BLOCK COLOURINGS OF 6-CYCLE SYSTEMS

Paola Bonacini, Mario Gionfriddo, and Lucia Marino

Communicated by Mariusz Meszka

Abstract. Let $\Sigma = (X, \mathcal{B})$ be a 6-cycle system of order v, so $v \equiv 1, 9 \mod 12$. A c-colouring of type s is a map $\phi \colon \mathcal{B} \to \mathcal{C}$, with C set of colours, such that exactly c colours are used and for every vertex x all the blocks containing x are coloured exactly with s colours. Let $\frac{v-1}{2} = qs + r$, with $q, r \geq 0$. ϕ is equitable if for every vertex x the set of the $\frac{v-1}{2}$ blocks containing x is partitioned in r colour classes of cardinality q+1 and s-r colour classes of cardinality q. In this paper we study bicolourings and tricolourings, for which, respectively, s=2 and s=3, distinguishing the cases v=12k+1 and v=12k+9. In particular, we settle completely the case of s=2, while for s=3 we determine upper and lower bounds for c.

Keywords: 6-cycles, block-colourings, G-decompositions.

Mathematics Subject Classification: 05C15, 05B05.

1. INTRODUCTION

Block colourings of 4-cycle systems have been introduced and studied in [3,4,9,11]. In this paper we study block colourings of 6-cycle systems, in what follows just "colourings".

Let K_v be the complete simple graph on v vertices. The graph having vertices a_1, a_2, \ldots, a_k , with $k \geq 3$, and having edges $\{a_k, a_1\}$ and $\{a_i, a_{i+1}\}$ for $i = 1, \ldots, k-1$ is a k-cycle and it will be denoted by (a_1, a_2, \ldots, a_k) . A n-cycle system of order v, briefly nCS(v), is a pair $\Sigma = (X, \mathcal{B})$, where X is the set of vertices and \mathcal{B} is a set of n-cycles, called *blocks*, that partitions the edges of K_v .

A colouring of a nCS(v) $\Sigma = (X, \mathcal{B})$ is a mapping $\phi \colon \mathcal{B} \to \mathcal{C}$, where \mathcal{C} is a set of colours. A c-colouring is a colouring in which exactly c colours are used. The set of blocks coloured with a colour of \mathcal{C} is a colour class. A c-colouring of type s is a colouring in which, for every vertex x, all the blocks containing x are coloured with exactly s colours.

Let $\Sigma=(X,\mathcal{B})$ be an nCS(v), let $\phi\colon\mathcal{B}\to\mathcal{C}$ be a c-colouring of type s and let $\frac{v-1}{2}=qs+r$ with $q,r\geq 0$. Note that each vertex of an nCS(v) is contained in exactly

 $\frac{v-1}{2}$ blocks. ϕ is equitable if for every vertex x the set of the $\frac{v-1}{2}$ blocks containing x is partitioned in r colour classes of cardinality q+1 and s-r colour classes of cardinality q. A bicolouring, tricolouring or quadricolouring is an equitable colouring with s=2, s=3 or s=4.

The colour spectrum of an nCS(v) $\Sigma = (X, \mathcal{B})$ is the set:

 $\Omega_s^{(n)}(\Sigma) = \{c \mid \text{there exists an equitable c-colouring of type s of Σ}\}.$

We also consider the set $\Omega_s^{(n)}(v) = \bigcup \Omega_s^{(n)}(\Sigma)$, where Σ varies in the set of all the nCS(v).

We will consider the lower s-chromatic index $\chi_s^{(n)}(\Sigma) = \min \Omega_s^{(n)}(\Sigma)$ and the upper s-chromatic index $\overline{\chi}_s^{(n)}(\Sigma) = \max \Omega_s^{(n)}(\Sigma)$. If $\Omega_s^{(n)}(\Sigma) = \emptyset$, then we say that Σ is uncolourable.

In the same way we consider $\chi_s^{(n)}(v) = \min \Omega_s^{(n)}(v)$ and $\overline{\chi}_s^{(n)}(v) = \max \Omega_s^{(n)}(v)$. Block colourings for s = 2, s = 3 and s = 4 of 4CS have been studied in [3,9,11].

Block colourings for s = 2, s = 3 and s = 4 of 4CS have been studied in [3, 9, 11]. The problem arose as a consequence of colourings of Steiner systems studied in [7, 10, 12, 18]. For further references on such topics see [2, 5, 14, 19].

The case n=5, which the authors have been studying, appears to be definitely more complex than those studied previously. In this paper we will consider the case n=6. It is known (see [15]) that a 6CS(v) exists if and only if $v\equiv 1,9\mod 12$. We will study block colourings for 6CS in the cases s=2 and s=3, distinguishing the cases v=12k+1 and v=12k+9.

In what follows, to construct 6-cycle systems we will use sometimes the difference method. This means that we fix as a vertex set $X = \mathbb{Z}_v$ and, defined a base-block $B = (a_1, a_2, a_3, a_4, a_5, a_6)$, its translates will be all the blocks of type

$$B + i = (a_1 + i, a_2 + i, a_3 + i, a_4 + i, a_5 + i, a_6 + i)$$

for every $i \in \mathbb{Z}$. Then, given $x, y \in X$, $x \neq y$, the edge $\{x, y\}$ will belong to one of the blocks B + i for some i if and only if $|x - y| \in \{|a_i - a_{i+1}| : i = 1, ..., 6\}$, where the indices are taken mod 6.

2. BICOLOURINGS FOR v = 12k + 1

In this section we will consider bicolourings in the case v = 12k + 1. We will deal with the case v = 12k + 9 in the next section. First, we determine a bound for the number c of colours of bicolourings.

Lemma 2.1. Let $\Sigma = (V, \mathcal{B})$ be a 6CS(v), where v = 12k + 1, and let $\phi \colon \mathcal{B} \to C$ be a c-bicolouring of Σ . Then $c \leq 3$.

Proof. Let |C| = c and let $\gamma \in C$. Any element $v \in V$ incident with blocks coloured with γ must be incident with precisely 3k blocks coloured with γ . This means that there are at least 6k + 1 vertices incident with blocks coloured with γ . This means that

$$c(1+6k) \le 2(1+12k),$$

so that $c \leq 3$.

In the following theorems we determine the sets $\Omega_2^{(6)}(12k+1)$, but we find two different results, depending on the parity of k.

Theorem 2.2. If k is odd, then $\Omega_2^{(6)}(12k+1) = \emptyset$.

Proof. Let $\Sigma = (V, \mathcal{B})$ be a 6CS(v), where v = 12k + 1, and let $\phi \colon \mathcal{B} \to C$ be a 2-bicolouring of Σ . Let $\gamma \in C$ and let \mathcal{B}_{γ} the set of blocks of \mathcal{B} coloured with γ . Then it must be:

$$|\mathcal{B}_{\gamma}| = \frac{v \cdot 3k}{6}.$$

Since k is odd, we get a contradiction.

Now, let $\Sigma = (V, \mathcal{B})$ be a 6CS(v), where v = 12k + 1, and let $\phi \colon \mathcal{B} \to C$ be a 3-bicolouring of Σ . In this case we proceed as in [9, Lemma 2.1]. We can suppose that $C = \{1, 2, 3\}$ and we denote by X the set of vertices incident with blocks of colour 1 and 2, by Y the set of vertices incident with blocks of colour 1 and 3 and by Z the set of vertices incident with blocks of colour 2 and 3. Let x = |X|, y = |Y| and z = |Z|.

We can note that these sets are pairwise disjoint and that in each block we can have vertices at most of two types. Moreover, it is easy to see that a block can not contain an odd number of edges having vertices of different types.

This implies that the products xy, xz, yz are all even and so among x, y and z at most one is odd. However, since x + y + z = v, one of them is odd, while the others are even. Since

$$|B_1| = \frac{3k \cdot (x+y)}{6},$$

 $|B_2| = \frac{3k \cdot (x+z)}{6},$
 $|B_3| = \frac{3k \cdot (y+z)}{6},$

then we get a contradiction, because k is odd. This shows that there is no $3 \notin \Omega_2^{(6)}(12k+1)$. By Lemma 2.1, we get the statement.

Theorem 2.3. If k is even, then $\Omega_2^{(6)}(12k+1) = \{2,3\}.$

Proof. Let $V = \mathbb{Z}_{12k+1}$. Consider on \mathbb{Z}_{12k+1} the following base blocks:

$$A_i = (0, 6k + 1 - i, 5k, 9k + i, 11k + 1, 2k + i),$$

for $i \in \{1, ..., k\}$. If k = 2h, assign the colour 1 to the blocks A_i and all their translated forms, for $i \in \{1, ..., h\}$ and the colour 2 to the blocks A_i and all their translated forms, for $i \in \{h + 1, ..., 2h\}$. If \mathcal{B} is the set of all these blocks, $\Sigma = (\mathbb{Z}_{12k+1}, \mathcal{B})$ is a 6CS(12k+1) and the previous assignment determines a 2-bicolouring of Σ .

Now we prove that $3 \in \Omega_2^{(6)}(12k+1)$. Let k=2h and consider two disjoint sets A and B, with |A|=|B|=12h, and en element $\infty \notin A \cup B$. By [15] we can consider two 6CS(12h+1), $\Sigma_1=(A\cup\{\infty\},\mathcal{B}_1)$ and $\Sigma_2=(B\cup\{\infty\},\mathcal{B}_2)$. By [17] we can take a 6CS $\Sigma_3=(K_{A,B},\mathcal{B}_3)$ on the bipartite graph $K_{A,B}$. Then $\Sigma=(A\cup B\cup \{\infty\},\mathcal{B}_1\cup \mathcal{B}_2\cup \mathcal{B}_3)$

is a 6CS(12k+1). Assigning the colour *i* to the blocks of \mathcal{B}_i , for i=1,2,3, we get a 3-bicolouring of the Σ .

This proves that $3 \in \Omega_2^{(6)}(12k+1)$ and by Lemma 2.1 we get the statement. \square

3. BICOLOURINGS FOR v = 12k + 9

In this section we study bicolouring for 6CS of order v = 12k + 9. First, we determine a bound for the number c of colours.

Lemma 3.1. Let $\Sigma = (V, \mathcal{B})$ be a 6CS(v), where v = 12k + 9, and let $\phi \colon \mathcal{B} \to C$ be a c-bicolouring of Σ . Then $c \leq 3$.

Proof. Let |C| = c and let $\gamma \in C$. Any element $v \in V$ incident with blocks coloured with γ must be incident with precisely 3k+2 blocks coloured with γ . This means that there are at least 6k+5 vertices incident with blocks coloured with γ . This means that

$$c(5+6k) \le 2(9+12k),$$

so that c < 3.

As done in the case v = 12k + 1, also in the case v = 12k + 9 we are going to get two distinct results, based on the parity of k. Indeed, the following result can be proved as Theorem 2.2.

Theorem 3.2. If k is odd, then $\Omega_2^{(6)}(12k+9) = \emptyset$.

Proof. The proof proceeds as in Theorem 2.2, because, in a bicolouring of a 6CS of order 12k+9 on a vertex set V, any element $v \in V$ is incident with 3k+2 blocks coloured with one colour and 3k+2 blocks coloured with another one. So, if k is odd, 3k+2 is odd too and, proceeding as in Theorem 2.2, we show that $2, 3 \notin \Omega_2^{(6)}(12k+9)$ for any k odd. By Lemma 3.1 the statement follows.

Now we are going to deal with the case v = 12k + 9 when k is even. Let us first prove, using the difference method, the following result.

Theorem 3.3. If k is even, then $\chi_2^{(6)}(12k+9) = 2$ for any $k \ge 0$ and $\Omega_2^{(6)}(9) = \{2\}$.

Proof. 1) Let v = 12k + 9 and let k = 2h. Consider on \mathbb{Z}_{24h+9} the following base blocks:

$$A_i = (0, 12h + 5 - i, 20h + 9, 18h + 4 + i, 22h + 9, 4h + 4 + i)$$

for $i \in \{1, ..., 2h\}$, in the case $h \ge 1$. Consider on \mathbb{Z}_{24h+9} the family \mathcal{A} of blocks of all the translated forms of the blocks A_i , for $i \in \{1, ..., 2h\}$. Consider also the following blocks:

$$B_j = (3j, 3j + 1, 3j + 4, 3j + 5, 3j + 6, 3j + 2),$$

$$C_j = (3j, 3j + 3, 3j + 1, 3j + 5, 3j + 2, 3j + 4)$$

for $j \in \{0, \dots, 8h + 2\}$. Then $\Sigma = (\mathbb{Z}_{24h+9}, \mathcal{A} \cup \bigcup B_j \cup \bigcup C_j)$ (if h = 0 take $\mathcal{A} = \emptyset$) is a 6CS(24h+9).

Let us assign the colour 1 to the blocks A_i and all their translated forms for $i \in \{1, ..., h\}$ and all the blocks B_j and the colour 2 to the blocks A_i and all their translated forms for $i \in \{h+1, ..., 2h\}$ and all the blocks C_j . In this way we get a 2-bicolouring of Σ .

2) Let v = 9, let $\Sigma = (V, \mathcal{B})$ be a 6CS(9) and let $\phi \colon \mathcal{B} \to C$ be a 3-bicolouring of Σ . We can suppose that $C = \{1, 2, 3\}$ and let us denote by \mathcal{B}_i the set of blocks coloured with i and by X_i the set of vertices incident with these blocks. Any vertex $x \in X$ incident with blocks coloured with the colour i must be incident with precisely 2 blocks coloured with i. So, since $|\mathcal{B}| = 6$, then $|\mathcal{B}_i| = 2$ for any i = 1, 2, 3 and by

$$|\mathcal{B}_i| = \frac{2|X_i|}{6}$$

we see that it must be $|X_i| = 6$ for any i. Let $X = \{a_1, \ldots, a_9\}$ and suppose that $X_1 = \{a_1, \ldots, a_6\}$. We can suppose that the edge $\{a_1, a_2\}$ is not incident with the blocks of \mathcal{B}_1 . This implies that we can suppose that $\{a_1, a_2\}$ will be incident with one of the blocks of \mathcal{B}_2 . So $a_7, a_8, a_9 \in X_2$, but $|X_2| = 6$. This means that we can suppose that $a_3 \in X_2$, but a_3 is adjacent with a_1 and a_2 in the blocks of \mathcal{B}_1 . So in the blocks of \mathcal{B}_2 a_3 can be adjacent only with the a_7, a_8, a_9 . This is not possible and so by Lemma 3.1 we have that $\Omega_2^{(6)}(9) = \{2\}$.

Now we need to prove that $3 \in \Omega_2(12k+9)$ for k even, $k \geq 2$. In order to do this, we will need some technical lemmas. First, let us recall that the union $G_1 \cup G_2$ of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph having $V_1 \cup V_2$ as vertex set and edges those of $E_1 \cup E_2$.

Definition 3.4. A 1-factorization $\{F_1, \ldots, F_{2n-1}\}$ of the complete graph K_{2n} is called *uniform* if the graphs $F_i \cup F_j$ are all isomorphic for $i \neq j$.

Since $F_i \cup F_j$ is a 2-regular graph, it is isomorphic to a disjoint union of even cycles. If these cycles have length k_1, \ldots, k_r , then we say that the uniform 1-factorization is of type (k_1, \ldots, k_r) .

Lemma 3.5 ([6,8]). There exists a uniform 1-factorization of K_{12} of type (6,6) and it is unique up to isomorphisms.

The previous lemma, together with the following ones, provides us the decomposition technique that will be required later.

Lemma 3.6. Let $h \ge 1$ and let X and Y be disjoint sets such that |X| = 12h and |Y| = 3. Then:

- 1. the graph $K_{X,Y} \cup K_X$ can be decomposed into 6-cycles;
- 2. for any r such that $1 \le r \le 5$ there exist pairwise disjoint factors F_1, \ldots, F_{2r} of K_X such that the graph $K_{X,Y} \cup (K_X F_1 \ldots F_{2r})$ can be decomposed into 6-cycles and for any $j = 0, \ldots, r-1$ the graph $F_{2j+1} \cup F_{2j+2}$ can be decomposed into 6-cycles.

Proof. The first part of the statement is a direct consequence of the existence of maximum packings of K_n with 6-cycles when $n \equiv 3 \mod 12$ (see [13]). We will prove the second part of the statement by induction. Let h = 1. By Lemma 3.5, we can consider a uniform factorization $\mathcal{F} = \{F_1, \ldots, F_{11}\}$ of K_X , with $X = \{0, 1, \ldots, 11\}$. Let $F_{11} = \{\{i, i+6\} \mid i=0,\ldots,5\}$ and let $Y = \{a,b,c\}$. Then the following cycles:

$$(a, i+8, b, i, c, i+4)$$
 for $i = 0, 1, 2, 3,$
 $(a, 0, 6, b, 7, 1), (a, 2, 8, c, 9, 3), (b, 4, 10, c, 11, 5)$

determine a 6-cycles decomposition of the graph $K_{X,Y} \cup F_{11}$. Then Lemma 3.5 easily leads us to the statement in the case h = 1. Indeed, $K_X - F_{11} = F_1 \cup ... \cup F_{10}$. This proves the base case h = 1, because the factorization \mathcal{F} is uniform.

Now we prove the inductive step. Let h > 1 and let $Y = \{a, b, c\}$. Let $X = \bigcup_{i=1}^h X_i$, where $X_i \cap X_j = \emptyset$ for $i \neq j$ and $|X_i| = 12$ for any i. Note that

$$K_X = K_{X_1} \cup \ldots \cup K_{X_h} \cup \bigcup_{i < j} K_{X_i, X_j}$$
(3.1)

and also that

$$K_{X,Y} = K_{X_1,Y} \cup \ldots \cup K_{X_h,Y}.$$
 (3.2)

By induction, for any i and r, with $1 \le r \le 5$, we can find $F_1^{(i)}, \ldots, F_{2r}^{(i)}$ such that $K_{X_i,Y} \cup (K_{X_i} - F_1^{(i)} - \ldots - F_{2r}^{(i)})$ can be decomposed into 6-cycles and for any $j = 0, \ldots, r - 1$ $F_{2j+1}^{(i)} \cup F_{2j+2}^{(i)}$ can be decomposed in 6-cycles.

Let $F_j = \bigcup_{i=1}^h F_j^{(i)}$ for any j, so that each F_j is a factor of X and F_1, \ldots, F_{2r} are pairwise disjoint. So by (3.1) and (3.2) and by the fact that K_{X_i,X_j} can be decomposed into 6-cycles, for any $i \neq j$, F_1, \ldots, F_{2r} are such that $K_{X,Y} \cup (K_X - F_1 - \ldots - F_{2r})$ can be decomposed into 6-cycles. Moreover, obviously for any $j = 0, \ldots, r-1$ $F_{2j+1} \cup F_{2j+2}$ can be decomposed into 6-cycles.

The last technical lemma needed is the following.

Lemma 3.7. Let $h \ge 1$ and let X and Y be disjort sets such that |X| = 12h and |Y| = 3. Then, given a 1-factor F of K_X , the graph $K_{X,Y} \cup F$ can be decomposed into 6-cycles.

Proof. In Lemma 3.6 the statement has been proved in the case h=1. Now let h>1. We know that |F|=6h. So we can decompose F in h disjoint subsets F_1,\ldots,F_h and we can call X_i the vertex set of F_i . So $X=\bigcup_{i=1}^h X_i$, where $X_i\cap X_j=\emptyset$ for $i\neq j$, $|X_i|=12$ and F_i is a factor of X_i .

We can apply the statement to each X_i and F_i , so that $K_{X_i,Y} \cup F_i$ can be decomposed into 6-cycles. Now note that

$$K_{X,Y} \cup F = K_{X_1,Y} \cup \ldots \cup K_{X_h,Y} \cup F_1 \cup \ldots \cup F_h.$$

This clearly proves the statement.

Now we are ready to prove the following result.

Theorem 3.8. If k is even, $k \ge 2$, then $\Omega_2^{(6)}(12k+9) = \{2,3\}$.

Proof. 1) Let v=33. Let us consider four pairwise disjoint sets X, Y, Z and T, with |X|=6, |Y|=12, |Z|=3, |T|=12 and $X=\{x_1,\ldots,x_6\}$, $Y=\{y_1,\ldots,y_{12}\}$, $Z=\{z_1,z_2,z_3\}$ and $T=\{t_1,\ldots,t_{12}\}$. We will determine a 3-bicolouring for a 6CS on $X'=X\cup Y\cup Z\cup T$.

Let us consider the factor $F_1 = \{\{x_1, x_2\}, \{x_3, x_4\}, \{x_5, x_6\}\}$ on K_X . By [1, Theorem 1.1], we can decompose the graph $K_X - F_1$ into 6-cycles, obtaining the blocks A_1 and A_2 . Similarly, we can consider the factor:

$$F_2 = \{\{y_1, y_2\}, \{y_3, y_4\}, \{y_5, y_6\}, \{y_7, y_8\}, \{y_9, y_{10}\}, \{y_{11}, y_{12}\}\}$$

on K_Y . As before, by [1, Theorem 1.1] we can decompose the graph $K_Y - F_2$ into 6-cycles, obtaining the blocks B_1, \ldots, B_{10} . Moreover, by [17] we can decompose the complete bipartite graph $K_{X,Y}$ into 6-cycles, obtaining the blocks C_1, \ldots, C_{12} .

Let us consider, also, the blocks

$$D_1 = (x_1, x_2, z_1, x_3, z_3, z_2), \quad D_2 = (x_3, x_4, z_3, x_1, z_1, z_2),$$

$$D_3 = (x_5, x_6, z_2, x_4, z_1, z_3), \quad D_4 = (x_2, z_3, x_6, z_1, x_5, z_2).$$

These blocks represent a decomposition of the graph $K_Z \cup F_1 \cup K_{X,Z}$. We will also consider the blocks E_1, \ldots, E_{12} , that we obtain by decomposing $K_{X,T}$ into 6-cycles (again by [17]). Moreover, consider the following blocks:

$$G_i = (z_1, t_{i+4}, z_3, t_i, z_2, t_{i+8})$$

for i = 1, 2, 3, 4. These blocks represent a decomposition of $K_{Z,T} - \mathcal{G}$, where

$$G = \{\{z_i, t_i\} \mid i = 1, 2, 3, j = 4i - 3, 4i - 2, 4i - 1, 4i\}.$$

By Lemma 3.5, we can find pairwise disjoint factors F_3 , F_4 , F_5 of K_T in such a way that the graph $K_T - F_3 - F_4 - F_5$ can be decomposed into 6-cycles that we call H_1, \ldots, H_8 .

Consider the graph $K_{Y,Z} \cup F_2$. By Lemma 3.7, we can decompose this graph into 6-cycles I_1, \ldots, I_7 . Similarly, by Lemma 3.7, we can get:

- a decomposition in 6-cycles of the graph $K_{T,\{y_4,y_5,y_6\}} \cup F_3$, obtaining the blocks J_1,\ldots,J_7 ,
- a decomposition in 6-cycles of the graph $K_{T,\{y_7,y_8,y_9\}} \cup F_4$, obtaining the blocks K_1,\ldots,K_7 ,
- a decomposition in 6-cycles of the graph $K_{T,\{y_{10},y_{11},y_{12}\}} \cup F_5$, obtaining the blocks L_1,\ldots,L_7 .

At last, decompose $\mathcal{G} \cup K_{T,\{y_1,y_2,y_3\}}$ in the following blocks:

```
\begin{split} M_1 &= (z_1, t_2, y_2, t_4, y_1, t_1), \\ M_2 &= (z_1, t_4, y_3, t_2, y_1, t_3), \\ M_3 &= (z_2, t_6, y_1, t_8, y_2, t_5), \\ M_4 &= (z_2, t_8, y_3, t_6, y_2, t_7), \\ M_5 &= (z_3, t_{10}, y_1, t_{12}, y_3, t_9), \\ M_6 &= (z_3, t_{12}, y_2, t_{10}, y_3, t_{11}), \\ M_7 &= (y_1, t_5, y_3, t_1, y_2, t_9), \\ M_8 &= (y_1, t_7, y_3, t_3, y_2, t_{11}). \end{split}
```

Let us call \mathcal{B} the set of all these blocks. Then clearly that the system $\Sigma = (X', \mathcal{B})$ is a 6CS of order 33.

Now let us consider the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3\}$ such that:

- the blocks A_i B_i and C_i are coloured with the colour 1,
- the blocks D_i , E_i , G_i and H_i are coloured with the colour 2,
- the remaining blocks I_i , J_i , K_i , L_i and M_i are coloured with the colour 3.

This is a 3-bicolouring of Σ . Indeed, in the blocks coloured with 1 we have only the vertices of X and Y and each of them belongs to 8 of these blocks; in the blocks coloured with 2 we have only the vertices of X, Z and T and each of them belongs to 8 of these blocks; in the blocks coloured with 3 we have only the vertices of Y, Z and T and each of them belongs to 8 of these blocks. This proves that $3 \in \Omega_2^{(6)}(33)$ and by Lemma 3.1 we get that $\Omega_2^{(6)}(33) = \{2,3\}$.

2) Let v = 24h + 9, with $h \ge 2$. Let us consider the 6CS $\Sigma = (X', \mathcal{B})$ of order 33 constructed previously with the given 3-bicolouring. Let \mathcal{B}_1 be the set of blocks coloured with 1, \mathcal{B}_2 the set of blocks coloured with 2 and \mathcal{B}_3 the set of blocks coloured with the colour 3.

We have $X' = X \cup Y \cup Z \cup T$, where |X| = 6, |Y| = 12, |Z| = 3 and |T| = 12 and X, Y, Z and T are pairwise disjoint. Let us consider two other sets Y' and T', disjoint from X', such that |Y'| = |T'| = 12h - 12 and $Y' \cap T' = \emptyset$. We will determine a 3-bicolouring for a 6CS on $X'' = X' \cup Y' \cup T'$, where |X''| = 24h + 9.

Let I_1 be a factor of $K_{Y'}$, so that by [1] we can decompose $K_{Y'} - I_1$ into 6-cycles A_i for $i = 1, \ldots, (h-1)(12h-14)$. By [17], we can also decompose $K_{X \cup Y, Y'}$ into 6-cycles B_1, \ldots, B_{36h-36} .

By Lemma 3.6, we can find pairwise disjoint factors I_2 , I_3 , I_4 and I_5 of $K_{T'}$ such that $K_{Z,T'} \cup (K_{T'} - I_2 - I_3 - I_4 - I_5)$ can be decomposed into 6-cycles C_i for $i = 1, \ldots, (h-1)(12h-11)$ and $I_2 \cup I_3$ and $I_4 \cup I_5$ can also decomposed into 6-cycles.

By [17], we can also decompose $K_{X \cup T,T'}$ into 6-cycles D_1, \ldots, D_{36h-36} .

By Lemma 3.7, we can decompose $K_{Y',Z} \cup I_1$ into 6-cycles E_1, \ldots, E_{7h-7} . By [17], we can decompose $K_{Y \cup Y',T'}$ into 6-cycles $F_1, \ldots, F_{2h(12h-12)}$ and $K_{Y',T}$ into 6-cycles G_1, \ldots, G_{24h-24} . At last we can decompose $I_2 \cup I_3$ and $I_4 \cup I_5$ into 6-cycles H_1, \ldots, H_{4h-4} .

Let us call \mathcal{B} the set of these blocks. Then it is easily seen that the system $\Sigma = (X'', \mathcal{B})$ is a 6CS of order 24h + 9.

Now let us consider the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3\}$ such that:

- the blocks of \mathcal{B}_1 and A_i and B_i are coloured with the colour 1,
- the blocks of \mathcal{B}_2 and C_i and D_i are coloured with the colour 2,
- the remaining blocks of \mathcal{B}_3 and the remaining blocks E_i , F_i , G_i and H_i are coloured with the colour 3.

This is a 3-bicolouring of Σ . Indeed, in the blocks coloured with 1 we have only the vertices of X, Y and Y' and each of them belongs to 6h+2 of these blocks; in the blocks coloured with 2 we have only the vertices of X, Z, T and T' and each of them belongs to 6h+2 of these blocks; in the blocks coloured with 3 we have only the vertices of Y, Y', Z, T and T' and each of them belongs to 6h+2 of these blocks. This proves that $3 \in \Omega_2^{(6)}(24h+9)$ and, by Lemma 3.1, we get that $\Omega_2^{(6)}(24h+9) = \{2,3\}$ for any h > 1.

4. LOWER 3-CHROMATIC INDEX

In this section we study tricolourings, so that s=3, analizing the lower 3-chromatic index. First, we determine an upper bound for the number of colours required.

Lemma 4.1. Let $\Sigma = (V, \mathcal{B})$ be a 6CS(v) and let $\phi \colon \mathcal{B} \to C$ be a c-tricolouring of Σ . Then:

- 1. if v = 13, $c \le 7$,
- 2. if $v \equiv 1 \mod 12$ and v > 13, $c \le 8$,
- 3. if $v \equiv 9 \mod 12$, $c \leq 9$.

Proof. Let v=12k+1, for some $k\geq 1$ and let |C|=c and let $\gamma\in C$. Any element $v\in V$ incident with blocks coloured with γ must be incident with precisely 2k blocks coloured with γ . This means that there are at least 4k+1 vertices incident with blocks coloured with γ . This means that

$$c(1+4k) \le 3(1+12k),$$

so that $c \leq 8$, if $k \geq 2$, otherwise we get $c \leq 7$ if k = 1.

Let v = 12k + 9, for some $k \ge 0$ and let |C| = c e let $\gamma \in C$. Any element $v \in V$ incident with blocks coloured with γ must be incident with either 2k + 2 or 2k + 1 blocks coloured with γ . This means that there are at least 4k + 3 vertices incident with blocks coloured with γ . This means that

$$c(3+4k) \le 3(9+12k),$$

so that c < 9.

Since $v \equiv 1,9 \mod 12$, we are going to distinguish the two cases, being this time the case $v \equiv 1 \mod 12$ more difficult to deal with. Indeed, we will determine the exact value of $\chi_3^{(6)}(12k+1)$ only for k=1, k=2 and $k\equiv 0 \mod 3$, while we will determine the exact value of $\chi_3^{(6)}(12k+9)$ for any $k\geq 0$.

Theorem 4.2. If $k \equiv 1, 2 \mod 3$, $\chi_3^{(6)}(12k+1) \geq 4$. If $k \equiv 0 \mod 3$, $\chi_3^{(6)}(12k+1) = 3$.

Proof. Let $\Sigma = (V, \mathcal{B})$ be a 6CS(v) and let $\phi \colon \mathcal{B} \to C$ be a 3-tricolouring of Σ . Any element $v \in V$ incident with blocks coloured with γ must be incident with precisely 2k blocks coloured with γ . So, if \mathcal{B}_{γ} is the set of blocks coloured with γ , it must be

$$|B_{\gamma}| = \frac{2kv}{6} = \frac{kv}{3}.$$

However, if $k \equiv 1,2 \mod 3$, this number is not an integer. This shows that, if $k \equiv 1,2 \mod 3$, $\chi_3^{(6)}(12k+1) \geq 4$.

Now, let v = 36h + 1, for some $h \ge 1$. Let us consider three sets A, B, C such that |A| = |B| = |C| = 12h and $A \cap B = A \cap C = B \cap C = \emptyset$ and let us consider also an element $\infty \notin A \cup B \cup C$.

By [15], we can decompose the complete graphs $K_{A\cup\{\infty\}}$, $K_{B\cup\{\infty\}}$ and $K_{C\cup\{\infty\}}$ into 6-cycles, that we call, respectively, D_i , E_i and F_i for $i=1,\ldots,12h^2+h$. Moreover, by [17] we can decompose the complete bipartite graphs $K_{A,B}$, $K_{A,C}$ and $K_{B,C}$ into 6-cycles that we call, respectively, G_i , H_i and I_i for $i=1,\ldots,24h^2$. Called $\mathcal B$ the set of all these blocks, it is easy to see that the system $\Sigma=(A\cup B\cup C\cup \{\infty\},\mathcal B)$ is a 6CS of order 36h+1.

Consider, now, the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3\}$ obtained by assigning the colour 1 to the blocks D_i and I_i , the colour 2 to the blocks E_i and H_i and the colour 3 to the blocks F_i and G_i . Then it is easy to see that this is a 3-tricolouring of Σ .

In the following result we see that the lower 3-chromatic index in the cases v = 13 and v = 25 is 4. It is reasonable to conjecture that, in general, if $k \equiv 1, 2 \mod 3$, then $\chi_3^{(6)}(12k+1) = 4$.

Theorem 4.3. $\chi_3^{(6)}(13) = 4$ and $\chi_3^{(6)}(25) = 4$.

Proof. 1) Let v = 13. Let us consider three sets $A = \{a_1, a_2, a_3, a_4\}$, $B = \{b_1, b_2, b_3, b_4\}$, $C = \{c_1, c_2, c_3, c_4\}$, pairwise disjoint, and an element $\infty \notin A \cup B \cup C$. On $X = A \cup B \cup C \cup \{\infty\}$ let us consider the following blocks:

$$\begin{split} D_1 &= (\infty, a_1, b_2, a_3, b_3, a_2), & D_2 &= (b_1, b_2, b_4, a_4, \infty, a_3), & D_3 &= (b_3, b_4, a_1, a_2, b_1, a_4), \\ D_4 &= (\infty, c_1, a_1, a_3, a_2, c_2), & D_5 &= (c_1, c_3, c_2, a_4, a_3, c_4), & D_6 &= (c_3, \infty, c_4, a_2, a_4, a_1), \\ D_7 &= (\infty, b_1, c_2, b_2, c_3, b_3), & D_8 &= (c_1, c_2, c_4, b_4, \infty, b_2), & D_9 &= (c_3, c_4, b_1, b_3, c_1, b_4), \\ D_{10} &= (a_1, b_3, b_2, a_2, b_4, c_2), & D_{11} &= (a_1, b_1, c_3, a_4, b_2, c_4), & D_{12} &= (a_2, c_1, b_1, b_4, a_3, c_3), \\ D_{13} &= (a_3, c_1, a_4, c_4, b_3, c_2). \end{split}$$

Then $\Sigma = (X, \bigcup_{i=1}^{13} D_i)$ is 6CS of order 13. Let us consider, now, the colouring $\phi \colon \bigcup_{i=1}^{13} D_i \to \{1, 2, 3, 4\}$ obtained in the following way:

- assign the colour 1 to the blocks D_1 , D_2 and D_3 ,
- assign the colour 2 to the blocks D_4 , D_5 and D_6 ,
- assign the colour 3 to the blocks D_7 , D_8 and D_9 ,
- assign the colour 4 to the remaining blocks D_{10} , D_{11} , D_{12} and D_{13} .

Then ϕ is a 4-tricolouring of Σ , so that $4 \in \Omega_3^{(6)}(13)$. By Theorem 4.2, we get that $\chi_3^{(6)}(13) = 4$.

2) Let v = 25. Let $X = \mathbb{Z}_4 \times \{1, 2, 3, 4, 5, 6\} \cup \{\infty\}$, with $\infty \notin \mathbb{Z}_4 \times \{1, 2, 3, 4, 5, 6\}$. Let us consider on X the following blocks:

$$A_1 = (0_5, 1_5, 1_4, 3_5, 2_5, 0_4), \qquad A_2 = (0_5, 2_5, 3_4, 1_5, 3_5, 2_4), \qquad A_3 = (0_5, 3_5, 0_4, 1_5, 2_5, 1_4), \\ A_4 = (0_6, 1_6, 1_3, 3_6, 2_6, 0_3), \qquad A_5 = (0_6, 2_6, 3_3, 1_6, 3_6, 2_3), \qquad A_6 = (0_6, 3_6, 0_3, 1_6, 2_6, 1_3), \\ A_7 = (\infty, 0_5, 3_4, 0_2, 3_3, 0_6), \qquad A_8 = (\infty, 1_5, 2_4, 0_2, 2_3, 1_6), \qquad A_9 = (\infty, 2_5, 2_4, 2_2, 2_3, 2_6), \\ A_{10} = (\infty, 3_5, 3_4, 2_2, 3_3, 3_6), \qquad A_{11} = (0_2, 0_4, 3_2, 2_4, 1_2, 1_4), \qquad A_{12} = (0_2, 0_3, 3_2, 2_3, 1_2, 1_3), \\ A_{13} = (2_2, 0_4, 1_2, 3_4, 3_2, 1_4), \qquad A_{14} = (2_2, 0_3, 1_2, 3_3, 3_2, 1_3),$$

which represent a decomposition in 6-cycles of the graph:

$$K_{\{0_5,1_5,2_5,3_5\}} \cup K_{\{0_6,1_6,2_6,3_6\}} \cup K_{\{0_2,1_2,2_2,3_2\} \cup \{0_5,1_5,2_5,3_5\},\{0_4,1_4,2_4,3_4\}} \\ \cup K_{\{0_2,1_2,2_2,3_2\} \cup \{0_6,1_6,2_6,3_6\},\{0_3,1_3,2_3,3_3\}} \cup K_{\{\infty\},\{0_5,1_5,2_5,3_5\} \cup \{0_6,1_6,2_6,3_6\}}.$$

Also, by [15], we can decompose:

- the complete graph on $\{0_1, 1_1, 2_1, 3_1\} \cup \{0_2, 1_2, 2_2, 3_2\} \cup \{\infty\}$ into 6-cycles B_1, \ldots, B_6 ,
- the complete graph on $\{0_3, 1_3, 2_3, 3_3\} \cup \{0_4, 1_4, 2_4, 3_4\} \cup \{\infty\}$ into 6-cycles C_1, \ldots, C_6 .

By [16, Theorem 2.2], given $K_{\{0_1,1_1,2_1,3_1\},\{0_5,1_5,2_5,3_5\},\{0_6,1_6,2_6,3_6\}}$, we can decompose this equipartite graph into 6-cycles D_1,\ldots,D_8 . Moreover, let us consider the blocks $E_{ij}=(i_1,j_3,i_5,j_2,i_6,j_4)$ for any $i,j\in\{0,1,2,3\}$. Let $\mathcal B$ the set of all these blocks. Then $\Sigma=(X,\mathcal B)$ is a 6CS of order 25.

Consider, now, the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3, 4\}$ obtained in the following way:

- assign the colour 1 to the blocks A_i ,
- assign the colour 2 to the blocks B_i ,
- assign the colour 3 to the blocks C_i and D_i ,
- assign the colour 4 to the blocks E_{ij} .

Then ϕ is a 4-tricolouring of Σ , so that $4 \in \Omega_3^{(6)}(25)$ and by Theorem 4.2 we get that $\chi_3^{(6)}(25) = 4$.

In the following theorem we will see that $3 \in \Omega_3^{(6)}(12k+9)$ for any $k \ge 0$, using the difference method technique.

Theorem 4.4. For any $k \ge 0$, $\chi_3^{(6)}(12k+9) = 3$.

Proof. 1) Let k = 0. Let us consider the following 6-cycles on $X = \mathbb{Z}_9$:

$$\begin{aligned} A_1 &= (1,2,3,4,5,7), & A_2 &= (1,3,0,6,2,8), & A_3 &= (1,6,3,5,2,4), \\ A_4 &= (6,7,4,8,0,5), & A_5 &= (1,5,8,7,2,0), & A_6 &= (3,7,0,4,6,8). \end{aligned}$$

Given $\mathcal{B} = \bigcup_{i=1}^6 A_i$, the system $\Sigma = (X, \mathcal{B})$ is a 6CS on X. Consider, now, the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3\}$ obtained by assigning the colour 1 to the blocks A_1 and A_2 , the colour 2 to the blocks A_3 and A_4 and the colour 3 to the blocks A_5 and A_6 .

Then it is easy to see that this is a 3-tricolouring of Σ .

2) Let $k \ge 1$ and let v = 12k + 9. Consider $X = \mathbb{Z}_{4k+3} \times \{1, 2, 3\}$. We will construct a $6CS \Sigma$ on X and a 3-tricolouring of Σ . Consider the following blocks on X:

```
- A_j = (0_1, j_1, 0_3, (4k+3-j)_3, 0_2, (4k+3-j)_2) for j \in \{1, \dots, k\},

- B_j = (0_1, j_1, (2k+1)_3, (j+2k+1)_3, (3k+2)_2, (j+3k+2)_2) for j \in \{k+1, \dots, 2k+1\},

- C_j = (0_1, j_2, 0_3, j_1, 0_2, j_3) for j \in \{k+1, \dots, 2k+1\}.
```

By using the difference method on X it is easy to see that, if \mathcal{B} is the collection of all these blocks and their translates, the system $\Sigma = (X, \mathcal{B})$ is a 6CS on X.

Suppose now that k = 1. Consider the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3\}$ on Σ obtained in the following way:

- 1. assign the colour 1 to the block A_1 and all its translates and to the blocks $C_2 + i$ for $i \in \{0, ..., 4\}$,
- 2. assign the colour 2 to the blocks B_2 and all its translates and to the blocks $C_3 + i$ for $i \in \{0, 1, 5, 6\}$,
- 3. assign the colour 3 to the block B_3 and all its translates, to the blocks $C_2 + i$ for i = 5, 6 and to the blocks $C_3 + i$ for i = 2, 3, 4.

This is a 3-tricolouring of Σ . Any element in X belongs to 10 blocks of Σ and in a 3-tricolouring of Σ these blocks must be divided into three sets of cardinality 4, 3 and 3, each a subset of a colour class. With the assigned colouring we see that:

- the elements $2_i, 3_i, 4_i$, for i = 1, 2, 3, belong to 4 blocks coloured with 1, while the remaining ones belong to 3 blocks coloured with 1,
- the elements 1_i , for i = 1, 2, 3, belong to 4 blocks coloured with 2, while the remaining ones belong to 3 blocks coloured with 2,
- the elements $0_i, 5_i, 6_i$, for i = 1, 2, 3, belong to 4 blocks coloured with 3, while the remaining ones belong to 3 blocks coloured with 3.

Suppose now that $k \geq 2$ and consider the colouring $\phi \colon \mathcal{B} \to \{1, 2, 3\}$ obtained in the following way:

- 1. assign the colour 1 to the blocks A_j , for $j \in \{1, ..., k\}$, and all their translates and to the blocks $C_{2k} + i$ for $i \in \{0, ..., 3k + 1\}$,
- 2. assign the colour 2 to the blocks B_j , for $j \in \{k+1, \ldots, 2k\}$, and all their translates and to the blocks $C_{2k+1} + i$ for $i \in \{0, \ldots, 2k-1\} \cup \{3k+2, \ldots, 4k+2\}$,
- 3. assign the colour 3 to the block B_{2k+1} and all its translates, to the blocks C_j , for $j \in \{k+1,\ldots,2k-1\}$, and all their translates, to the blocks $C_{2k}+i$ for $i \in \{3k+2,\ldots,4k+2\}$ and to the blocks $C_{2k+1}+i$ for $i \in \{2k,\ldots,3k+1\}$.

This is a 3-tricolouring of Σ . Any elements in X belongs to 6k+4 blocks of Σ and in a 3-tricolouring of Σ these blocks must be divided into three sets of cardinality 2k+2, 2k+1 and 2k+1, each a subset of a colour class. With the assigned colouring we see that:

- the elements $\{0_i, \ldots, (k-2)_i\} \cup \{(2k)_i, \ldots, (3k+1)_i\}$, for i = 1, 2, 3, belong to 2k+2 blocks coloured with 1, while the remaining elements belong to 2k+1 blocks coloured with 1,

- the elements $\{k_i, \ldots, (2k-1)_i\}$, for i = 1, 2, 3, and $\{(3k+2)_i, \ldots, (4k)_i\}$ for i = 1, 2, 3, belong to 2k + 2 blocks coloured with 2, while the remaining elements belong to 2k + 1 blocks coloured with 2,
- the elements $(k-1)_i$, $(4k+1)_i$, $(4k+2)_i$, for i=1,2,3, belong to 2k+2 blocks coloured with 3, while the remaining elements belong to 2k+1 blocks coloured with 3.

This shows that ϕ is a 3-tricolouring of Σ .

5. UPPER 3-CHROMATIC INDEX

In this last section we study the upper 3-chromatic index, finding, in general, an upper bound and in just some cases its exact value. Again, we will study separately the cases v = 12k + 1 and v = 12k + 9.

Theorem 5.1. $\overline{\chi}_3^{(6)}(12k+1) = 7$ for $k \equiv 0, 2 \mod 3$ and $\overline{\chi}_3^{(6)}(12k+1) \leq 7$ for

Proof. By Lemma 4.1, we know that $\overline{\chi}_3^{(6)}(12k+1) \leq 8$ for $k \geq 2$, while $\overline{\chi}_3^{(6)}(13) \leq 7$. So we can suppose that $k \geq 2$. Suppose that there exists an 8-tricolouring of a 6CS $\Sigma = (X, \mathcal{B})$ of order 12k + 1. Let \mathcal{B}_i be the family of blocks coloured with the colour i and let X_i be the set of vertices incident with the blocks of \mathcal{B}_i . Then any $x \in X_i$ belongs to 2k blocks of \mathcal{B}_i , so that $|X_i| \geq 4k+1$ for any i. So we have that $|X_i| = 4k+1+k_i$ for any i. However, we know that

$$\sum_{i=1}^{8} |X_i| = 3(12k+1) \Rightarrow \sum_{i=1}^{8} k_i = 4k - 5.$$

Note now that, if $x, y \in X_i \cap X_j$, with $x \neq y$ and $i \neq j$, then the edge $\{x, y\}$ may belong to just one block either in \mathcal{B}_i or in \mathcal{B}_j . So y is either one of the elements of X_i not adjacent to x in the blocks of \mathcal{B}_i (of which there are at most k_i) or one of the elements of X_j not adjacent to x in the blocks of \mathcal{B}_j (of which there are at most k_j). This means that

$$|X_i \cap X_i| \le k_i + k_i + 1.$$

So we have

$$\begin{aligned} 2|X_i| &= \sum_{j \in \{1, \dots, 8\} \setminus \{i\}} |X_i \cap X_j| \Rightarrow 2(4k+1+k_i) \leq \sum_{j \in \{1, \dots, 8\} \setminus \{i\}} (k_i+k_j+1) \\ &\Rightarrow 8k+2+2k_i \leq 6k_i+4k+2 \Rightarrow k_i \geq k. \end{aligned}$$

Since $\sum_{i=1}^8 k_i = 4k-3$, we get $4k-3 \geq 8k$, so that $4k \leq -3$, which is a contradiction. So $\overline{\chi}_3^{(6)}(12k+1) \leq 7$ for any $k \geq 1$. Now, let $k \equiv 0, 2 \mod 3$ and let v = 12k+1. Let us consider A_1, \ldots, A_6 pairwise

disjoint sets such that $|A_i| = 2k$ for any i and take an element $\infty \notin A_i$ for any i. Let

 $X = \bigcup_{i=1}^{6} A_i \cup \{\infty\}$. By [15], we can decompose the complete graph $K_{A_{2i+1} \cup A_{2i+2} \cup \{\infty\}}$ for i = 0, 1, 2 into 6-cycles determining the system $\Sigma_i = (A_{2i+1} \cup A_{2i+2} \cup \{\infty\}, \mathcal{B}_i)$ for i = 0, 1, 2. By [16], we can decompose the complete equipartite graphs K_{A_1, A_3, A_5} , K_{A_1, A_4, A_6} , K_{A_2, A_3, A_6} and K_{A_2, A_4, A_5} into 6-cycles, determining, respectively, the family of blocks \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 and \mathcal{C}_4 .

It is easy to see that $\Sigma = (X, \bigcup_{i=1}^3 \mathcal{B}_i \cup \bigcup_{i=1}^4 \mathcal{C}_i)$ is a 6CS of order v. Let $\phi \colon \bigcup_{i=1}^3 \mathcal{B}_i \cup \bigcup_{i=1}^4 \mathcal{C}_i \to \{1, \dots, 7\}$ be a colouring which assigns the colour i to the blocks of \mathcal{B}_i , for i = 1, 2, 3 and the colour j to the blocks of C_{j-3} for j = 4, 5, 6, 7. It is easy to see that ϕ is a 7-tricolouring of Σ and this proves that $\overline{\chi}_3^{(6)}(12k+1) = 7$ for $k \equiv 0, 2 \mod 3$.

It is possible to determine the spectrum of tricolourings for 6CS of order 13.

Theorem 5.2. $\Omega_3^{(6)}(13) = \{4, 5\}.$

Proof. Let $\Sigma = (X, \mathcal{B})$ be a 6CS(13). We need to show that, given a tricolouring $\phi \colon \mathcal{B} \to \{1, \ldots, c\}$, then $c \leq 5$. By Lemma 4.1, we know that $c \leq 7$. Let \mathcal{B}_i the set of blocks coloured with i and X_i the set of vertices incident with the blocks of \mathcal{B}_i .

Let c = 7. It must be $|B_i| \ge 2$ for any i, while however

$$13 = |\mathcal{B}| = \sum_{i=1}^{7} |\mathcal{B}_i|.$$

This is not possible and so $c \leq 6$.

Let c=6. Since $|B_i| \geq 2$ for any i and $13=|\mathcal{B}|=\sum_{i=1}^6 |\mathcal{B}_i|$, then we can say that $|\mathcal{B}_i|=2$ for $i=1,\ldots,5$ and $|B_6|=3$. Note that $|\mathcal{B}_i|=\frac{2|X_i|}{6}$ and so $|X_i|=6$ for $i=1,\ldots,5$ and $|X_6|=9$. Since, for any $i=1,\ldots,5$, any $x\in X_i$ is incident to both blocks of \mathcal{B}_i , we see that for any $x\in X_i$ there exists just one $y\in X_i$ such that the edge $\{x,y\}$ does not belong to the blocks of \mathcal{B}_i . This implies that $|X_i\cap X_j|\leq 2$ for any $i,j=1,\ldots,5,\ i\neq j$. However,

$$39 = 3|X| = \sum_{1 \le i < j \le 6} |X_i \cap X_j| \Rightarrow 2|X_6| = \sum_{i=1}^5 |X_i \cap X_6| \ge 19.$$

Since $|X_6| = 9$, we have a contradiction, and so $c \le 5$.

Now, by Theorem 4.3, to get the statement we need to show that there exists a 5-tricolouring of a 6CS of order 13. On \mathbb{Z}_{13} consider the following blocks:

- A_1 and A_2 , obtained by decomposing $K_{\{0,1,2,3,4,5\}} \{\{0,1\},\{2,3\},\{4,5\}\}$ (see [1, Theorem 1.1]) in 6-cycles,
- A_3 and A_4 , obtained by decomposing $K_{\{0,1,6,7,8,9\}} \{\{0,6\},\{1,7\},\{8,9\}\}$ in 6-cycles,
- A_5 and A_6 , obtained by decomposing $K_{\{0,2,6,10,11,12\}} \{\{0,2\},\{6,10\},\{11,12\}\}$ in 6-cycles,
- $-A_7 = (3, 8, 4, 7, 5, 9), A_8 = (3, 11, 4, 10, 5, 12), A_9 = (7, 11, 8, 10, 9, 12), A_{10} = (1, 7, 3, 6, 5, 11), A_{11} = (1, 10, 3, 2, 8, 12), A_{12} = (2, 7, 10, 6, 4, 9) and A_{13} = (4, 5, 8, 9, 11, 12).$

It is easy to see that the system $\Sigma = (\mathbb{Z}_{13}, \bigcup_{i=1}^{13} A_i)$ is a 6CS(13). Let us consider now a colouring $\phi \colon \bigcup_{i=1}^{13} A_i \to \{1, \dots, 5\}$ defined in the following way:

- assign the colour 1 to the blocks A_1, A_2 ,
- assign the colour 2 to the blocks A_3, A_4 ,
- assign the colour 3 to the blocks A_5, A_6 ,
- assign the colour 4 to the blocks A_7, A_8, A_9 ,
- assign the colour 5 to the blocks A_{10} , A_{11} , A_{12} , A_{13} .

It is easy to see that this is a 5-tricolouring of Σ .

Now we determine an upper bound for $\overline{\chi}_3^{(6)}(12k+9)$.

Theorem 5.3.
$$\overline{\chi}_3^{(6)}(12k+9) \le 7 \text{ for } k \ge 1.$$

Proof. By Lemma 4.1, we know that $\overline{\chi}_3^{(6)}(12k+9) \leq 9$.

Suppose that there exists a 9-tricolouring of a 6CS $\Sigma = (X, \mathcal{B})$ of order 12k + 9. Let \mathcal{B}_i be the family of blocks coloured with the colour i and let X_i be the set of vertices incident with the blocks of \mathcal{B}_i . Then any $x \in X_i$ belongs to either 2k + 1 or 2k + 2 blocks of \mathcal{B}_i , so that $|X_i| \ge 4k + 3$ for any i. So we have that $|X_i| = 4k + 3 + k_i$ for any i, with $k_i \ge 0$. However we know that

$$\sum_{i=1}^{9} |X_i| = 3(12k+9) \Rightarrow \sum_{i=1}^{9} k_i = 0.$$

So $k_i = 0$ for any i. However, this is not possible, because in such a way no element of X belongs to 2k + 2 blocks of \mathcal{B}_i for some i. So we have a contradiction and $\overline{\chi}_3^{(6)}(12k + 9) \leq 8$.

As before, suppose that there exists an 8-tricolouring of a 6CS $\Sigma = (X, \mathcal{B})$ of order 12k+9. Let \mathcal{B}_i be the family of blocks coloured with the colour i and let X_i be the set of vertices incident with the blocks of \mathcal{B}_i . Then any $x \in X_i$ belongs to either 2k+1 or 2k+2 blocks of \mathcal{B}_i , so that $|X_i| \geq 4k+3$ for any i. So we have that $|X_i| = 4k+3+k_i$ for any i, with $k_i \geq 0$. However,

$$\sum_{i=1}^{8} |X_i| = 3(12k+9) \Rightarrow \sum_{i=1}^{8} k_i = 4k+3.$$

Note now that, if $x, y \in X_i \cap X_j$, with $x \neq y$ and $i \neq j$, then the edge $\{x, y\}$ may belong to just one block either in \mathcal{B}_i or in \mathcal{B}_j . So y is either one of the elements of X_i not adjacent to x in the blocks of \mathcal{B}_i (of which there are at most k_i) or one of the elements of X_j not adjacent to x in the blocks of \mathcal{B}_j (of which there are at most k_j). This means that

$$|X_i \cap X_i| \le k_i + k_i + 1.$$

So we have

$$2|X_i| = \sum_{j \in \{1, \dots, 8\} \setminus \{i\}} |X_i \cap X_j| \Rightarrow 2(4k + 3 + k_i) \le \sum_{j \in \{1, \dots, 8\} \setminus \{i\}} (k_i + k_j + 1)$$
$$\Rightarrow 8k + 6 + 2k_i \le 6k_i + 4k + 10 \Rightarrow k_i \ge k - 1.$$

Since $\sum_{i=1}^{8} k_i = 4k + 3$, we get $4k + 3 \ge 8k - 8$, so that $4k \le 11$. This means that the only possibilities are k = 2 and k = 1.

Let k=2, so that v=33 and any vertex $x\in X_i$ belongs to either 6 or 5 blocks of \mathcal{B}_i . Since $k_i\geq k-1$, we have that $k_i\geq 1$ for any i. Moreover, $\sum_{i=1}^8 k_i=4k+3=11$. So we can suppose that $k_i=1$ and $|X_i|=12$ for any $i=1,\ldots,5$. This means that any element in X_i , for $i=1,\ldots,5$, belongs to exactly 5 blocks of \mathcal{B}_i and that for any $x\in X_i$ there exists just one $y\in X_i$ such that $\{x,y\}$ is not incident with some block of \mathcal{B}_i . In particular, we get that $X_i\cap X_j\cap X_k=\emptyset$ for any pairwise distinct $i,j,k=1,\ldots,5$. Let us recall also that $|X_i\cap X_j|\leq k_i+k_j+1=3$ for any $i,j=1,\ldots,5$. Since

$$33 \ge |X_1 \cup \ldots \cup X_5| = \sum_{i=1}^5 |X_i| - \sum_{1 \le i < j \le 5} |X_i \cap X_j| \Rightarrow \sum_{1 \le i < j \le 5} |X_i \cap X_j| \ge 27,$$

we see that there exists i, j = 1, ..., 5, with $i \neq j$, such that $|X_i \cap X_j| = 3$. Let $X_i \cap X_j = \{x, y, z\}$. By what remarked previously, we can suppose that $\{x, y\}$ is incident with some block in \mathcal{B}_i and similarly either $\{x, z\}$ or $\{y, z\}$ to some block in \mathcal{B}_i . In both cases we get a contradiction and so we see that k = 2 is impossible.

So let k = 1. In this case, $|X_i| = 7 + k_i$ for any i and $\sum_{i=1}^8 k_i = 7$. So we can say that $k_1 = 0$ and $|X_1| = 7$. Since in this case v = 21 and any $x \in X_i$ belongs to either 4 or 3 blocks of \mathcal{B}_i , we can say that the blocks of \mathcal{B}_1 are a decomposition of the complete graph on X_1 . By [15], this is impossible because $7 \not\equiv 1, 9 \mod 12$.

At last we determine the spectrum of $\Omega_3^{(6)}(9)$.

Theorem 5.4. $\Omega_3^{(6)}(9) = \{3, 4\}.$

Proof. By Lemma 4.1, we know that $\overline{\chi}_3^{(6)}(9) \leq 9$. Let $\Sigma = (X, \mathcal{B})$ be a 6CS and let $\phi \colon \mathcal{B} \to \{1, 2, \dots, c\}$ be c-tricolouring of Σ . Since $|\mathcal{B}| = 6$, it follows that $c \leq 6$.

Since ϕ is a tricolouring, we see that any vertex belongs to 4 blocks, 2 of them coloured with the same colour and the other two with other two different colours. So, if c=6, then any two blocks are coloured with different colours, which is clearly impossible in a tricolouring. If c=5, then only 2 of 6 blocks are coloured with the same colour. So at most only 6 of the 9 vertices belongs to two blocks coloured with same colour. So $c\leq 4$.

Now we will prove that $\overline{\chi}_3^{(6)}(9) = 4$. On $X = \mathbb{Z}_9$ consider the following blocks:

$$B_j = (3j, 3j + 1, 3j + 4, 3j + 5, 3j + 6, 3j + 2),$$

 $C_i = (3j, 3j + 3, 3j + 1, 3j + 5, 3j + 2, 3j + 4)$

for j=0,1,2. Then $\Sigma=(X,\bigcup_{j=0}^2 B_j\cup C_j)$ is a 6CS on X. Consider the following colouring $\phi\colon \bigcup_{j=0}^2 B_j\cup C_j\to \{1,2,3,4\}$:

- assign the colour 1 to the blocks B_j for j = 0, 1, 2,
- assign the colour j, for j = 2, 3, 4, to the block C_{j-2} .

Then it is easy to see that ϕ is a 4-tricolouring of Σ , so that $\overline{\chi}_3^{(6)}(9) = 4$. By Theorem 4.4, we get that $\Omega_3^{(6)}(9) = \{3,4\}$.

REFERENCES

- B. Alspach, H. Gavlas, Cycle decompositions of Kⁿ and Kⁿ I, J. Combin. Theory Ser. B 81 (2001), 77-99.
- [2] G. Bacso, Zs. Tuza, V. Voloshin, Unique colourings of bi-hypergraphs, Australas.
 J. Combin. 27 (2003), 33–45.
- [3] P. Bonacini, L. Marino, Equitable tricolourings for 4-cycle systems, Applied Mathematical Sciences 9 (2015) 58, 2881–2887.
- [4] P. Bonacini, L. Marino, Equitable block colourings, Ars Comb. 120 (2015), 255–258.
- [5] Cs. Bujtas, Zs. Tuza, V. Voloshin, Hypergraph Colouring, [in:] L.W. Beineke, R.J. Wilson (eds), Topics in Chromatic Graph Theory, Cambridge University Press, 2015, 230–254.
- [6] P. Cameron, Parallelisms in complete designs, Cambridge University Press, Cambridge, 1976.
- [7] C.J. Colbourn, A. Rosa, Specialized block-colourings of Steiner triple systems and the upper chromatic index, Graphs Combin. 19 (2003), 335–345.
- [8] J.H. Dinitz, D.K. Garnick, B.D. McKay, There are 526,915,620 nonisomorphic one-factorizations of K₁₂, J. Combin. Des. 2 (1994) 4, 273-285.
- [9] L. Gionfriddo, M. Gionfriddo, G. Ragusa, Equitable specialized block-colourings for 4-cycle systems – I, Discrete Math. 310 (2010), 3126–3131.
- [10] M. Gionfriddo, G. Quattrocchi, Colouring 4-cycle systems with equitable coloured blocks, Discrete Math. 284 (2004), 137–148.
- [11] M. Gionfriddo, G. Ragusa, Equitable specialized block-colourings for 4-cycle systems II, Discrete Math. **310** (2010), 1986–1994.
- [12] M. Gionfriddo, P. Horak, L. Milazzo, A. Rosa, Equitable specialized block-colourings for Steiner triple systems, Graphs Combin. 24 (2008), 313–326.
- [13] J.A. Kennedy, Maximum packings of K_n with hexagons, Australas. J. Combin. 7 (1993), 101–110.
- [14] S. Milici, A. Rosa, V. Voloshin, Colouring Steiner systems with specified block colour pattern, Discrete Math. 240 (2001), 145–160.
- [15] A. Rosa, C. Huang, Another class of balanced graph designs: balanced circuit designs, Discrete Math. 12 (1975) 3, 269–293.
- [16] B.R. Smith, Decomposing complete equipartite graphs into cycles of length 2p, J. Comb. Des. **16** (2008) 3, 244–252.
- [17] D. Sotteau, Decompositions of $K_{m,n}$ ($K_{m,n}^{\star}$) into cycles (circuits) of length 2k, J. Comb. Theory B, **30** (1981), 75–81.
- [18] V. Voloshin, Coloring block designs as mixed hypergraphs: survey, Abstracts of papers presented to the American Mathematical Society (2005), vol. 26, no. 1, issue 139, p. 15.
- [19] V. Voloshin, Graph Coloring: History, results and open problems, Alabama Journal of Mathematics, Spring/Fall 2009.

Paola Bonacini bonacini@dmi.unict.it

Università degli Studi di Catania Viale A. Doria 6, 95125 Catania, Italy

Mario Gionfriddo gionfriddo@dmi.unict.it

Università degli Studi di Catania Viale A. Doria 6, 95125 Catania, Italy

Lucia Marino lmarino@dmi.unict.it

Università degli Studi di Catania Viale A. Doria 6, 95125 Catania, Italy

Received: September 19, 2016. Revised: December 10, 2016. Accepted: December 21, 2016.