.Kh. Terskov, The zeros of the cylinder functions \(K_n(z)\), U.S.S.R. Comput. Math. and Math. Phys., 17 (1978), 192-195; Russian original, Zh. Vychisl. Mat. i Mat. Fiz. 17 (1977), 759-762.
  • Hiroyuki Matsumoto
  • Aoyama Gakuin University, Department of Physics and Mathematics, Fuchinobe 5-10-1, Sagamihara 252-5258, Japan
  • Communicated by P.A. Cojuhari.
  • Received: 2018-08-30.
  • Revised: 2018-10-02.
  • Accepted: 2018-10-04.
  • Published online: 2019-02-23.
Opuscula Mathematica - cover

Cite this article as:
Yuji Hamana, Hiroyuki Matsumoto, Tomoyuki Shirai, On the zeros of the Macdonald functions, Opuscula Math. 39, no. 3 (2019), 361-382, https://doi.org/10.7494/OpMath.2019.39.3.361

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.