Opuscula Math. 37, no. 5 (2017), 647-664
http://dx.doi.org/10.7494/OpMath.2017.37.5.647

 
Opuscula Mathematica

Block colourings of 6-cycle systems

Paola Bonacini
Mario Gionfriddo
Lucia Marino

Abstract. Let \(\Sigma=(X,\mathcal{B})\) be a \(6\)-cycle system of order \(v\), so \(v\equiv 1,9\mod 12\). A \(c\)-colouring of type \(s\) is a map \(\phi\colon\mathcal {B}\rightarrow \mathcal{C}\), with \(C\) set of colours, such that exactly \(c\) colours are used and for every vertex \(x\) all the blocks containing \(x\) are coloured exactly with \(s\) colours. Let \(\frac{v-1}{2}=qs+r\), with \(q, r\geq 0\). \(\phi\) is equitable if for every vertex \(x\) the set of the \(\frac{v-1}{2}\) blocks containing \(x\) is partitioned in \(r\) colour classes of cardinality \(q+1\) and \(s-r\) colour classes of cardinality \(q\). In this paper we study bicolourings and tricolourings, for which, respectively, \(s=2\) and \(s=3\), distinguishing the cases \(v=12k+1\) and \(v=12k+9\). In particular, we settle completely the case of \(s=2\), while for \(s=3\) we determine upper and lower bounds for \(c\).

Keywords: 6-cycles, block-colourings, G-decompositions.

Mathematics Subject Classification: 05C15, 05B05.

Full text (pdf)

  1. B. Alspach, H. Gavlas, Cycle decompositions of \(K^n\) and \(K^n-I\), J. Combin. Theory Ser. B 81 (2001), 77-99.
  2. G. Bacso, Zs. Tuza, V. Voloshin, Unique colourings of bi-hypergraphs, Australas. J. Combin. 27 (2003), 33-45.
  3. P. Bonacini, L. Marino, Equitable tricolourings for 4-cycle systems, Applied Mathematical Sciences 9 (2015) 58, 2881-2887.
  4. P. Bonacini, L. Marino, Equitable block colourings, Ars Comb. 120 (2015), 255-258.
  5. Cs. Bujtas, Zs. Tuza, V. Voloshin, Hypergraph Colouring, [in:] L.W. Beineke, R.J. Wilson (eds), Topics in Chromatic Graph Theory, Cambridge University Press, 2015, 230-254.
  6. P. Cameron, Parallelisms in complete designs, Cambridge University Press, Cambridge, 1976.
  7. C.J. Colbourn, A. Rosa, Specialized block-colourings of Steiner triple systems and the upper chromatic index, Graphs Combin. 19 (2003), 335-345.
  8. J.H. Dinitz, D.K. Garnick, B.D. McKay, There are 526,915,620 nonisomorphic one-factorizations of \(K_{12}\), J. Combin. Des. 2 (1994) 4, 273-285.
  9. L. Gionfriddo, M. Gionfriddo, G. Ragusa, Equitable specialized block-colourings for 4-cycle systems - I, Discrete Math. 310 (2010), 3126-3131.
  10. M. Gionfriddo, G. Quattrocchi, Colouring 4-cycle systems with equitable coloured blocks, Discrete Math. 284 (2004), 137-148.
  11. M. Gionfriddo, G. Ragusa, Equitable specialized block-colourings for 4-cycle systems - II, Discrete Math. 310 (2010), 1986-1994.
  12. M. Gionfriddo, P. Horak, L. Milazzo, A. Rosa, Equitable specialized block-colourings for Steiner triple systems, Graphs Combin. 24 (2008), 313-326.
  13. J.A. Kennedy, Maximum packings of \(K_n\) with hexagons, Australas. J. Combin. 7 (1993), 101-110.
  14. S. Milici, A. Rosa, V. Voloshin, Colouring Steiner systems with specified block colour pattern, Discrete Math. 240 (2001), 145-160.
  15. A. Rosa, C. Huang, Another class of balanced graph designs: balanced circuit designs, Discrete Math. 12 (1975) 3, 269-293.
  16. B.R. Smith, Decomposing complete equipartite graphs into cycles of length \(2p\), J. Comb. Des. 16 (2008) 3, 244-252.
  17. D. Sotteau, Decompositions of \(K_{m,n}\) (\(K^{\star}_{m,n}\)) into cycles (circuits) of length \(2k\), J. Comb. Theory B, 30 (1981), 75-81.
  18. V. Voloshin, Coloring block designs as mixed hypergraphs: survey, Abstracts of papers presented to the American Mathematical Society (2005), vol. 26, no. 1, issue 139, p. 15.
  19. V. Voloshin, Graph Coloring: History, results and open problems, Alabama Journal of Mathematics, Spring/Fall 2009.
  • Paola Bonacini
  • Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
  • Mario Gionfriddo
  • Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
  • Lucia Marino
  • Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
  • Communicated by Mariusz Meszka.
  • Received: 2016-09-19.
  • Revised: 2016-12-10.
  • Accepted: 2016-12-21.
  • Published online: 2017-07-05.
Opuscula Mathematica - cover

Cite this article as:
Paola Bonacini, Mario Gionfriddo, Lucia Marino, Block colourings of 6-cycle systems, Opuscula Math. 37, no. 5 (2017), 647-664, http://dx.doi.org/10.7494/OpMath.2017.37.5.647

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.