Opuscula Math. 37, no. 5 (2017), 735-753
http://dx.doi.org/10.7494/OpMath.2017.37.5.735
Opuscula Mathematica
On nonexistence of global in time solution for a mixed problem for a nonlinear evolution equation with memory generalizing the Voigt-Kelvin rheological model
Petro Pukach
Volodymyr Il'kiv
Zinovii Nytrebych
Myroslava Vovk
Abstract. The paper deals with investigating of the first mixed problem for a fifth-order nonlinear evolutional equation which generalizes well known equation of the vibrations theory. We obtain sufficient conditions of nonexistence of a global solution in time variable.
Keywords: boundary value problem, beam vibrations, nonlinear evolution equation, Voigt-Kelvin model, memory, blowup.
Mathematics Subject Classification: 35G20, 35G31.
- G. Andrews, On the existence of solution to the equation \(u_{tt}=u_{xxt}+\sigma (u_{x})_{x}\), J. Differential Equations 35 (1980), 200-231.
- K.T. Andrews, M. Shillor, S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity 42 (1996), 1-30.
- O. Buhrii, G. Domanska, N. Protsakh, The mixed problem for nonlinear equation of third order in Sobolev generalized spaces, Visnyk of Lviv University, Series Mathematics and Mechanics 64 (2005), 44-61.
- H.R. Clark, Elastic membrane equation in bounded and unbounded domains, Electron. J. Qual. Theory Differ. Equ. 7 (2002), 1-21.
- M.H. Duong, Comparison and maximum principles for a class of flux-limited diffusions with external force fields, Adv. Nonlinear Anal. 2 (2016), 167-176.
- J.M. Greenberg, On the existence, uniqueness and stability of solutions of the equation \(\rho_{0}u_{tt}=\sigma^{^{\prime}}(u_{x})u_{xx}+\lambda u_{xtx}\), J. Math. Anal. Appl. 25 (1969), 575-591.
- R.J. Gu, K.L. Kuttler, M. Shillor, Frictional wear of a thermoelastic beam, J. Math. Anal. Appl. 242 (2000), 212-236.
- T.J. Hughes, J.E. Marsden, Mathematical Foundation of Elasticity, C. Prentice Hall, Endlewood, 1983.
- S.P. Lavrenyuk, O.T. Panat, Unboundedness of solutions of one hyperbolic third order equation, J. Math. Sci. (N.Y.) 165 (2010) 2, 200-213.
- J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.
- Ya. Liu, R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations 244 (2008), 200-228.
- M. Lustyk, J. Janus, M. Pytel-Kudela, A.K. Prykarpatsky, The solution existence and convergence analysis for linear and nonlinear differential-operator equations in Banach spaces within the Calogero type projection-algebraic scheme of discrete approximations, Central European J. Math. 7 (2009) 3, 775-786.
- J.A.C. Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with normal and friction interface laws, Nonlin. Anal. 11 (1987), 407-428.
- S.A. Messaoudi, Blow-up of positive-initial-energy solutions of nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320 (2006), 902-915.
- Ya.V. Mykytiuk, A.K. Prykarpatsky, D.L. Blackmore, The Lax solution to a Hamilton-Jacobi equation and its generalizatios: Part 2, Nonlin. Anal. 55 (2003), 629-640.
- N.K. Prykarpatska, D.L. Blackmore, A.K. Prykarpatsky, M. Pytel-Kudela, On the inf-type extremality solutions to Hamilton-Jacobi equations and some generalizatios, Miskolc Mathematical Notes 4 (2003) 2, 153-176.
- P.Ya. Pukach, The mixed problem for strongly nonlinear equation of beam vibrations type in bounded domain, Applied Problems of Mechanics and Mathematics 4 (2006), 59-69.
- P.Ya. Pukach, The mixed problem for some nonlinear equation of beam vibrations type in unbounded domain, Scientific Herald of Y. Fedkovych Chernivtsi National University, Mathematics 314-315 (2006), 159-170.
- P.Ya. Pukach, The mixed problem for nonlinear equation of beam vibrations type in unbounded domain, Matematychni Studii 27 (2007) 2, 139-148.
- P.Ya. Pukach, On the existence of local solutions of the mixed problem for a nonlinear fifth order evolution equation, Journal of Lviv Polytechnic National University "Physical and Mathematical Sciences" 625 (2008), 27-34.
- P.Ya. Pukach, On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time, Nonlinear Oscillations 14 (2012) 3, 369-378.
- N. Strömberg, L. Johansson, A. Klarbring, Derivation and analysis of a generalized standard model for a contact friction and wear, Intern. J. Solids and Structures 13 (1996), 1817-1836.
- V.I. Yerofeev, V.V. Kazhaev, N.P. Semerikova, Waves in the rods. Dispersion. Dissipation. Nonlinearity, Fizmatlit, Moscow, 2002.
- Y. Zhijian, S. Changming, Blowup of solutions for a class of quasilinear evolution equations, Nonlinear Analysis: Theory, Methods and Applications 28 (1997) 12, 2017-2032.
- Petro Pukach
- Lviv Polytechnic National University, Department of Mathematics, St. Bandery Str. 12, 79013, Lviv, Ukraine
- Volodymyr Il'kiv
- Lviv Polytechnic National University, Department of Mathematics, St. Bandery Str. 12, 79013, Lviv, Ukraine
- Zinovii Nytrebych
- Lviv Polytechnic National University, Department of Mathematics, St. Bandery Str. 12, 79013, Lviv, Ukraine
- Myroslava Vovk
- Lviv Polytechnic National University, Department of Mathematics, St. Bandery Str. 12, 79013, Lviv, Ukraine
- Communicated by Vicentiu D. Radulescu.
- Received: 2016-07-22.
- Accepted: 2016-12-27.
- Published online: 2017-07-05.