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Abstract. Let ¥ = (X, B) be a 6-cycle system of order v, so v = 1,9 mod 12. A c-colouring
of type s is a map ¢: B — C, with C set of colours, such that exactly ¢ colours are used
and for every vertex x all the blocks containing = are coloured exactly with s colours. Let
”;1 = gs + r, with ¢q,7 > 0. ¢ is equitable if for every vertex x the set of the ”51 blocks
containing x is partitioned in r colour classes of cardinality ¢ + 1 and s — r colour classes of
cardinality ¢. In this paper we study bicolourings and tricolourings, for which, respectively,
s = 2 and s = 3, distinguishing the cases v = 12k + 1 and v = 12k + 9. In particular, we settle

completely the case of s = 2, while for s = 3 we determine upper and lower bounds for c.
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1. INTRODUCTION

Block colourings of 4-cycle systems have been introduced and studied in [3,4,9,11].
In this paper we study block colourings of 6-cycle systems, in what follows just
“colourings”.

Let K, be the complete simple graph on v vertices. The graph having vertices
ai,as,...,ar, with k > 3, and having edges {ay,a1} and {a;,a;41} fori=1,... k-1
is a k-cycle and it will be denoted by (aj,as,...,ar). A n-cycle system of order v,
briefly nCS(v), is a pair ¥ = (X, B), where X is the set of vertices and B is a set of
n-cycles, called blocks, that partitions the edges of K.

A colouring of a nCS(v) ¥ = (X,B) is a mapping ¢: B — C, where C is a set
of colours. A c-colouring is a colouring in which exactly ¢ colours are used. The set
of blocks coloured with a colour of C is a colour class. A c-colouring of type s is
a colouring in which, for every vertex z, all the blocks containing = are coloured with
exactly s colours.

Let ¥ = (X, B) be an nCS(v), let ¢: B — C be a c-colouring of type s and let

”;1 = gs+r with ¢, > 0. Note that each vertex of an nCS(v) is contained in exactly
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v=1 blocks. ¢ is equitable if for every vertex x the set of the “5! blocks containing

x is partitioned in 7 colour classes of cardinality ¢ + 1 and s — r colour classes of
cardinality ¢. A bicolouring, tricolouring or quadricolouring is an equitable colouring
with s =2, s =3 or s = 4.

The colour spectrum of an nCS(v) ¥ = (X, B) is the set:

Q)(2) = {¢ | there exists an equitable c-colouring of type s of X}.

We also consider the set an)(v) = Uﬂgn)(z), where ¥ varies in the set of all
the nC'S(v).

We will consider the lower s-chromatic index Xgn)(Z) = min an)(Z) and the upper
s-chromatic index yﬁ")(z) = max an)(E). If an)(E) = (), then we say that X is
uncolourable.

In the same way we consider v (v) = min Q™ (v) and ¥\ (v) = max Q™ (v).

Block colourings for s =2, s = 3 and s = 4 of 4C'S have been studied in [3,9,11].
The problem arose as a consequence of colourings of Steiner systems studied in
[7,10,12,18]. For further references on such topics see [2,5,14,19].

The case n = 5, which the authors have been studying, appears to be definitely
more complex than those studied previously. In this paper we will consider the case
n = 6. It is known (see [15]) that a 6C'S(v) exists if and only if v = 1,9 mod 12. We
will study block colourings for 6C'S in the cases s = 2 and s = 3, distinguishing the
cases v = 12k + 1 and v = 12k + 9.

In what follows, to construct 6-cycle systems we will use sometimes the difference
method. This means that we fix as a vertex set X = Z, and, defined a base-block
B = (a1, a9, a3, a4, as, ag), its translates will be all the blocks of type

B+i= (a1 +i,a2 +1i,a3 +i,a4 + 0,05 +4,a6 + 1)

for every i € Z. Then, given z,y € X, x # y, the edge {z, y} will belong to one of the
blocks B + ¢ for some i if and only if |z — y| € {|a; — a;41|: # = 1,...,6}, where
the indices are taken mod 6.

2. BICOLOURINGS FOR v =12k + 1

In this section we will consider bicolourings in the case v = 12k + 1. We will deal with
the case v = 12k + 9 in the next section. First, we determine a bound for the number
¢ of colours of bicolourings.

Lemma 2.1. Let 3 = (V,B) be a 6CS(v), where v =12k + 1, and let ¢: B — C be
a c-bicolouring of . Then ¢ < 3.

Proof. Let |C] = c and let v € C. Any element v € V incident with blocks coloured
with v must be incident with precisely 3k blocks coloured with . This means that there
are at least 6k + 1 vertices incident with blocks coloured with ~. This means that

c(1+ 6k) < 2(1 + 12k),
so that ¢ < 3. O
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In the following theorems we determine the sets Qéﬁ)(l% + 1), but we find two
different results, depending on the parity of k.

Theorem 2.2. If k is odd, then Qg6)(12k +1)=0.

Proof. Let ¥ = (V,B) be a 6CS(v), where v = 12k + 1, and let ¢: B — C be
a 2-bicolouring of ¥. Let v € C and let B, the set of blocks of B coloured with ~.
Then it must be: "
’l) .
By = .
| ’Y| 6

Since k is odd, we get a contradiction.

Now, let ¥ = (V,B) be a 6CS(v), where v = 12k + 1, and let ¢: B — C be
a 3-bicolouring of . In this case we proceed as in [9, Lemma 2.1]. We can suppose that
C =1{1,2,3} and we denote by X the set of vertices incident with blocks of colour 1
and 2, by Y the set of vertices incident with blocks of colour 1 and 3 and by Z the set
of vertices incident with blocks of colour 2 and 3. Let z = | X|, y = |Y] and z = |Z|.

We can note that these sets are pairwise disjoint and that in each block we can
have vertices at most of two types. Moreover, it is easy to see that a block can not
contain an odd number of edges having vertices of different types.

This implies that the products xy, xz,yz are all even and so among z, y and z
at most one is odd. However, since x + y + z = v, one of them is odd, while the others
are even. Since

3k - (z+
|Bl\=#,

3k-(z+z
- Blrts)

3k-(y+ 2z
g - Beelut2)

then we get a contradiction, because k is odd. This shows that there is no 3 ¢
Qgﬁ)(mk +1). By Lemma 2.1, we get the statement. O

Theorem 2.3. If k is even, then Qéﬁ)(12k +1)={2,3}.

Proof. Let V = Zjok4+1. Consider on Zjgk41 the following base blocks:
A; =(0,6k +1—14,5k,9k + i, 11k + 1,2k + 1),

fori € {1,...,k}. If k = 2h, assign the colour 1 to the blocks A; and all their translated
forms, for ¢ € {1,...,h} and the colour 2 to the blocks A; and all their translated
forms, for i € {h+1,...,2h}. If B is the set of all these blocks, ¥ = (Z125+1, B) is
a 6CS(12k + 1) and the previous assignment determines a 2-bicolouring of X.

Now we prove that 3 € Q§6)(12k +1). Let k = 2h and consider two disjoint sets A
and B, with |A| = |B| = 12h, and en element co ¢ AU B. By [15] we can consider two
6CS(12h+1), X1 = (AU{oc}, By) and Xy = (BU{o0}, Bs). By [17] we can take a 6C'S
Y3 = (K4,B, Bs) on the bipartite graph K4 5. Then ¥ = (AU B U {oo}, B1 U B2 U B3)
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is a 6CS(12k + 1). Assigning the colour i to the blocks of B;, for i = 1,2, 3, we get
a 3-bicolouring of the X.
This proves that 3 € 956)(1% + 1) and by Lemma 2.1 we get the statement. [

3. BICOLOURINGS FOR v =12k + 9

In this section we study bicolouring for 6C'S of order v = 12k 4+ 9. First, we determine
a bound for the number ¢ of colours.

Lemma 3.1. Let ¥ = (V,B) be a 6CS(v), where v =12k + 9, and let ¢: B — C be
a c-bicolouring of ¥. Then ¢ < 3.

Proof. Let |C| = cand let v € C. Any element v € V incident with blocks coloured with
~v must be incident with precisely 3k + 2 blocks coloured with ~. This means that there
are at least 6k + 5 vertices incident with blocks coloured with +. This means that

c(b + 6k) < 2(9+ 12k),
so that ¢ < 3. O

As done in the case v = 12k + 1, also in the case v = 12k + 9 we are going to
get two distinct results, based on the parity of k. Indeed, the following result can be
proved as Theorem 2.2.

Theorem 3.2. If k is odd, then QéG)(mk; +9)=0.

Proof. The proof proceeds as in Theorem 2.2, because, in a bicolouring of a 6CS of
order 12k 4+ 9 on a vertex set V', any element v € V is incident with 3k 4 2 blocks
coloured with one colour and 3k + 2 blocks coloured with another one. So, if k& is odd,
3k + 2 is odd too and, proceeding as in Theorem 2.2, we show that 2,3 ¢ Qé&(l?k +9)
for any k£ odd. By Lemma 3.1 the statement follows. O

Now we are going to deal with the case v = 12k + 9 when k is even. Let us first
prove, using the difference method, the following result.

Theorem 3.3. If k is even, then xgﬁ)(12k +9) =2 for any k > 0 and Qéﬁ)(Q) = {2}.

Proof. 1) Let v = 12k + 9 and let k = 2h. Consider on Zagp19 the following base
blocks:

A; =(0,12h +5—1,20h + 9,18h + 4 + ¢,22h + 9,4h + 4 + i)
for i € {1,...,2h}, in the case h > 1. Consider on Zoyp+9 the family A of blocks of all
the translated forms of the blocks A;, for ¢ € {1,...,2h}. Consider also the following
blocks:

B; =(35,37+1,3j+4,3j+5,3j + 6,35 + 2),
C; =(34,37+3,3j+1,3j+5,3j + 2,35 + 4)

for j € {0,...,8h +2}. Then ¥ = (Zoapyo, AU B; UUC) (if h = 0 take A = 0)
is a 6C'S(24h +9).
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Let us assign the colour 1 to the blocks A; and all their translated forms for
i € {1,...,h} and all the blocks B; and the colour 2 to the blocks A; and all their
translated forms for ¢ € {h 4+ 1,...,2h} and all the blocks C;. In this way we get
a 2-bicolouring of X.

2) Let v =9, let ¥ = (V,B) be a 6CS(9) and let ¢: B — C be a 3-bicolouring
of 3. We can suppose that C' = {1,2,3} and let us denote by B; the set of blocks
coloured with ¢ and by X; the set of vertices incident with these blocks. Any vertex
x € X incident with blocks coloured with the colour ¢ must be incident with precisely
2 blocks coloured with . So, since |B| = 6, then |B;| = 2 for any ¢ = 1,2,3 and by

_ 21X

B;
5 - 22

we see that it must be |X;| = 6 for any i. Let X = {ay,...,a9} and suppose that
X1 = {a1,...,a6}. We can suppose that the edge {a1, a2} is not incident with the
blocks of B;. This implies that we can suppose that {a1, a2} will be incident with one
of the blocks of Bs. So a7, as,ag € Xa, but | Xs| = 6. This means that we can suppose
that az € Xo, but ag is adjacent with a; and as in the blocks of B1. So in the blocks
of By a3 can be adjacent only with the a7, ag,ag. This is is not possible and so by
Lemma 3.1 we have that Qgﬁ)(Q) = {2}. O

Now we need to prove that 3 € Q5(12k + 9) for k even, k > 2. In order to do this,
we will need some technical lemmas. First, let us recall that the union G; U G5 of two
graphs G; = (V1, E1) and G = (Va, E3) is the graph having V3 U V5 as vertex set and
edges those of £ U Fs.

Definition 3.4. A 1-factorization {F1,..., Fa,_1} of the complete graph Ky, is called
uniform if the graphs F; U F}; are all isomorphic for ¢ # j.

Since F; U Fj is a 2-regular graph, it is isomorphic to a disjoint union of even cycles.
If these cycles have length k1, ..., k., then we say that the uniform 1-factorization is
of type (ki1,..., k).

Lemma 3.5 ([6,8]). There exists a uniform 1-factorization of K12 of type (6,6) and
it is unique up to isomorphisms.

The previous lemma, together with the following ones, provides us the decomposi-
tion technique that will be required later.

Lemma 3.6. Let h > 1 and let X and Y be disjont sets such that |X| = 12h and
|Y| = 3. Then:

1. the graph Kxy U Kx can be decomposed into 6-cycles;

2. for any v such that 1 < r < 5 there exist pairwise disjoint factors Fy,... Fy,
of Kx such that the graph Kxy U (Kx — Fy — ... — Fy,) can be decomposed into
6-cycles and for any j = 0,...,r —1 the graph Fy;11 U Fajo can be decomposed
into 6-cycles.
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Proof. The first part of the statement is a direct consequence of the existence of
maximum packings of K, with 6-cycles when n =3 mod 12 (see [13]). We will prove
the second part of the statement by induction. Let h = 1. By Lemma 3.5, we can
consider a uniform factorization F = {Fy,..., F1;} of Kx, with X = {0,1,...,11}.
Let F11 ={{i,i+6}|i=0,...,5} and let Y = {a,b, c}. Then the following cycles:

(a,i+8,b,i,¢,i+4) fori=0,1,23,
(a,0,6,b,7,1), (a,2,8,¢,9,3), (b,4,10,¢,11,5)

determine a 6-cycles decomposition of the graph Kx y U Fi;. Then Lemma 3.5 easily
leads us to the statement in the case h = 1. Indeed, Kx — Fy1 = F1 U...U Fyg. This
proves the base case h = 1, because the factorization F is uniform.

Now we prove the inductive step. Let h > 1 and let Y = {a, b, c}. Let X = U?Zl X,
where X; N X; =0 for i # j and |X;| = 12 for any ¢. Note that

KX:KXlu-“UKXhUUKXi,Xj (31)
i<j
and also that
vay:KthU...UKXh’y. (32)
By induction, for any ¢ and r, with 1 < r < 5, we can find Fl(i),. .. ,FQ(? such
that Kx, vy U(Kx, — Fl(i) — = Fz(i)) can be decomposed into 6-cycles and for any
j=0,...,r=1 FZ(;.)H U Fz(;)w can be decomposed in 6-cycles.

Let F; = U?zl Fj(i) for any j, so that each F} is a factor of X and Fi,..., Fy, are
pairwise disjoint. So by (3.1) and (3.2) and by the fact that Kx, x, can be decomposed

into 6-cycles, for any i # j, Fy,...,Fy, are such that Kx y U(Kx —F; —...— F3,) can
be decomposed into 6-cycles. Moreover, obviously for any j =0,...,7—1 Fyj11UF 40
can be decomposed into 6-cycles. O

The last technical lemma needed is the following.

Lemma 3.7. Let h > 1 and let X and Y be disjont sets such that | X| = 12h and
|Y| = 3. Then, given a 1-factor F' of Kx, the graph Kx y UF can be decomposed into
6-cycles.

Proof. In Lemma 3.6 the statement has been proved in the case h = 1. Now let A > 1.
We know that |F'| = 6h. So we can decompose F' in h disjoint subsets Fi,..., Fj and
we can call X; the vertex set of F;. So X = U?:l X, where X; N X; = 0 for ¢ # j,
|X;| = 12 and F; is a factor of Xj.

We can apply the statement to each X; and F;, so that Kx, y U F; can be
decomposed into 6-cycles. Now note that

KX)yUF:KXl,yU...UKXh,yUFlU...UFh.

This clearly proves the statement. O



Block colourings of 6-cycle systems 653

Now we are ready to prove the following result.
Theorem 3.8. If k is even, k > 2, then Qéﬁ)(12k +9) = {2,3}.

Proof. 1) Let v = 33. Let us consider four pairwise disjoint sets X, Y, Z and T,
with | X| =6, Y| =12, |Z| =3, |T| =12 and X = {z1,..., 26}, Y = {y1,-.., 12},
Z ={z1,22,23} and T = {t1,...,t12}. We will determine a 3-bicolouring for a 6CS
on X'=XUYUZUT.

Let us consider the factor F} = {{z1,22},{z3, 24}, {z5,26}} on Kx. By [1, Theo-
rem 1.1], we can decompose the graph Kx — F} into 6-cycles, obtaining the blocks A4,
and As. Similarly, we can consider the factor:

Fy = {{y1,v2}, {vs, va}, {us. v}, {y7, ys} {yo, 10}, {y11, v12} }

on Ky. As before, by [1, Theorem 1.1] we can decompose the graph Ky — F into
6-cycles, obtaining the blocks Bj,...,Big. Moreover, by [17] we can decompose the
complete bipartite graph Kx y into 6-cycles, obtaining the blocks C1,..., Ca.

Let us consider, also, the blocks

Dl - (1.171.272171.3723722)7 D2 - ($3,$4,23,x1721,22),

D3 = (v5, %6, 22, T4, 21,23), Das = (22,23, 6,21, 5, 22).

These blocks represent a decomposition of the graph Kz U Fy U Kx, 7. We will also
consider the blocks Fj,...,E;9, that we obtain by decomposing K x 1 into 6-cycles
(again by [17]). Moreover, consider the following blocks:

Gi = (21,tiva, 23, i, 22, tiys)
for i =1,2,3,4. These blocks represent a decomposition of Kz 1 — G, where
G={{zit;} | i=1,23,j=4i —3,4i —2,4i — 1, 4i}.

By Lemma 3.5, we can find pairwise disjoint factors F3, Fy, F5 of K in such a way
that the graph Ky — F3 — F, — F5 can be decomposed into 6-cycles that we call
Hl,. .. ,Hg.

Consider the graph Ky, z U Fy. By Lemma 3.7, we can decompose this graph into
6-cycles Iy,..., I7. Similarly, by Lemma 3.7, we can get:

— a decomposition in 6-cycles of the graph Kr ¢y, .. 41 U F3, obtaining the blocks
J1, - d7,

— a decomposition in 6-cycles of the graph Kr (. .. 41 U Fi, obtaining the blocks
Klv' . 7K7a

— a decomposition in 6-cycles of the graph Kr
Lq,...,L7.

yi1,y12} U F5, obtaining the blocks
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At last, decompose G U K71 (y, v, 45} in the following blocks:

My = (z1,t2, Y2, ta,y1,t1),
My = (21,t4,y3,t2, Y1, 3),
M3z = (22,16, 91,18, Y2, t5),
My = (22,1t8,Y3, t6, Y2, t7),
Ms = (23,t10, Y1, t12, Y3, to),
Mg = (23,112, Y2, t10, Y3, t11),
M7 = (y1,t5,Y3,t1, Y2, to),

M8 = (y17t77y37t37y27t11)’

Let us call B the set of all these blocks. Then clearly that the system ¥ = (X', B)
is a 6C'S of order 33.
Now let us consider the colouring ¢: B — {1, 2, 3} such that:

— the blocks A; B; and C; are coloured with the colour 1,
— the blocks D;, F;, G; and H; are coloured with the colour 2,
— the remaining blocks I, J;, K;, L; and M, are coloured with the colour 3.

This is a 3-bicolouring of . Indeed, in the blocks coloured with 1 we have only the
vertices of X and Y and each of them belongs to 8 of these blocks; in the blocks
coloured with 2 we have only the vertices of X, Z and T and each of them belongs to
8 of these blocks; in the blocks coloured with 3 we have only the vertices of Y, Z and
T and each of them belongs to 8 of these blocks. This proves that 3 € ng) (33) and by
Lemma 3.1 we get that (% (33) = {2,3}.

2) Let v = 24h + 9, with h > 2. Let us consider the 6CS ¥ = (X', B) of order 33
constructed previously with the given 3-bicolouring. Let By be the set of blocks coloured
with 1, By the set of blocks coloured with 2 and Bs the set of blocks coloured with the
colour 3.

We have X' = X UY UZUT, where | X| =6, |Y| =12, |Z] =3 and |T| = 12
and X, Y, Z and T are pairwise disjoint. Let us consider two other sets Y/ and T",
disjoint from X', such that [Y'| = |T'| = 12h — 12 and Y' NT" = (). We will determine
a 3-bicolouring for a 6C'S on X" = X' UY'UT’, where | X"| = 24h + 9.

Let I; be a factor of Ky, so that by [1] we can decompose Ky — I; into 6-cycles
A;for i =1,...,(h —1)(12h — 14). By [17], we can also decompose Kxyy,y into
6—CyC1€S Bl,. .. ;B36h—36~

By Lemma 3.6, we can find pairwise disjoint factors Iy, Is, I, and I5 of Ky
such that Kz U (Kp — Io — I3 — I4 — I5) can be decomposed into 6-cycles C; for
i=1,...,(h—=1)(12h — 11) and Iy U I3 and I, U I;5 can also decomposed into 6-cyles.

By [17], we can also decompose Kxyr, into 6-cycles Dy,. .. ,Dsgn—36.

By Lemma 3.7, we can decompose Ky z U Iy into 6-cycles En,..., E7,_7. By [17],
we can decompose Ky yy- v into 6-cycles F1,..., Fop12n—12) and Ky 7 into 6-cycles
G1,. .., Gogpn_o4. At last we can decompose IoUI3 and I,UI5 into 6-cycles Hy,. .., Hp_4.

Let us call B the set of these blocks. Then it is easily seen that the system
Y =(X",B)is a 6CS of order 24h + 9.
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Now let us consider the colouring ¢: B — {1, 2,3} such that:

— the blocks of By and A; and B; are coloured with the colour 1,

— the blocks of By and C; and D; are coloured with the colour 2,

— the remaining blocks of B3 and the remaining blocks F;, F;, G; and H; are coloured
with the colour 3.

This is a 3-bicolouring of ¥. Indeed, in the blocks coloured with 1 we have only the
vertices of X, Y and Y’ and each of them belongs to 62+ 2 of these blocks; in the blocks
coloured with 2 we have only the vertices of X, Z, T and T’ and each of them belongs
to 6h + 2 of these blocks; in the blocks coloured with 3 we have only the vertices of
Y,Y’ Z,T and T' and each of them belongs to 6h + 2 of these blocks. This proves
that 3 € Q) (24h + 9) and, by Lemma 3.1, we get that Q) (24h + 9) = {2, 3} for any
h>1. O

4. LOWER 3-CHROMATIC INDEX

In this section we study tricolourings, so that s = 3, analizing the lower 3-chromatic
index. First, we determine an upper bound for the number of colours required.

Lemma 4.1. Let ¥ = (V,B) be a 6CS(v) and let ¢: B — C be a c-tricolouring of 2.
Then:

1. ifv=13, ¢ <7,
2. ifv=1 mod 12 and v > 13, ¢ < 8,
3. ifv=9 mod 12, ¢ < 9.

Proof. Let v =12k 4 1, for some k > 1 and let |C| = ¢ and let v € C. Any element
v € V incident with blocks coloured with v must be incident with precisely 2k blocks
coloured with ~. This means that there are at least 4k 4+ 1 vertices incident with
blocks coloured with . This means that

(14 4k) < 3(1 + 12k),

so that ¢ < 8, if k > 2, otherwise we get ¢ < 7 if k = 1.

Let v =12k + 9, for some k > 0 and let |C| =celet v € C. Any element v € V
incident with blocks coloured with « must be incident with either 2k 4+ 2 or 2k + 1
blocks coloured with . This means that there are at least 4k + 3 vertices incident
with blocks coloured with . This means that

(3 4 4k) < 3(9 + 12k),

so that ¢ <9. O

Since v = 1,9 mod 12, we are going to distinguish the two cases, being this time
the case v =1 mod 12 more difficult to deal with. Indeed, we will determine the exact
value of Xéﬁ)(mk +1)only for k=1, k=2 and k =0 mod 3, while we will determine
the exact value of X§6>(12k +9) for any k£ > 0.
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Theorem 4.2. If &k = 1,2 mod 3, X (12k:—|—1) > 4. If k = 0 mod 3,
P12k + 1) = 3.
Proof. Let ¥ = (V,B) be a 6CS(v) and let ¢: B — C be a 3-tricolouring of ¥. Any

element v € V incident with blocks coloured with « must be incident with precisely
2k blocks coloured with 7. So, if B, is the set of blocks coloured with -y, it must be

2kv kv
|B,| = =—.
6 3
However, if £k = 1,2 mod 3, this number is not an integer. This shows that, if

k=1,2 mod 3, X(6)(12k +1) >4,

NOW let v = 36h + 1, for some h > 1. Let us consider three sets A, B, C such
that |[A| =|B| =|C] =12hand ANB=ANC =BNC ={ and let us consider also
an element oo ¢ AU BUC.

By [15], we can decompose the complete graphs Kautoet; KBufoo} and Keufool
into 6-cycles, that we call, respectively, D;, E; and F; for i = 1,...,12h? + h. Moreover,
by [17] we can decompose the complete bipartite graphs K4 g, K4 ¢ and Kp ¢ into
6-cycles that we call, respectively, G;, H; and I; for i = 1,...,24h2. Called B the set
of all these blocks, it is easy to see that the system ¥ = (AU BUC U {0}, B) is
a 6CS of order 36h + 1.

Cousider, now, the colouring ¢: B — {1,2,3} obtained by assigning the colour 1
to the blocks D; and I;, the colour 2 to the blocks E; and H; and the colour 3 to
the blocks F; and G;. Then it is easy to see that this is a 3-tricolouring of 3. O

In the following result we see that the lower 3-chromatic index in the cases v = 13
and v = 25 is 4. It is reasonable to conjecture that, in general, if £ = 1,2 mod 3, then

P12k + 1) = 4.
Theorem 4.3. X(6)(13) =4 and X§6)(25) =4.

Proof. 1) Let v = 13. Let us consider three sets A = {a1, as, a3, a4}, B = {b1, ba, b3, b4},
C = {c1,c2,c3,c4}, pairwise disjoint, and an element co ¢ AUBUC. On X =
AU BUCU{oc} let us consider the following blocks:

D1:(OO a17b2aa3,b37a2)a D2:(b1>627b4;a47oo a3)7 b3,b4,(11,(12,b1,(14),

C3,00,Cq, U2, Ag, A1),

(6.9] 017(117(137(12702) =(C1,C3,C2,04,0a3,C4

)

00, by, €2, ba, c3,b3),

=(
cs) (

C1 027047b4700b2)7 (C C4ab1ab37cl7b4)
) (

ai b37b27a27b4702) Dl :(a17b17637a4vb27c47 D12 a27clablab47advcd)

(
(
(
=(as, c1, a4, ¢4, b3, ¢2).

Then ¥ = (X, Ulli1 D;) is 6CS of order 13. Let us consider, now, the colouring
o: U'}i] D; — {1,2,3,4} obtained in the following way:

— assign the colour 1 to the blocks Dy, Dy and D3,
— assign the colour 2 to the blocks Dy, D5 and Dg,
— assign the colour 3 to the blocks D7, Dg and Dy,
— assign the colour 4 to the remaning blocks D¢, D11, D12 and Dq3s.
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Then ¢ is a 4-tricolouring of X, so that 4 € Qgﬁ)(l?)). By Theorem 4.2, we get that
x5 (13) = 4.

2) Let v = 25. Let X = Z4 x {1,2,3,4,5,6} U {oo}, with 0o ¢ Z4 x {1,2,3,4,5,6}.
Let us consider on X the following blocks:

05715714,35725304 ) 05725a34;15335724 )
0 167137367263 3/)s 0 26733516a36a 3/

( ) ( ) 05,35, 04, 15, 25, 14),
( ) ( )
(00,05, 34,02, 33, 06), (00, 15,24, 02, 23, 1g),
( ) ( )
=( ) ( )

)
O 3630?”167267 3)7
S8 25)24;22a23a 6)a
02703732723712713)7

(

(

(
00, 35,34, 22, 33, 36), Au 02,04, 32,24, 12, 14), A12 (
29,04,12,34,32,14), A14=(22,03, 12, 33,32, 13),

which represent a decomposition in 6-cycles of the graph:

K{05715,25735} U K{06715;26735} U K{02712)22732}U{05715)25735}y{04714724)34}

U K{OZ’12g22732}U{Oe’lﬁ,26736}7{03,13’2&33} U K{OO},{05,15,25,35}U{06,16,26,36}'
Also, by [15], we can decompose:

— the complete graph on {01, 11,21, 31 }U{02, 13, 22, 32} U{oc} into 6-cycles By,...,Bg,
— the complete graph on {03, 13,23, 33} U{04, 14, 24, 34} U{00} into 6-cycles Ci,. .. ,Cs.

By [16, Theorem 2.2], given Ko, 1,.2,,3,},{05,15,25,35 }.{06,16,26.,3¢}» W€ can decompose
this equipartite graph into 6-cycles Dy,...,Dg. Moreover, let us consider the blocks
E;j = (i1, 3,15, j2, %6, ja) forany i, j € {0,1,2, 3}. Let B the set of all these blocks. Then
Y =(X,B)is a6CS of order 25.

Consider, now, the colouring ¢: B — {1,2, 3,4} obtained in the following way:

— assign the colour 1 to the blocks A;,
— assign the colour 2 to the blocks B;,
— assign the colour 3 to the blocks C; and D,
assign the colour 4 to the blocks Fj;.

Then ¢ is a 4-tricolouring of 3, so that 4 € Q§6)(25) and by Theorem 4.2 we get that
(6) _
¥ (25) = 4. O

In the following theorem we will see that 3 € Q (12k +9) for any k > 0, using
the difference method technique.

Theorem 4.4. For any k > 0, Xéﬁ)(12k +9) =3.
Proof. 1) Let k = 0. Let us consider the following 6-cycles on X = Zg:

Al = (1527374a5a 7)7 A2 = (1737()’65278)7 A3: (1a6a3557274)a

Ay =(6,7,4,8,0,5), As =(1,5,8,7,2,0), A =(3,7,0,4,6,8).
Given B = U?Zl A;, the system ¥ = (X,B) is a 6CS on X. Consider, now, the

colouring ¢: B — {1,2,3} obtained by assigning the colour 1 to the blocks A; and
As, the colour 2 to the blocks A3z and A4 and the colour 3 to the blocks A5 and Ag.
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Then it is easy to see that this is a 3-tricolouring of 3.
2) Let k > 1 and let v = 12k 4 9. Consider X = Zap+3 x {1,2,3}. We will construct
a 6CS X on X and a 3-tricolouring of 3. Consider the following blocks on X:

~ Aj = (01, 71,03, (4k + 3 — 5)3, 0o, (4k + 3 — j)2) for j € {1,...,k},
— B = (01,71, (2k+1)3, (j+2k+1)s3, (3k+2)2, (j+3k+2)s) for j € {k+1,...,2k+1},
- Cj = (017j27037j17027j3) fOr .7 € {k + 17 c 72k+ 1}

By using the difference method on X it is easy to see that, if B is the collection of all
these blocks and their translates, the system ¥ = (X, B) is a 6CS on X.

Suppose now that k = 1. Consider the colouring ¢: B — {1,2,3} on X obtained in
the following way:

1. assign the colour 1 to the block A; and all its translates and to the blocks Cy + @
for i € {0,...,4},

2. assign the colour 2 to the blocks Bs and all its translates and to the blocks C5 + ¢
for i € {0,1,5,6},

3. assign the colour 3 to the block Bs and all its translates, to the blocks Cs + i for
1 = 5,6 and to the blocks C5 + i for i = 2,3, 4.

This is a 3-tricolouring of . Any element in X belongs to 10 blocks of ¥ and
in a 3-tricolouring of ¥ these blocks must be divided into three sets of cardinality 4, 3
and 3, each a subset of a colour class. With the assigned colouring we see that:

— the elements 2;,3;,4;, for i = 1,2,3, belong to 4 blocks coloured with 1, while
the remaining ones belong to 3 blocks coloured with 1,

— the elements 1;, for ¢ = 1,2,3, belong to 4 blocks coloured with 2, while
the remaining ones belong to 3 blocks coloured with 2,

— the elements 0;, 5;,6;, for « = 1,2,3, belong to 4 blocks coloured with 3, while
the remaining ones belong to 3 blocks coloured with 3.

Suppose now that k > 2 and consider the colouring ¢: B — {1,2,3} obtained
in the following way:

1. assign the colour 1 to the blocks A;, for j € {1,...,k}, and all their translates and
to the blocks Cyy, + 4 for i € {0,...,3k + 1},

2. assign the colour 2 to the blocks Bj, for j € {k+1,...,2k}, and all their translates
and to the blocks Caxy1 + ¢ for i € {0,...,2k — 1} U {3k +2,...,4k + 2},

3. assign the colour 3 to the block Bjr4q and all its translates, to the blocks C},
for j € {k+1,...,2k — 1}, and all their translates, to the blocks Co + i for
i€ {3k+2,...,4k + 2} and to the blocks Cay41 + i for i € {2k,...,3k + 1}.

This is a 3-tricolouring of ¥. Any elements in X belongs to 6k + 4 blocks of ¥ and in
a 3-tricolouring of 3 these blocks must be divided into three sets of cardinality 2k + 2,
2k + 1 and 2k + 1, each a subset of a colour class. With the assigned colouring we see
that:

— the elements {0;,...,(k —2);} U{(2k);,...,(8k +1);}, for i = 1,2, 3, belong to
2k + 2 blocks coloured with 1, while the remaining elements belong to 2k 4 1 blocks
coloured with 1,
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— the elements {k;,...,(2k — 1);}, for i« = 1,2,3, and {(3k + 2);,...,(4k);} for
1 =1,2,3, belong to 2k + 2 blocks coloured with 2, while the remaining elements
belong to 2k + 1 blocks coloured with 2,

— the elements (k — 1);, (4k + 1);, (4k + 2);, for < = 1,2, 3, belong to 2k + 2 blocks
coloured with 3, while the remaining elements belong to 2k 4+ 1 blocks coloured
with 3.

This shows that ¢ is a 3-tricolouring of X. O

5. UPPER 3-CHROMATIC INDEX

In this last section we study the upper 3-chromatic index, finding, in general, an upper
bound and in just some cases its exact value. Again, we will study separately the cases
v=12k+1and v =12k + 9.

Theorem 5.1. y§6)(12k +1) =7 for k =0,2 mod 3 and Yg6)(12k +1) <7 for
k=1 mod 3.

Proof. By Lemma 4.1, we know that ng)(l% +1) <8 for k > 2, while Yz(f)(l?;) <7
So we can suppose that k& > 2. Suppose that there exists an 8-tricolouring of a 6C'S
Y = (X, B) of order 12k + 1. Let B; be the family of blocks coloured with the colour i
and let X; be the set of vertices incident with the blocks of ;. Then any x € X; belongs
to 2k blocks of B;, so that |X;| > 4k + 1 for any 4. So we have that |X;| =4k + 1+ k;
for any i. However, we know that

8 8

SOIX| =312k +1) = Yk =4k — 5.

i=1 i=1

Note now that, if z,y € X; N X, with  # y and ¢ # j, then the edge {z,y} may
belong to just one block either in B; or in B;. So y is either one of the elements
of X; not adjacent to = in the blocks of B; (of which there are at most k;) or one of the
elements of X; not adjacent to x in the blocks of B; (of which there are at most k;).
This means that

‘XiﬂXj| < k1+kj+1

So we have

21X;|= > IXinXj|=20k+14k)< Y (kit+kj+1)
FE{L, 8N\ {1} JE{L, 8N\ i}

Since Zle k; = 4k — 3, we get 4k — 3 > 8k, so that 4k < —3, which is a contradiction.

So Yg6)(12k +1) <7 forany k> 1.
Now, let kK =0,2 mod 3 and let v = 12k 4+ 1. Let us consider A1,..., Ag pairwise
disjoint sets such that |4;| = 2k for any ¢ and take an element oo ¢ A; for any 4. Let
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X = U?:l A;U{oc}. By [15], we can decompose the complete graph K a,, . U4z, U{c0}
for ¢ = 0,1,2 into 6-cycles determining the system ¥; = (Ag; 11 U Ag;o U {00}, B;)
for i = 0,1,2. By [16], we can decompose the complete equipartite graphs K4, 4, A,
Ka, a4,46 KAy, 45,4, and K, 4, 4, into 6-cycles, determining, respectively, the family
of blocks C1, Cs, C3 and Cy4.

It is easy to see that ¥ = (X,|J>, B; U Ui, C) is a 6CS of order v. Let
@: U?:1 B; U Ule C; — {1,...,7} be a colouring which assigns the colour i to the
blocks of B;, for i = 1,2,3 and the colour j to the blocks of C;_3 for j =4,5,6,7. It
is easy to see that ¢ is a 7-tricolouring of ¥ and this proves that Xg6)(12k +1)=7for
k=0,2 mod 3. O

It is possible to determine the spectrum of tricolourings for 6C'S of order 13.
Theorem 5.2. Q%7 (13) = {4,5}.

Proof. Let ¥ = (X,B) be a 6C'S(13). We need to show that, given a tricolouring
¢: B—{1,...,c}, then ¢ < 5. By Lemma 4.1, we know that ¢ < 7. Let B; the set of
blocks coloured with 7 and X; the set of vertices incident with the blocks of B;.

Let ¢ = 7. It must be |B;| > 2 for any 4, while however

7

13=18/= 3" |B.

i=1

This is not possible and so ¢ < 6.

Let ¢ = 6. Since |B;| > 2 for any ¢ and 13 = |B| = Z?Zl |B;|, then we can say
that |B;| = 2 for i = 1,...,5 and |Bg| = 3. Note that |B;| = % and so |X;| =6
for i =1,...,5 and | Xg| = 9. Since, for any i = 1,...,5, any x € X; is incident to
both blocks of B;, we see that for any = € X there exists just one y € X; such that
the edge {z,y} does not belong to the blocks of B;. This implies that | X; N X;| <2
for any 4,5 =1,...,5, i # j. However,

5
39 =3|X[= Y |XinX;|=2[Xe|=> |X;NXe| >19.

1<i<j<6 i=1

Since | Xg| = 9, we have a contradiction, and so ¢ < 5.
Now, by Theorem 4.3, to get the statement we need to show that there exists
a b-tricolouring of a 6C'S of order 13. On Z;3 consider the following blocks:

— Ay and Ay, obtained by decomposing K{o1.2345 — {10,1},{2,3},{4,5}} (see
[1, Theorem 1.1]) in 6-cycles,

— A3 and Ay, obtained by decomposing Ko 167,591 — 1{0,6},{1,7},{8,9}} in
6-cycles,

— As and Ag, obtained by decomposing K¢ 2,6,10,11,123 — {10,2},{6,10},{11,12}}
in 6-cycles,

— A = (3,8,4,7,5,9), Ag = (3,11,4,10,5,12), Ay = (7,11,8,10,9,12), Ay =
(1,7,3,6,5,11), A1 = (1,10,3,2,8,12), Aj» = (2,7,10,6,4,9) and A3 =
(4,5,8,9,11,12).
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It is easy to see that the system ¥ = (Zi3, Uzlil A;) is a 6CS(13). Let us consider now
a colouring ¢: Uzli1 A; — {1,...,5} defined in the following way:

— assign the colour 1 to the blocks A1, As,

— assign the colour 2 to the blocks Ag, Ay,

— assign the colour 3 to the blocks As, Ag,

— assign the colour 4 to the blocks A7, Ag, Ag,
— assign the colour 5 to the blocks A1g, 411, A12, A13.

It is easy to see that this is a 5-tricolouring of 3. O
Now we determine an upper bound for Xgﬁ) (12k +9).
Theorem 5.3. Xr(f)(mk +9) <7 fork>1.

Proof. By Lemma 4.1, we know that y§6)(12k +9)<9.

Suppose that there exists a 9-tricolouring of a 6C'S ¥ = (X, B) of order 12k + 9.
Let B; be the family of blocks coloured with the colour i and let X; be the set of
vertices incident with the blocks of B;. Then any x € X; belongs to either 2k + 1 or
2k + 2 blocks of B;, so that | X;| > 4k + 3 for any i. So we have that |X;| = 4k + 3+ k;
for any i, with k; > 0. However we know that

9 9
D OIXi| =312k +9) = > ki =0.
1=1 1=1

So k; = 0 for any i. However, this is not possible, because in such a way no element
of X belongs to 2k + 2 blocks of B; for some i. So we have a contradiction and
Y (12k +9) < 8.

As before, suppose that there exists an 8-tricolouring of a 6C'S ¥ = (X, B) of order
12k + 9. Let B; be the family of blocks coloured with the colour 7 and let X; be the set
of vertices incident with the blocks of B;. Then any x € X; belongs to either 2k 4+ 1 or
2k + 2 blocks of B;, so that |X;| > 4k + 3 for any 4. So we have that |X;| =4k +3+k;
for any ¢, with k; > 0. However,

8 8

D OIX| =3(12k+9) = Y ki = 4k + 3.

i=1 i=1
Note now that, if 2,y € X;N X, with & # y and ¢ # j, then the edge {z, y} may belong
to just one block either in B; or in B;. So y is either one of the elements of X; not
adjacent to z in the blocks of B; (of which there are at most ;) or one of the elements
of X; not adjacent to z in the blocks of B; (of which there are at most ;). This means
that

‘XiﬂXj| < k1+kj+1
So we have
2Xi = Y. IXinXj|=214k+3+k)< > (kitki+1)

Je{1,...81\{i} Je{1,...8\{i}
=8k +6+2k; <6k; +4k+10=k; > k — 1.
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Since Z§:1 k; = 4k 4+ 3, we get 4k + 3 > 8k — 8, so that 4k < 11. This means that
the only possibilities are £k = 2 and k£ = 1.

Let k = 2, so that v = 33 and any vertex x € X; belongs to either 6 or 5 blocks of
B;. Since k; > k — 1, we have that k; > 1 for any i. Moreover, Z?:l k; =4k + 3 =11.
So we can suppose that k; = 1 and | X;| = 12 for any ¢ = 1,...,5. This means that any
element in X;, fori =1,...,5, belongs to exactly 5 blocks of B; and that for any x € X;
there exists just one y € X; such that {z,y} is not incident with some block of 5;. In
particular, we get that X; N X; N X} = 0 for any pairwise distinct 4,7,k = 1,...,5.
Let us recall also that | X; N X;| < k; + k; + 1 =3 for any 4,5 =,1,...,5. Since

5
33> X U UXs =) X - Y IXinX,l= Y [XinX;| > 27,
i=1

1<i<j<5 1<i<j<5

we see that there exists 4,5 = 1,...,5, with ¢ # j, such that |X; N X;| = 3. Let
X, N X; = {z,y,2}. By what remarked previously, we can suppose that {z,y} is
incident with some block in B; and similarly either {x,z} or {y,z} to some block
in B;. In both cases we get a contradiction and so we see that k = 2 is impossible.

So let k = 1. In this case, |X;| =7+ k; for any 4 and Zle ki = 7. So we can say
that k1 = 0 and | X;| = 7. Since in this case v = 21 and any = € X; belongs to either 4
or 3 blocks of B;, we can say that the blocks of B1 are a decomposition of the complete
graph on X;. By [15], this is impossible because 7 # 1,9 mod 12. O

At last we determine the spectrum of Qgﬁ)(9).

Theorem 5.4. Qg})(g) = {3,4}.
Proof. By Lemma 4.1, we know that Xéﬁ)(9) <9. Let ¥ = (X, B) be a 6CS and let
¢: B—{1,2,...,c} be c-tricolouring of . Since |B| = 6, it follows that ¢ < 6.

Since ¢ is a tricolouring, we see that any vertex belongs to 4 blocks, 2 of them
coloured with the same colour and the other two with other two different colours.
So, if ¢ = 6, then any two blocks are coloured with different colours, which is clearly
impossible in a tricolouring. If ¢ = 5, then only 2 of 6 blocks are coloured with
the same colour. So at most only 6 of the 9 vertices belongs to two blocks coloured

with same colour. So ¢ < 4.
Now we will prove that y§6)(9) =4. On X = Zg consider the following blocks:

B; = (34,37 +1,3j+4,3j + 5,35 + 6,35 + 2),

C; =(34,3j+3,3j+1,3j+5,3j + 2,35 + 4)
for j =0,1,2. Then ¥ = (X, U?:o B; UCj) is a 6CS on X. Consider the following
colouring ¢: U?:o B;UC; —{1,2,3,4}:

— assign the colour 1 to the blocks B; for j =0,1,2,
— assign the colour j, for j = 2, 3,4, to the block C;_.

Then it is easy to see that ¢ is a 4-tricolouring of X, so that Ygﬁ) (9) = 4. By Theorem 4.4,
we get that Qgﬁ)(Q) = {3,4}. O
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