Opuscula Math. 39, no. 1 (2019), 23-37
https://doi.org/10.7494/OpMath.2019.39.1.23
Opuscula Mathematica
Dynamic system with random structure for modeling security and risk management in cyberspace
Irada Dzhalladova
Miroslava Růžičková
Abstract. We deal with the investigation of \(L_{2}\)-stability of the trivial solution to the system of difference equations with coefficients depending on a semi-Markov chain. In our considerations, random transformations of solutions are assumed. Necessary and sufficient conditions for \(L_{2}\)-stability of the trivial solution to such systems are obtained. A method is proposed for constructing Lyapunov functions and the conditions for its existence are justified. The dynamic system and methods discussed in the paper are very well suited for use as models for protecting information in cyberspace.
Keywords: semi-Markov chain, random transformation of solutions, the Lyapunov function, \(L_{2}\)-stability, systems of difference equations, jumps of solutions, cybersecurity.
Mathematics Subject Classification: 34F05, 60J28.
- V.M. Artemjev, I.E. Kazakov, Handbook on the Theory of Automatic Control, Nauka, Moscow, 1987 [in Russian].
- E. Çinlar, Markov renewal theory, Adv. in Appl. Probab. 2 (1969), 123-187.
- J. Diblík, I. Dzhalladova, M. Michalková, M. Růžičková, Modeling of applied problems by stochastic systems and their analysis using the moment equations, Adv. Difference Equ. 2013 (2013), 12 pp.
- J. Diblík, I. Dzhalladova, M. Michalková, M. Růžičková, Moment equations in modeling a stable foreign currency exchange market in conditions of uncertainty, Abstr. Appl. Anal. 2013 (2013), Art. ID 172847, 11 pp.
- I.A. Dzhalladova, Optimization of Stochastic System, KNEU, Kiev, 2005 [in Russian].
- I. Dzhalladova, M. Růžičková, V. Štoudková Růžičková, Stability of the zero solution of nonlinear differential equations under the influence of white noise, Adv. Difference Equ. 2015 (2015), 11 pp.
- I.Ya. Katz, Lyapunov function method in problems of stability and stabilizability problems of random structure systems, UGAPS, Ykaterinburg, 1998 [in Russian].
- V.S. Korolyuk, W. Limnios, Stochastic Systems in Merging Phase Space, London, World Scientific, 2006.
- V.S. Korolyuk, V.V. Korolyuk, Stochastic Models of Systems, Naukova Dumka, Kiev, 1989 [in Russian].
- V.S. Korolyuk, A.F. Turbin, Semi-Markov processes end their applications, Naukova Dumka, Kiev, 1976 [in Russian].
- P. Lèvy, Systèmes Semi-Markoviens à au plus une infinitè dènombrable ďètats possibles, Proc. Int. Cong. Math., Amsterdam 2 (1954).
- N. Limnios, G. Oprisan, Semi-Markov Processes and Reliability, Boston, Birkhäuser, 2001.
- A.M. Lyapunov, General Problem of the Stability of Motion, Postechizdat, 1950 [in Russian]; Engl. transl. in: Tayor & Francis in London, Washington, DC, 1992.
- M. Růžičková, I. Dzhalladova, The optimization of solutions of the dynamic systems with random structure, Abstr. Appl. Anal. 2011 (2011), Art. ID 486714, 18 pp.
- M. Růžičková, I. Dzhalladova, J. Laitochová, J. Diblík, Solution to a stochastic pursuit model using moment equations, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 473-485.
- W.L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. Edinburgh Sect. A 232, (1955), 6-31.
- Irada Dzhalladova
https://orcid.org/0000-0003-3158-6844
- Kyiv National Economic University named after Vadym Hetman, Department of Computer Mathematics and Information Security, Kiev 03068, Peremogy 54/1, Ukraine
- Miroslava Růžičková
https://orcid.org/0000-0002-7724-763X
- University of Białystok, Faculty of Mathematics and Informatics, K. Ciołkowskiego 1M, 15-245 Białystok, Poland
- Communicated by Josef Diblík.
- Received: 2018-01-19.
- Revised: 2018-02-19.
- Accepted: 2018-03-02.
- Published online: 2018-08-07.