Opuscula Math. 35, no. 3 (2015), 411-419
http://dx.doi.org/10.7494/OpMath.2015.35.3.411
Opuscula Mathematica
Hermite-Hadamard type inequalities for Wright-convex functions of several variables
Dorota Śliwińska
Szymon Wąsowicz
Abstract. We present Hermite-Hadamard type inequalities for Wright-convex, strongly convex and strongly Wright-convex functions of several variables defined on simplices.
Referred to by Corrigendum to "Hermite-Hadamard type inequalities for Wright-convex functions of several variables"
Article: Opuscula Math. 36, no. 2 (2016), 279-280, http://dx.doi.org/10.7494/OpMath.2016.36.2.279
Keywords: convex functions, Wright-convex functions, strongly Wright-convex functions, Hermite-Hadamard inequality.
Mathematics Subject Classification: 26B25, 26D15, 39B62, 65D32.
- M. Bessenyei, The Hermite-Hadamard inequality on simplices, Amer. Math. Monthly 115 (2008), 339-345.
- S.S. Dragomir, C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2002.
- A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comp. 73 (2004), 1365-1384.
- J.B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of convex analysis, Springer-Verlag, Berlin Heidelberg, 2001.
- N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193-199.
- N. Merentes, K. Nikodem, S. Rivas, Remarks on strongly Wright-convex functions, Ann. Polon. Math. 102 (2011), 271-278.
- E. Neuman, Inequalities involving multivariate convex functions II, Proc. Amer. Math. Soc. 109 (1990), 965-974.
- C.T. Ng, Functions generating Schur-convex sums, [in:] General inequalities, 5 (Oberwolfach, 1986), volume 80 of Internat. Schriftenreihe Numer. Math., pp. 433-438, Birkhäuser, Basel, 1987.
- C.P. Niculescu, L.E. Persson, Convex Functions and Their Applications. A Contemporary Approach, Springer, New York 2006.
- A. Olbryś, On some inequalities equivalent to the Wright convexity, submitted.
- B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.
- Sz. Wąsowicz, A. Witkowski, On some inequality of Hermite-Hadamard type, Opuscula Math. 32 (2012), 591-600.
- Sz. Wąsowicz, Hermite-Hadamard-type inequalities in the approximate integration, Math. Inequal. Appl. 11 (2008), 693-700.
- Dorota Śliwińska
- University of Bielsko-Biała, Department of Mathematics and Computer Science, Willowa 2, 43-309 Bielsko-Biała, Poland
- Szymon Wąsowicz
- University of Bielsko-Biała, Department of Mathematics and Computer Science, Willowa 2, 43-309 Bielsko-Biała, Poland
- Communicated by Zbigniew Szkutnik.
- Received: 2013-12-19.
- Revised: 2014-09-29.
- Accepted: 2014-09-29.
- Published online: 2014-12-15.