Opuscula Math. 37, no. 6 (2017), 829-837
http://dx.doi.org/10.7494/OpMath.2017.37.6.829
Opuscula Mathematica
Ideals with linear quotients in Segre products
Abstract. We establish that the Segre product between a polynomial ring on a field \(K\) in \(m\) variables and the second squarefree Veronese subalgebra of a polynomial ring on \(K\) in \(n\) variables has the intersection degree equal to three. We describe a class of monomial ideals of the Segre product with linear quotients.
Keywords: monomial algebras, graded ideals, linear resolutions.
Mathematics Subject Classification: 13A30, 13D45.
- A. Aramova, J. Herzog, T. Hibi, Finite lattices and lexicographic Gröbner bases, Europ. J. Combin. 21 (2000) 4, 431-439.
- A. Aramova, J. Herzog, T. Hibi, Finite lattices, lexicographic Gröbner bases and sequentially Koszul algebras (unpublished).
- J. Backelin, R. Froeberg, Koszul algebras, Veronese subrings and rings with linear resolution, Revue Roumaine Mathe. Pure Appl. 30 (1985) 2, 85-97.
- W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
- G. Failla, Projective Toric varietes and associated fibers, Rend. Circ. Mat. Palermo (2) Suppl. 77 (2006), 267-280.
- G. Failla, Binomial ideals and applications, Communications to Simai Congress 2 (2007).
- G. Failla, Quadratic Plücker relations for Hankel varieties, Rend. Circ. Mat. Palermo (2) Suppl. 81 (2009), 171-180.
- G. Failla, On certain Loci of Hankel \(r\)-planes of \(\mathbb{P}^m\), Mathematical Notes 92 (2012) 4, 544-553.
- G. Failla, On the defining equations of the Hankel varieties \(H(2,n)\), Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 104 (2013), Tome 56, 403-418.
- G. Failla, On the (1,1)-Segre model for business, Applied Mathematical Sciences 8 (2014), 8329-8336.
- G. Failla, Combinatorics of Hankel relations, Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2017) 2 (to appear).
- G. Failla, Linear triangulations of polytopes, Aplimat 2017, 16th Conference on Applied Mathematics, Proceedings (2017), 499-509.
- G. Failla, Ideals with linear resolution in Segre products, An. Univ. Craiova Ser. Mat. Inform. 44 (2017) 1, 149-155.
- G. Failla, R. Utano, Connected graphs arising from products of Veronese varieties, Algebra Colloq. 23 (2016), 281-292.
- G. Restuccia, G. Rinaldo, Intersection degree and bipartite graphs, ADJM 8 (2008) 2, 114-124.
- J. Herzog, T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1995), 141-153.
- J. Herzog, Y. Takayama, Resoultion by mapping cones, Homology Homotopy Appl. 4 (no. 2, part 2) (2002), 277-291.
- J. Herzog, T. Hibi, G. Restuccia, Strongly Koszul algebras, Math. Scand. 86 (2000), 161-178.
- L. Sherifan, M. Varbaro, Graded Betti numbers of ideals with linear quotients, Le Matematiche 63 (2008) 2, 257-265.
- B. Sturmfels, Gröbner Bases and Convex Polytopes, Univ. Lect. Series 8, Amer. Math. Soc., 1995.
- R.H. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 238, Marcel and Dekker, Inc., New York, 2001.
- Gioia Failla
- University of Reggio Calabria, DIIES, Via Graziella, Salita Feo di Vito, Reggio Calabria, Italy
- Communicated by Vicentiu D. Radulescu.
- Received: 2017-03-23.
- Revised: 2017-05-11.
- Accepted: 2017-06-18.
- Published online: 2017-09-28.